JPH0325447B2 - - Google Patents

Info

Publication number
JPH0325447B2
JPH0325447B2 JP61099776A JP9977686A JPH0325447B2 JP H0325447 B2 JPH0325447 B2 JP H0325447B2 JP 61099776 A JP61099776 A JP 61099776A JP 9977686 A JP9977686 A JP 9977686A JP H0325447 B2 JPH0325447 B2 JP H0325447B2
Authority
JP
Japan
Prior art keywords
formula
group
substituted
groups
polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61099776A
Other languages
Japanese (ja)
Other versions
JPS62256828A (en
Inventor
Chuki Shimizu
Tamio Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP61099776A priority Critical patent/JPS62256828A/en
Priority claimed from JP27351986A external-priority patent/JPH0714998B2/en
Priority claimed from JP27352086A external-priority patent/JPH086024B2/en
Priority to US07/118,505 priority patent/US4873272A/en
Publication of JPS62256828A publication Critical patent/JPS62256828A/en
Priority to KR1019870012767A priority patent/KR910005343B1/en
Priority to EP88107360A priority patent/EP0341322B1/en
Publication of JPH0325447B2 publication Critical patent/JPH0325447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Sealing Material Composition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水分に触れるとゴム状弾性体へと室
温で硬化し得る、加水分解性シリル基で分子鎖末
端が閉塞されたポリエーテルおよびその製造方法
に関し、特に耐熱性と耐侯性に優れ、接着性を有
し、かつ表面に粘着性の残留することのないゴム
状硬化物の得られる室温硬化性組成物のベースポ
リマーとして有用なポリエーテルおよびその製造
方法に関する。 〔従来の技術および問題点〕 加水分解性ケイ素官能性基を有し、主鎖がポリ
エーテルである重合体は公知である(特開昭50−
156599号公報等)。この重合体をベースとした室
温硬化性組成物が、近年建造物の目地部や輸送機
械接合部などのシーリング材として用いられ始め
ている(特開昭52−73998号公報等)。しかしなが
らこの種の重合体は耐熱性や耐候性に劣るため、
耐候性の要求される建造物外壁の目地部や、輸送
機械接合部の一部など比較的高温となる箇所の使
用には適さないという問題がある。 また、この種の重合体は本質的に接着性を有し
ていないため、あらかじめ被着面にプライマー処
理を施してからシーリング材を適用する必要があ
る。更に硬化物の表面に粘着性が残留するため、
シーリング材に塵埃が付着しやすいという問題が
ある。 〔問題点を解決するための手段〕 本発明は、これらの問題点を解決するためのも
のであり、耐熱性と耐候性に優れ、接着性を有
し、かつ表面に粘着性の残留することのないゴム
状硬化物の得られる室温硬化性組成物のベースポ
リマーとして有用な、加水分解性シリル基で分子
鎖末端が閉塞されたポリエーテルおよびその製造
方法を提供することを目的とする。 即ち、本発明は 一般式: (式中、R1,R2は2価の炭化水素基、Aは置
換または非置換の2価の芳香族基、Zは
[Industrial Application Field] The present invention relates to a polyether whose molecular chain ends are blocked with hydrolyzable silyl groups, which can be cured at room temperature into a rubber-like elastic body when exposed to moisture, and a method for producing the same, in particular a heat-resistant polyether. The present invention relates to a polyether useful as a base polymer for a room-temperature curable composition that provides a rubber-like cured product that has excellent hardness and weather resistance, has adhesive properties, and does not leave any sticky residue on the surface, and a method for producing the same. [Prior art and problems] Polymers having hydrolyzable silicon functional groups and whose main chain is polyether are known (Japanese Patent Application Laid-open No. 1983-1979).
156599, etc.). Room-temperature curable compositions based on this polymer have recently begun to be used as sealing materials for joints in buildings, joints in transportation machines, etc. (Japanese Unexamined Patent Publication No. 73998/1983, etc.). However, this type of polymer has poor heat resistance and weather resistance, so
There is a problem in that it is not suitable for use in locations that are relatively hot, such as joints in exterior walls of buildings that require weather resistance or parts of joints in transportation machinery. Furthermore, since this type of polymer does not inherently have adhesive properties, it is necessary to apply a primer treatment to the surface to which it is adhered before applying the sealant. Furthermore, since adhesiveness remains on the surface of the cured product,
There is a problem in that dust tends to adhere to the sealant. [Means for Solving the Problems] The present invention is intended to solve these problems. An object of the present invention is to provide a polyether whose molecular chain ends are blocked with a hydrolyzable silyl group, which is useful as a base polymer for a room-temperature curable composition that yields a rubber-like cured product free of silane, and a method for producing the same. That is, the present invention has the general formula: (In the formula, R 1 and R 2 are divalent hydrocarbon groups, A is a substituted or unsubstituted divalent aromatic group, and Z is

【式】【formula】

【式】【formula】

【式】【formula】

【式】 または【formula】 or

【式】 で表わされる基を示し、ここでR3は炭素数1〜
6のアルキル基、R4は1価の炭化水素基、R5
R7,R9よびR11は置換または非置換のフエニレン
基、R6,R8,R10およびR12は2価の炭化水素基、
R13は1価の炭化水素基、aは1〜3の数を示
し、mは10〜500の数、nは1以上の数を示す。) で表わされ、分子量が500〜50000である、加水分
解性シリル基で分子鎖末端が閉塞されたポリエー
テル、 および (A) 一般式; (式中、R1,R2は2価の炭化水素基、mは10
〜500の数を示す。)で表わされる分子鎖末端がエ
ポキシ基で閉塞されたポリオキシアルキレン (B) 一般式; HzN−A−NH2(式中、Aは置換または非置換
の2価の芳香族基を示す。)で表わされる芳香族
ジアミン化合物および (C) 一般式; (式中、R3は炭素数1〜6のアルキル基、R4
は1価の炭化水素基、aは1〜3の数、Xは−
R5−NH2,−R6−O−R7−NH2、−R8−NH−R9
−NH2,−R10−S−R11−NH2または
[Formula] Indicates a group represented by the following, where R 3 has 1 to 1 carbon atoms.
6 alkyl group, R 4 is a monovalent hydrocarbon group, R 5 ,
R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups, R 6 , R 8 , R 10 and R 12 are divalent hydrocarbon groups,
R 13 is a monovalent hydrocarbon group, a is a number of 1 to 3, m is a number of 10 to 500, and n is a number of 1 or more. ) and has a molecular weight of 500 to 50,000, a polyether whose molecular chain ends are blocked with a hydrolyzable silyl group, and (A) a general formula; (In the formula, R 1 and R 2 are divalent hydrocarbon groups, m is 10
Indicates a number of ~500. ) Polyoxyalkylene (B) whose molecular chain terminal is blocked with an epoxy group General formula; H z N-A-NH 2 (wherein A represents a substituted or unsubstituted divalent aromatic group) ) and (C) general formula; (In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms, R 4
is a monovalent hydrocarbon group, a is a number from 1 to 3, and X is -
R 5 −NH 2 , −R 6 −O−R 7 −NH 2 , −R 8 −NH−R 9
−NH 2 , −R 10 −S−R 11 −NH 2 or

【式】 で表わされる基を示し、ここでR5,R7,R9およ
びR11は置換または非置換のフエニレン基、R6
R8,R10およびR12は2価の炭化水素基、R13は1
価の炭化水素基を示す。) で表わされるアミノ基と加水分解性基とを有する
有機ケイ素化合物 とを反応させることを特徴とする一般式; (式中、R1,R2は2価の炭化水素基、Aは置
換または非置換の2価の芳香族基、Zは
[Formula] Indicates a group represented by the following formula, where R 5 , R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups, R 6 ,
R 8 , R 10 and R 12 are divalent hydrocarbon groups, R 13 is 1
represents a valent hydrocarbon group. ) A general formula characterized by reacting an amino group represented by the following with an organosilicon compound having a hydrolyzable group; (In the formula, R 1 and R 2 are divalent hydrocarbon groups, A is a substituted or unsubstituted divalent aromatic group, and Z is

【式】【formula】

【式】【formula】

【式】【formula】

【式】または[expression] or

【式】 で表わされる基を示し、ここでR3は炭素数1〜
6のアルキル基、R4は1価の炭化水素基、R5
R7,R9およびR11は置換または非置換のフエニレ
ン基、R6,R8,R10およびR12は2価の炭化水素
基、R13は1価の炭化水素基、aは1〜3の数を
示し、mは10〜500の数、nは1以上の数を示
す。) で表わされ、分子量が500〜50000である、加水分
解性シリル基で分子鎖末端0閉塞されたポリエー
テルの製造方法に関する。 本発明の一般式; (式中、R1,R2,A,Z,mおよびnは前述
のとおり。) で表わされるポリエーテルにおいて、R10で表わ
されるオキシアルキレン単位はオキシエチレン単
位、オキシプロピレン単位あるいはオキシエチレ
ン単位とオキシプロピレン単位の併用系が好まし
く、原料入手と重合が容易で、高重合度でも液状
を保持し易いことからオキシプロピレン単位が特
に好ましい。オキシアルキレン単位の重合度mは
10〜500の範囲で選ばれ、mが10より小さい場合
は実用的な作業性の得られる粘度以下で十分な伸
び率のゴム状硬化物を提供するポリエーテルを得
ることが困難になる。逆にmが500より大きいと
本発明の特徴である耐熱性や耐候性が低下する。 R2の2価の炭化水素基としてはメチレン基、
エチレン基、トリメチレン基、テトラメチレン
基、フエニレン基、シクロヘキシレン基および
[Formula] Indicates a group represented by the following, where R 3 has 1 to 1 carbon atoms.
6 alkyl group, R 4 is a monovalent hydrocarbon group, R 5 ,
R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups, R 6 , R 8 , R 10 and R 12 are divalent hydrocarbon groups, R 13 is a monovalent hydrocarbon group, a is 1- 3, m is a number from 10 to 500, and n is a number of 1 or more. ), and has a molecular weight of 500 to 50,000, and relates to a method for producing a polyether whose molecular chain terminals are completely blocked with hydrolyzable silyl groups. General formula of the present invention; (In the formula, R 1 , R 2 , A, Z , m and n are as described above.) In the polyether represented by A system in which a unit and an oxypropylene unit are used in combination is preferable, and an oxypropylene unit is particularly preferable because it is easy to obtain raw materials and polymerize, and it is easy to maintain a liquid state even at a high degree of polymerization. The degree of polymerization m of oxyalkylene units is
If m is selected within the range of 10 to 500, it will be difficult to obtain a polyether that provides a rubber-like cured product with a sufficient elongation rate at a viscosity below that at which practical workability is obtained. On the other hand, if m is larger than 500, the heat resistance and weather resistance, which are the characteristics of the present invention, will decrease. The divalent hydrocarbon group of R 2 is a methylene group,
Ethylene group, trimethylene group, tetramethylene group, phenylene group, cyclohexylene group and

【式】で表わされる基などが 例示される。これらの基のうち、原料の入手の容
易さからメチレン基であることが好ましい。 Aは置換または非置換の2価の芳香族基であ
り、原料の入手が容易なこと、他の原料との相溶
性が良好なこと、および本発明のポリエーテルを
用いた室温硬化性組成物の施工作業性が良好で、
かつ十分な伸び率を有することから、フエニレン
基、ビフエニレン基または一般式; −R14−Q−R15−(式中、R14,R15およびQは前
述のとおり。)で表わされる基であることが好ま
しい。 Aの具体例としては、
Examples include groups represented by [Formula]. Among these groups, a methylene group is preferred from the viewpoint of easy availability of raw materials. A is a substituted or unsubstituted divalent aromatic group, and the raw materials are easily available, the compatibility with other raw materials is good, and the room-temperature curable composition using the polyether of the present invention has good construction workability,
and has a sufficient elongation rate, a phenylene group, a biphenylene group, or a group represented by the general formula: -R 14 -Q-R 15 - (wherein R 14 , R 15 and Q are as described above). It is preferable that there be. As a specific example of A,

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】などがあげられる。 zはExamples include [Formula]. z is

【式】【formula】

【式】【formula】

【式】【formula】

【式】 または【formula】 or

【式】 (式中、R3〜R13およびaは前述のとおり。) である。 ここでR3の炭素数1〜6のアルキル基は、
R3O−で表わされるケイ素原子に結合するアルコ
キシ基の加水分解性が高いことからメチル基また
はエチル基が好ましい。加水分解性基の数aは1
〜3の範囲で選ばれるが、高伸長率のゴム状硬化
物を与える組成物のベースポリマーとして好適な
ポリエーテルを得るためには、aが2であること
が好ましい。R4の1価の炭化水素基はアルキル
基、アリール基、アラルキル基等から選ぶことが
できるが、合成と原料入手の容易さからメチル基
が推奨される。R5,R7,R9およびR11は置換また
は非置換のフエニレン基である。また、R6,R8
R10およびR12は2価の炭化水素基であり、原料
や前駆体の合成のし易さからメチレン基、エチレ
ン基、トリメチレン基、テトラメチレン基が好ま
しく、化学的安定性と合成のしやすさのかね合い
からトリメチレン基であることが特に好ましい。 一方、Zとして
[Formula] (In the formula, R 3 to R 13 and a are as described above.) Here, the alkyl group having 1 to 6 carbon atoms in R 3 is
A methyl group or an ethyl group is preferred because the alkoxy group bonded to the silicon atom represented by R 3 O- has high hydrolyzability. The number a of hydrolyzable groups is 1
-3, but preferably a is 2 in order to obtain a polyether suitable as a base polymer for a composition that provides a rubber-like cured product with a high elongation rate. The monovalent hydrocarbon group for R 4 can be selected from alkyl groups, aryl groups, aralkyl groups, etc., but a methyl group is recommended from the viewpoint of ease of synthesis and raw material availability. R 5 , R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups. Also, R 6 , R 8 ,
R 10 and R 12 are divalent hydrocarbon groups, and methylene, ethylene, trimethylene, and tetramethylene groups are preferred from the viewpoint of ease of synthesis of raw materials and precursors, and are preferred for chemical stability and ease of synthesis. A trimethylene group is particularly preferred from the viewpoint of safety considerations. On the other hand, as Z

【式】 (式中、R3,R4,R12,R13およびaは前記の
とおり。) から選ぶ場合で、耐熱性と耐候性を重視する場合
はR13をアリール基から選ぶことが好ましく、表
面粘着性の残留のないことを重視する場合はR13
をアルキル基またはアルケニル基から選ぶことが
好ましい。 このようなZの具体例としては などがあげられる。 又、nは1以上の数であり、1であつても良い
が、本発明のポリエーテルの分子量が500〜50000
の範囲となるよう選ぶ必要がある。本発明のポリ
エーテルをシーリング材のベースポリマーとして
用いた場合、分子量が500より小さいと硬化して
得られる弾性体の伸び率がシーリング材として必
要とされるそれに達せず、逆に50000より大きい
と粘度が高くなつて作業性が低下する。 本発明のポリエーテルは例えば (A) 一般式; (式中、R1,R2およびmは前述のとおり。) で表わされる分子鎖末端がエポキシ基で閉塞さ
れたポリオキシアルキレン (B) 一般式 HzN−A−NH2(式中、Aは前述のとおり。) で表わされる芳香族ジアミン化合物、 および (C) 一般式; (式中、R3,R4およびaは前述のとおり、
Xは−R5−NH2,−R6−O−R7−NH2,−R8
NH−R9−NH2,−R10−S−R11−NH2または
[Formula] (In the formula, R 3 , R 4 , R 12 , R 13 and a are as described above.) If heat resistance and weather resistance are important, R 13 may be selected from aryl groups. Preferred, R 13 if no surface tack residue is important
is preferably selected from an alkyl group or an alkenyl group. A specific example of such Z is etc. Further, n is a number of 1 or more, and may be 1, but if the molecular weight of the polyether of the present invention is 500 to 50,000
It is necessary to choose a range that is within the range of . When the polyether of the present invention is used as a base polymer for a sealant, if the molecular weight is less than 500, the elongation rate of the cured elastic body will not reach the elongation required for the sealant; Viscosity increases and workability decreases. The polyether of the present invention has, for example, (A) general formula; (In the formula, R 1 , R 2 and m are as described above.) Polyoxyalkylene (B) whose molecular chain terminal is blocked with an epoxy group General formula H z N-A-NH 2 (In the formula, A is as described above.) An aromatic diamine compound represented by: and (C) general formula; (In the formula, R 3 , R 4 and a are as described above,
X is −R 5 −NH 2 , −R 6 −O−R 7 −NH 2 , −R 8
NH−R 9 −NH 2 , −R 10 −S−R 11 −NH 2 or

【式】を示す。ただし、R5〜R13は前述 のとおり。) で表わされるアミノ基と加水分解性基とを有す
る有機ケイ素化合物 とを反応させることにより、合成することができ
る。 (A)の代表的な例として、水酸基で両末端が閉塞
されたポリオキシエチレンやポリオキシプロピレ
ンに、エピクロルヒドリンを塩基性触媒等の存在
下に、付加して得られるものがあげられる。 (B) 成分の具体的な例としては、
[Formula] is shown. However, R 5 to R 13 are as described above. ) It can be synthesized by reacting an amino group represented by the following with an organosilicon compound having a hydrolyzable group. A typical example of (A) is one obtained by adding epichlorohydrin to polyoxyethylene or polyoxypropylene, both ends of which are blocked with hydroxyl groups, in the presence of a basic catalyst or the like. (B) Specific examples of ingredients include:

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

〔発明の効果〕〔Effect of the invention〕

本発明のポリエーテルに、有機スズ化合物のよ
うな硬化触媒と充填剤その他を加えてシーリング
材を得ることができる。本発明のポリエーテルを
ベースポリマーとして用いることにより、耐熱性
と耐候性に優れ、被着面へのブライマー処理なし
に接着性を発現し、また表面粘着性の残留がない
ことから塵埃の付着による汚損の発生することの
ないシーリング材を得ることができる。 〔実施例〕 以下、実施例により、本発明をさらに詳しく説
明する。なお、実施例、比較例およ参考例中、部
とあるのはすべて重量部のことであり、%は重量
%のことである。 実施例 1 平均重合度15、分子量が約1000、25℃における
粘度が270cStのグリシジル基両末端閉塞ポリオキ
シプロピレン0エポキシ当量に対し、
A sealing material can be obtained by adding a curing catalyst such as an organotin compound, a filler, and the like to the polyether of the present invention. By using the polyether of the present invention as a base polymer, it has excellent heat resistance and weather resistance, and exhibits adhesion without the need for brimer treatment on the surface to which it is applied.Also, since there is no residual surface tackiness, it is difficult to prevent dust from adhering to the surface. A sealing material that does not cause staining can be obtained. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In the Examples, Comparative Examples, and Reference Examples, all parts are by weight, and % is by weight. Example 1 For 0 epoxy equivalent of glycidyl group-end-blocked polyoxypropylene having an average degree of polymerization of 15, a molecular weight of about 1000, and a viscosity at 25°C of 270 cSt,

【式】を4モル およびポリオキシプロピレンの10%に相当する量
のメタノーールを加え、窒素雰囲気下、60℃で加
熱撹拌を開始した。加熱撹拌開始から4時間間隔
で一部を抜き取り、電位差滴定法を用いて試料中
のエポキシ基と第1級アミンとの総量を定量し、
また25℃における粘度を測定した。加熱撹拌開始
から16時間後においてエポキシ基と第1級アミン
との滴定量はほぼ理論量だけ減少を示し、加熱撹
拌開始前には100cStであつた粘度が1500cStに達
したため、
Methanol in an amount corresponding to 4 moles of [Formula] and 10% of polyoxypropylene was added, and heating and stirring was started at 60° C. under a nitrogen atmosphere. A portion was extracted at 4 hour intervals from the start of heating and stirring, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration.
The viscosity at 25°C was also measured. 16 hours after the start of heating and stirring, the titration of the epoxy group and the primary amine decreased by almost the theoretical amount, and the viscosity, which was 100cSt before the start of heating and stirring, reached 1500cSt.

【式】を2モ ル加え、同条件にて加熱撹拌を続行した。上記の
シランを添加してから4時間間隔で一部を抜き取
り、電位差滴定法を用いて試料中のエポキシ基と
第1級アミンとの総量を定量したところ、シラン
添加から12時間後においてそれらはほぼ消失し、
またNMRによるエポキシドメチレンのプロトン
によるピーク(テトラメチルシランを基準として
2.67ppm)も観察されなくなつたため加熱撹拌を
終了し、メタノールを留去して25℃における粘度
が15000cSt、同温度における比重が1.01の淡黄色
の粘稠な液体(次式で表わされる加水分解性シリ
ル基で分子鎖末端が閉塞されたポリエーテル、P
−1)を得た。なお、その少量を無水酢酸:氷酢
酸混液(9:1)中でアセチル化し、アセチル化
されない第3級アミンを過塩素酸−氷酢酸でクリ
スタルバイオレツトを指示薬として滴定を試みた
が、極く微量観察されたのみであつた。 また、GPC(ゲルパーミエーシヨンクロマトグ
ラフイー)測定による数平均分子量は6200であ
り、これよりP−1の平均構造式は次式であると
推定した。 実施例 2 平均重合度32、分子量が約2000、25℃における
粘度が550cStのグリシジル基両末端閉塞ポリオキ
シプロピレン10エポキシ当量に対し、
Two moles of [Formula] were added, and heating and stirring was continued under the same conditions. A portion of the silane was sampled at 4-hour intervals after the addition of the silane, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration. almost disappeared,
Also, the peak due to protons of epoxide methylene by NMR (based on tetramethylsilane)
2.67 ppm) was no longer observed, so heating and stirring was stopped, and methanol was distilled off to form a pale yellow viscous liquid with a viscosity of 15,000 cSt at 25°C and a specific gravity of 1.01 at the same temperature (hydrolysis expressed by the following formula). Polyether whose molecular chain ends are blocked with a silyl group, P
-1) was obtained. An attempt was made to acetylate a small amount of the tertiary amine in a mixture of acetic anhydride and glacial acetic acid (9:1), and titrate the unacetylated tertiary amine with perchloric acid and glacial acetic acid using crystal violet as an indicator. Only a trace amount was observed. Further, the number average molecular weight measured by GPC (gel permeation chromatography) was 6200, and from this, the average structural formula of P-1 was estimated to be the following formula. Example 2 For 10 epoxy equivalents of glycidyl group-end-blocked polyoxypropylene with an average degree of polymerization of 32, a molecular weight of about 2000, and a viscosity at 25°C of 550 cSt,

【式】を4モルお よびポリオキシプロピレンの10%に相当する量の
メタノールを加え、窒素雰囲気下、60℃で加熱撹
拌を開始した。加熱撹拌開始から4時間間隔で一
部を抜き取り、電位差滴定法を用いて試料中のエ
ポキシ基と第1級アミンとの総量を定量し、また
25℃における粘度を測定した。加熱撹拌開始から
16時間後においてエポキシ基と第1級アミンとの
滴定量はほぼ理論量だけ減少を示し、加熱撹拌開
始前には230cStであつた粘度が3900cStに達した
ため、 を2モル加え、同条件にて加熱撹拌を続行した。 上記のシランを添加してから4時間間隔で一部
を抜き取り、電位差滴定法を用いて試料中のエポ
キシ基と第1級アミンとの総量を定量したとこ
ろ、シラン添加から12時間後においてそれらはほ
ぼ消失し、またNMRによるエポキシドメチレン
のプロトンによるピークも観察されなくなつたた
め加熱撹拌を終了し、メタノールを留去して25℃
における粘度が26000cSt、同温度における比重が
1.01の淡黄色の粘稠な液体(次式で表わされる加
水分解性シリル基で分子鎖末端が閉塞されたポリ
エーテル、P−2)を得た。なお、その少量を用
いて、実施例1と同様にして第3級アミンの滴定
を試みたが、極く微量観察されたのみであつた。 また、GPC測定による数平均分子量は11200で
あり、これよりP−2の平均構造式は次式である
と推定した。 実施例 3 平均重合度50、分子量約3000、25℃における粘
度が970cStのグリシジル基両末端閉塞ポリオキシ
プロピレン6エポキシ当量に対し、
Methanol in an amount corresponding to 4 moles of [Formula] and 10% of polyoxypropylene was added, and heating and stirring was started at 60° C. under a nitrogen atmosphere. A portion of the sample was extracted at 4 hour intervals from the start of heating and stirring, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration.
The viscosity at 25°C was measured. From the start of heating and stirring
After 16 hours, the titration of the epoxy group and the primary amine decreased by almost the theoretical amount, and the viscosity, which was 230 cSt before the start of heating and stirring, reached 3900 cSt. 2 mol of was added, and heating and stirring was continued under the same conditions. A portion of the silane was sampled at 4-hour intervals after the addition of the silane, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration. It almost disappeared, and the peak due to epoxide methylene protons was no longer observed by NMR, so heating and stirring was stopped, methanol was distilled off, and the temperature was heated to 25°C.
The viscosity at is 26000cSt, and the specific gravity at the same temperature is
A pale yellow viscous liquid of 1.01 (polyether whose molecular chain ends were blocked with a hydrolyzable silyl group represented by the following formula, P-2) was obtained. Incidentally, using a small amount of the tertiary amine, an attempt was made to titrate the tertiary amine in the same manner as in Example 1, but only a very small amount was observed. Furthermore, the number average molecular weight determined by GPC measurement was 11,200, and from this it was estimated that the average structural formula of P-2 was as follows. Example 3 For 6 epoxy equivalents of glycidyl group-terminated polyoxypropylene with an average degree of polymerization of 50, a molecular weight of about 3000, and a viscosity of 970 cSt at 25°C,

【式】を2モルお よびポリオキシプロピレンの10%に相当する量の
メタノールを加え、窒素雰囲気下にて60℃で加熱
撹拌を開始した。加熱撹拌開始から6時間間隔で
一部を抜き取り、電位差滴定法を用いて試料中の
エポキシ基と第1級アミンとの総量を定量し、ま
た25℃における粘度を測定した。加熱撹拌開始か
ら18時間後においてエポキシ基と第1級アミンと
の滴定量はほぼ理論量だけ減少を示し、加熱撹拌
開始前には390cStであつた粘度が4100cStに達し
たため、 を2モル加え同条件にて加熱撹拌を続行した。 上記のシランを添加してから4時間間隔で一部
を抜き取り、電位差滴定法を用いて試料中のエポ
キシ基と第1級アミンとの総量を定量したとこ
ろ、シラン添加から12時間後においてそれらはほ
ぼ消失し、またNMRによるエポキシドメチレン
のピークも観察されなくなつたため加熱撹拌を終
了し、メタノールを留去して25℃における粘度が
34000cSt、同温度における比重が1.01の淡黄色の
粘稠な液体(次式で表わされる加水分解性シリル
基で分子鎖末端が閉塞されたポリエーテル、P−
3)を得た。なお、その少量を用いて、実施例1
と同様にして第3級アミンの滴定を試みたが、極
く微量観察されたのみであつた。 また、GPC測定による数平均分子量は9000で
あり、これよりP−3の平均構造式は次式である
と推定した。 実施例 4 実施例2で用いたものと同じグリシジル基末端
閉塞ポリオキシプロピレン10エポキシ当量に対
し、実施例2で用いたものと同じジアミノジフエ
ニルエーテルを4モルおよびポリオキシプロピレ
ンの10%に相当する量のメタノールを加え、実施
例2と同じ条件で同じ時間、すなわち窒素雰囲気
下にて、60℃で16時間加熱撹拌を行つた。次い
で、
2 moles of [Formula] and methanol in an amount corresponding to 10% of polyoxypropylene were added, and heating and stirring was started at 60°C under a nitrogen atmosphere. A portion of the sample was taken out at 6 hour intervals from the start of heating and stirring, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration, and the viscosity at 25°C was also measured. 18 hours after the start of heating and stirring, the titration of the epoxy group and the primary amine decreased by almost the theoretical amount, and the viscosity, which was 390 cSt before the start of heating and stirring, reached 4100 cSt. 2 mol of was added and heating and stirring was continued under the same conditions. A portion of the silane was sampled at 4-hour intervals after the addition of the silane, and the total amount of epoxy groups and primary amines in the sample was determined using potentiometric titration. As the peak of epoxide methylene was almost completely disappeared and the peak of epoxide methylene was no longer observed by NMR, heating and stirring was stopped, methanol was distilled off, and the viscosity at 25℃ was reduced.
34000cSt, a pale yellow viscous liquid with a specific gravity of 1.01 at the same temperature (polyether whose molecular chain ends are blocked with hydrolyzable silyl groups represented by the following formula, P-
3) was obtained. In addition, using a small amount, Example 1
An attempt was made to titrate tertiary amine in the same manner as above, but only a very small amount was observed. Furthermore, the number average molecular weight determined by GPC measurement was 9000, and from this it was estimated that the average structural formula of P-3 was as follows. Example 4 For 10 epoxy equivalents of the same glycidyl group-terminated polyoxypropylene used in Example 2, 4 moles of the same diaminodiphenyl ether used in Example 2 and equivalent to 10% of the polyoxypropylene were added. The mixture was heated and stirred at 60° C. for 16 hours under the same conditions as in Example 2, that is, under a nitrogen atmosphere. Then,

【式】を2.2モル 加え、同条件にて加熱撹拌を続行した。上記のシ
ランを添加してから4時間間隔で一部を抜き取
り、NMRによるエポキシドメチレンのプロトン
によるピークを観察したところ、シラン添加から
12時間後においてピークが消失したため加熱撹拌
を終了し、メタノールを留去して25℃における粘
度が21000cSt、同温度における比重が1.01の淡黄
色の粘稠な液体(次式で表わされる加水分解性シ
リル基で分子鎖末端が閉塞されたポリエーテル、
P−4)を得た。 また、GPC測定による数平均分子量は11000で
あり、これよりP−4の平均構造式は次式である
と推定した。 実施例 5 実施例1で用いたものと同じグリシジル基末端
閉塞ポリオキシプロピレン10エポキシ当量に対
し、実施例1で用いたものと同じジアミノジフエ
ニルメタンを4モルおよびポリオキシプロピレン
の10%に相当する量のメタノールを加え、実施例
1と同じ条件で同じ時間、すなわち窒素雰囲気下
にて、60℃で16時間加熱撹拌を行つた。 次いで
2.2 mol of [Formula] was added, and heating and stirring was continued under the same conditions. After adding the above silane, a portion was taken out at 4 hour intervals and the peak due to protons of epoxide methylene was observed by NMR.
After 12 hours, the peak disappeared, so heating and stirring was stopped, and methanol was distilled off to form a pale yellow viscous liquid with a viscosity of 21,000 cSt at 25°C and a specific gravity of 1.01 at the same temperature (hydrolyzable liquid expressed by the following formula). Polyether whose molecular chain ends are blocked with silyl groups,
P-4) was obtained. Furthermore, the number average molecular weight determined by GPC measurement was 11,000, and from this it was estimated that the average structural formula of P-4 was the following formula. Example 5 For 10 epoxy equivalents of the same glycidyl group-terminated polyoxypropylene used in Example 1, 4 moles of diaminodiphenylmethane as used in Example 1 and equivalent to 10% of the polyoxypropylene were added. An amount of methanol was added thereto, and the mixture was heated and stirred at 60°C for 16 hours under the same conditions as in Example 1, that is, under a nitrogen atmosphere. then

【式】を3モル 加え、同条件にて加熱撹拌を続行した。上記のシ
ランを添加してから4時間間隔で一部を抜き取
り、電位差滴定法を用いて試料中のエポキシ基を
定量したところ、シラン添加から16時間後におい
てほぼ消失し、NMRによるエポキシドメチレン
のプロトンによるピークも観察されなくなつたた
め加熱撹拌を終了し、メタノールを留去して25℃
における粘度が12000cSt、同温度における比重が
1.01の粘稠な液体(次式で表わされる加水分解性
シリル基で分子鎖末端が閉塞されたポリエーテ
ル、P−5)を得た。 また、CPC測定による数平均分子量は7300で
あり、これよりP−5の平均構造式は次式である
と推定した。 参考例 1〜5 実施例1〜5で得た加水分解性シリル基で分子
鎖末端が閉塞されたポリエーテル(P−1〜5)
100部に対して、第1表に示す充填剤、無機顔料
およびチクソトロピツク性付与剤を添加して三本
ロールで均一に分散させた後、やはり第1表に示
す有機スズ化合物を加えて混合し、試料−1〜5
を得た。これら試料を約2mm厚のシート状に硬化
させて常温で14日間養生した後JIS2号ダンベルに
打ち抜き、指触による表面状態の観察と引張り試
験を行つた。次いで同様にして得られたダンベル
状試料片を150℃乾燥器中およびウエザーメータ
中に設置し、第1表に示す期間の劣化条件(加熱
および紫外線照射)を与えた後、試料片の状態観
察と引張り試験を行つた。これらの結果も第1表
に示す。 比較例 1 分子量約8000、末端基として を有するポリオキシプロピレン100部に対して、
第1表に示す充填材、無機顔料およびチクソトロ
ピツク性付与剤を添加して三本ロールで均一に分
散させた後、やはり第1表に示す有機スズ化合物
を加えて混合し、試料−6を得た。試料−6を用
いてロ参考例1〜5と同様の試験を行つた。その
結果も第1表に示す。 参考例 6〜10 参考例1〜5で調製したものと同じ試料1〜5
を用いて、第1図に示す剪断接着試験体を作成し
た。作成した試験体を常温で28日間養生した後、
引張試験を行つた。その結果を第2表に示す。 比較例 2 比較例1で調製したものと同じ試料6を用い
て、第1図に示す剪断接着試験体を作成した。こ
の試験体にて参考例6〜10と同様の試験を行つ
た。その結果も第2表に示す。
3 mol of [Formula] was added, and heating and stirring was continued under the same conditions. A portion of the silane was extracted at 4-hour intervals after the above silane was added, and the epoxy groups in the sample were quantified using potentiometric titration. As a result, the epoxy groups in the sample almost disappeared 16 hours after the addition of the silane, and the protons of epoxide methylene were determined by NMR. Since the peak due to
The viscosity at is 12000cSt, and the specific gravity at the same temperature is
A viscous liquid (polyether P-5 whose molecular chain ends are blocked with a hydrolyzable silyl group represented by the following formula) with a molecular weight of 1.01 was obtained. Moreover, the number average molecular weight by CPC measurement was 7300, and from this it was estimated that the average structural formula of P-5 was the following formula. Reference Examples 1 to 5 Polyethers (P-1 to 5) whose molecular chain ends were blocked with hydrolyzable silyl groups obtained in Examples 1 to 5
To 100 parts, fillers, inorganic pigments, and thixotropic agents shown in Table 1 were added and dispersed uniformly with a triple roll, and then an organic tin compound also shown in Table 1 was added and mixed. , Samples-1 to 5
I got it. These samples were cured into sheets with a thickness of about 2 mm, cured at room temperature for 14 days, and then punched into JIS No. 2 dumbbells, and the surface conditions were observed by finger touch and a tensile test was performed. Next, the dumbbell-shaped sample piece obtained in the same manner was placed in a 150°C dryer and a weather meter, and after applying the deterioration conditions (heating and ultraviolet irradiation) for the period shown in Table 1, the condition of the sample piece was observed. A tensile test was conducted. These results are also shown in Table 1. Comparative example 1 Molecular weight approximately 8000, as a terminal group For 100 parts of polyoxypropylene with
After adding the filler, inorganic pigment, and thixotropic agent shown in Table 1 and uniformly dispersing them with a triple roll, the organic tin compound also shown in Table 1 was added and mixed to obtain Sample-6. Ta. Tests similar to those in Reference Examples 1 to 5 were conducted using Sample-6. The results are also shown in Table 1. Reference Examples 6-10 Same samples 1-5 as those prepared in Reference Examples 1-5
Using this, a shear adhesion test specimen shown in FIG. 1 was prepared. After curing the created test specimen at room temperature for 28 days,
A tensile test was conducted. The results are shown in Table 2. Comparative Example 2 Using the same sample 6 prepared in Comparative Example 1, a shear adhesion test specimen shown in FIG. 1 was prepared. The same tests as in Reference Examples 6 to 10 were conducted using this test specimen. The results are also shown in Table 2.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は剪断接着試験に供した試験体の斜視図
を示す。尚、図中の単位はmmである。 1……試料、2……被着体(ガラス、アルミお
よび塩ビ鋼板)。
FIG. 1 shows a perspective view of a specimen subjected to a shear adhesion test. The unit in the figure is mm. 1... Sample, 2... Adherent (glass, aluminum and PVC steel plate).

Claims (1)

【特許請求の範囲】 1 一般式; (式中、R1,R2は2価の炭化水素基、Aは置
換または非置換の2価の芳香族基、Zは 【式】 【式】 【式】 【式】 または【式】 で表わされる基を示し、ここでR3は炭素数1〜
6のアルキル基、R4は1価の炭化水素基、R5
R7,R9およびR11は置換または非置換のフエニレ
ン基、R6,R8,R10およびR12は2価の炭化水素
基、R13は1価の炭化水素基、aは1〜3の数を
示し、mは10〜500の数、nは1以上の数を示
す。) で表わされ、分子量が500〜50000である、加水分
解性シリル基で分子鎖末端が閉塞されたポリエー
テル。 2 R1がエチレン基および/またはプロピレン
基である、特許請求の範囲第1項記載のポリエー
テル。 3 R1がプロピレン基である、特許請求の範囲
第2項記載のポリエーテル。 4 R2がメチレン基である、特許請求の範囲第
1項記載のポリエーテル。 5 R3がメチル基またはエチル基である、特許
請求の範囲第1項記載のポリエーテル。 6 Aが置換または非置換のフエニレン基、ビフ
エニレン基または一般式;−R14−Q−R15−(式
中、R14およびR15は置換または非置換のフエニ
レン基、Qはアルキレン基、−O−,−S−または
【式】を示す。)で表わされる2価の芳香族基 である、特許請求の範囲第1項記載のポリエーテ
ル。 7 Zが【式】 【式】 【式】または 【式】 (式中、R3〜R11およびaは前述のとおり。)
である、特許請求の範囲第1項記載のポリエーテ
ル。 8 aが2である、特許請求の範囲第1項記載の
ポリエーテル。 9 (A) 一般式; (式中、R1,R2は2価の炭化水素基、mは
10〜500の数を示す。)で表わされる分子鎖末端
がエポキシ基で閉塞されたポリオキシアルキレ
ン。 (B) 一般式; HzN−A−NH2(式中、Aは置換または非置
換の2価の芳香族基を示す。)で表わされる芳
香族ジアミン化合物。 および (C) 一般式; (式中、R3は炭素数1〜6のアルキル基、
R4は1価の炭化水素基、aは1〜3の数、X
は−R5−NH2,−R6−O−R7−NH2,−R8
NH−R9−NH2,−R10−S−R11−NH2または
【式】 で表わされる基を示し、ここでR5,R7,R9
よびR11は置換または非置換のフエニレン基、
R6,R8,R10およびR12は2価の炭化水素基、
R13は1価の炭化水素基を示す。) で表わされるアミノ基と加水分解性基とを有す
る有機ケイ素化合物 とを反応させることを特徴とする一般式; (式中、R1,R2は2価の炭化水素基、Aは置
換または非置換の2価の芳香族基、Zは 【式】 【式】 【式】 【式】または 【式】 で表わされる基を示し、ここでR3は炭素数1〜
6のアルキル基、R4は1価の炭化水素基、R5
R7,R9およびR11は置換または非置換のフエニレ
ン基、R6,R8,R10およびR12は2価の炭化水素
基、R13は1価の炭化水素基、aは1〜3の数を
示し、mは10〜500の数、nは1以上の数を示
す。) で表わされ、分子量が500〜50000である、加水分
解性シリル基で分子鎖末端が閉塞されたポリエー
テルの製造方法。
[Claims] 1. General formula; (In the formula, R 1 and R 2 are divalent hydrocarbon groups, A is a substituted or unsubstituted divalent aromatic group, and Z is [Formula] [Formula] [Formula] [Formula] [Formula] or [Formula] represents a group, where R 3 has 1 to 1 carbon atoms.
6 alkyl group, R 4 is a monovalent hydrocarbon group, R 5 ,
R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups, R 6 , R 8 , R 10 and R 12 are divalent hydrocarbon groups, R 13 is a monovalent hydrocarbon group, a is 1- 3, m is a number from 10 to 500, and n is a number of 1 or more. ) Polyether having a molecular weight of 500 to 50,000 and whose molecular chain ends are blocked with a hydrolyzable silyl group. 2. The polyether according to claim 1, wherein R 1 is an ethylene group and/or a propylene group. 3. The polyether according to claim 2, wherein R 1 is a propylene group. 4. The polyether according to claim 1, wherein R 2 is a methylene group. 5. The polyether according to claim 1, wherein R 3 is a methyl group or an ethyl group. 6 A is a substituted or unsubstituted phenylene group, biphenylene group or general formula; -R 14 -Q-R 15 - (wherein R 14 and R 15 are substituted or unsubstituted phenylene group, Q is an alkylene group, - The polyether according to claim 1, which is a divalent aromatic group represented by O-, -S- or [Formula]. 7 Z is [Formula] [Formula] [Formula] or [Formula] (In the formula, R 3 to R 11 and a are as described above.)
The polyether according to claim 1, which is 8. The polyether according to claim 1, wherein a is 2. 9 (A) General formula; (In the formula, R 1 and R 2 are divalent hydrocarbon groups, m is
Indicates a number from 10 to 500. ) A polyoxyalkylene whose molecular chain end is blocked with an epoxy group. (B) An aromatic diamine compound represented by the general formula: H z N-A-NH 2 (wherein A represents a substituted or unsubstituted divalent aromatic group). and (C) general formula; (In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms,
R 4 is a monovalent hydrocarbon group, a is a number from 1 to 3, X
are −R 5 −NH 2 , −R 6 −O−R 7 −NH 2 , −R 8
NH-R 9 -NH 2 , -R 10 -S-R 11 -NH 2 or a group represented by the formula, where R 5 , R 7 , R 9 and R 11 are substituted or unsubstituted phenylene. basis,
R 6 , R 8 , R 10 and R 12 are divalent hydrocarbon groups,
R 13 represents a monovalent hydrocarbon group. ) A general formula characterized by reacting an amino group represented by the following with an organosilicon compound having a hydrolyzable group; (In the formula, R 1 and R 2 are divalent hydrocarbon groups, A is a substituted or unsubstituted divalent aromatic group, and Z is [formula] [formula] [formula] [formula] or [formula] represents a group, where R 3 has 1 to 1 carbon atoms.
6 alkyl group, R 4 is a monovalent hydrocarbon group, R 5 ,
R 7 , R 9 and R 11 are substituted or unsubstituted phenylene groups, R 6 , R 8 , R 10 and R 12 are divalent hydrocarbon groups, R 13 is a monovalent hydrocarbon group, a is 1- 3, m is a number from 10 to 500, and n is a number of 1 or more. ) and has a molecular weight of 500 to 50,000, a method for producing a polyether whose molecular chain ends are blocked with a hydrolyzable silyl group.
JP61099776A 1986-04-30 1986-04-30 Polyester having terminal blocked with hydrolyzable silyl group and production thereof Granted JPS62256828A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61099776A JPS62256828A (en) 1986-04-30 1986-04-30 Polyester having terminal blocked with hydrolyzable silyl group and production thereof
US07/118,505 US4873272A (en) 1986-04-30 1987-11-09 Polyether end-blocked with hydrolyzable silyl groups, method of manufacturing and room temperature curable composition using the polyether
KR1019870012767A KR910005343B1 (en) 1986-04-30 1987-11-13 Polyether and blocked with hydrolyzahle silyl groups methode of manufacturing
EP88107360A EP0341322B1 (en) 1986-04-30 1988-05-07 Polyether end-blocked with hydrolyzable silyl groups, method of manufacturing and room temperature curable composition using the polyether

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61099776A JPS62256828A (en) 1986-04-30 1986-04-30 Polyester having terminal blocked with hydrolyzable silyl group and production thereof
JP27351986A JPH0714998B2 (en) 1986-11-17 1986-11-17 Polyether with molecular chain ends blocked by hydrolyzable silyl groups
JP27352086A JPH086024B2 (en) 1986-11-17 1986-11-17 Room temperature curable composition

Publications (2)

Publication Number Publication Date
JPS62256828A JPS62256828A (en) 1987-11-09
JPH0325447B2 true JPH0325447B2 (en) 1991-04-08

Family

ID=39687138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099776A Granted JPS62256828A (en) 1986-04-30 1986-04-30 Polyester having terminal blocked with hydrolyzable silyl group and production thereof

Country Status (4)

Country Link
US (1) US4873272A (en)
EP (1) EP0341322B1 (en)
JP (1) JPS62256828A (en)
KR (1) KR910005343B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744629B2 (en) * 1989-03-13 1998-04-28 東芝シリコーン株式会社 Room temperature curable composition
GB9424246D0 (en) 1994-12-01 1995-01-18 Dow Corning Sa Moisture curable compositions
GB9424250D0 (en) 1994-12-01 1995-01-18 Dow Corning Sa Silyl group containing organic polymers
GB9424247D0 (en) 1994-12-01 1995-01-18 Dow Corning Sa Silyl group containing organic polymers
BR9813840A (en) * 1997-12-24 2000-10-10 Prc Desoto Int Inc Composition of a low-content coating of volatile organic compounds, their use and method to prepare it.
JP2001055553A (en) * 1999-08-18 2001-02-27 Nippon Nsc Ltd Adhesive composition
US7629396B2 (en) * 2005-02-23 2009-12-08 E.I. Du Pont De Nemours And Company Silicon-containing polytrimethylene homo- for copolyether composition
ATE495813T1 (en) * 2005-08-09 2011-02-15 Exxonmobil Res & Eng Co HINDERED CYCLIC POLYAMINES AND THEIR SALTS FOR AN ACID GAS WASHING PROCESS
CN101263216B (en) * 2005-08-09 2012-09-05 埃克森美孚研究工程公司 Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971751A (en) * 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US4278784A (en) * 1980-02-06 1981-07-14 Western Electric Company, Inc. Encapsulated electronic devices and encapsulating compositions
JPS5971377A (en) * 1982-10-15 1984-04-23 Kanegafuchi Chem Ind Co Ltd Adhesive composition
JPS61141761A (en) * 1984-12-12 1986-06-28 Kanegafuchi Chem Ind Co Ltd Curable composition
JPS62151455A (en) * 1985-12-25 1987-07-06 Toshiba Silicone Co Ltd Room temperature-curable composition
JPS62151453A (en) * 1985-12-25 1987-07-06 Toshiba Silicone Co Ltd Sealing material composition
JPS62151454A (en) * 1985-12-25 1987-07-06 Toshiba Silicone Co Ltd Surface-curable sealing material composition
JPS62283123A (en) * 1986-05-30 1987-12-09 Toshiba Silicone Co Ltd Polyether having molecular chain end blocked with hydrolyzable silyl group and production thereof
KR900008464B1 (en) * 1986-05-30 1990-11-22 도시바 실리콘 가부시끼가이샤 Process for the preparation of polyether

Also Published As

Publication number Publication date
EP0341322B1 (en) 1993-12-22
US4873272A (en) 1989-10-10
KR910005343B1 (en) 1991-07-25
KR880006291A (en) 1988-07-22
EP0341322A1 (en) 1989-11-15
JPS62256828A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
JPH032450B2 (en)
US4786667A (en) Polyether end-blocked with hydrolyzable silyl groups, method of manufacturing and room temperature curable composition using the polyether
JPH0325447B2 (en)
JP2718962B2 (en) Polybutadiene having a molecular chain terminal blocked by a hydrolyzable silyl group, a method for producing the same, and a room temperature curable composition containing the same
JP2653469B2 (en) Room temperature curable composition
US4950707A (en) Polyether end-blocked with hydrolyzable silyl groups, method of manufacturing and room temperature curable composition using the polyether
US4847357A (en) Polyether end-blocked with hydrolyzable silyl groups, method of manufacturing and room temperature curable composition thereof
JP2688499B2 (en) Polyether whose molecular chain end is blocked by a hydrolyzable silyl group, method for producing the same, and room temperature curable composition containing the same
JPH0313261B2 (en)
JPH0257824B2 (en)
JPH0257822B2 (en)
JPH0457695B2 (en)
JPH0321577B2 (en)
JPH0714998B2 (en) Polyether with molecular chain ends blocked by hydrolyzable silyl groups
JPH01318066A (en) Aqueous polyether emulsion composition
JPH0257823B2 (en)
JPS62181321A (en) Cold-curing composition
JPS62181320A (en) Copolymer terminal-blocked with hydrolyzable silyl group
KR920000927B1 (en) Hardening composition using polydster in the roam temperature
JP3012876B2 (en) Polymer having a molecular chain terminal blocked by a hydrolyzable silyl group, method for producing the same, and room temperature curable composition containing the same
JPS6333425A (en) Copolymer having molecular chain terminal blocked with hydrolyzable silyl group and production thereof
DE3886523T2 (en) Polyethers end-blocked with hydrolyzable silyl groups, production process and room temperature curable composition using the polyether.
JPH086024B2 (en) Room temperature curable composition
JPH04202356A (en) Room temperature curable composition
JPH0515748B2 (en)