JPH03254060A - Bulb - Google Patents

Bulb

Info

Publication number
JPH03254060A
JPH03254060A JP2053365A JP5336590A JPH03254060A JP H03254060 A JPH03254060 A JP H03254060A JP 2053365 A JP2053365 A JP 2053365A JP 5336590 A JP5336590 A JP 5336590A JP H03254060 A JPH03254060 A JP H03254060A
Authority
JP
Japan
Prior art keywords
oxygen
outer tube
bulb
tube
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2053365A
Other languages
Japanese (ja)
Inventor
Makoto Bessho
誠 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2053365A priority Critical patent/JPH03254060A/en
Publication of JPH03254060A publication Critical patent/JPH03254060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PURPOSE:To provide possibility of refilling naturally exhausted oxygen in the atmosphere under lighting by encapsulating an oxygen emitting substance within an outer tube, and thereby filling the outer tube with oxygen of requisite concen tration. CONSTITUTION:An optical film consisting of metal oxide is provided over at least either of the outside surface of an inner tube 1 and the inside surface of an outer tube of this bulb concerned embodied in double tube construction, and an oxygen emitting substance is encapsulated within the outer tube 1. This liberates necessity for refilling the atmosphereic gas containing oxygen at an exhaustion of m/c if the outer tube 1 is filled with inert gas not containing oxygen at all or if the outer tube 1 is evacuated completely followed by releas ing of oxygen necessary after sealing. Under lighting, naturally exhausted por tion can be refilled by releasing oxygen little by little into the outer tube atmo sphere, so that there is no need to encapsulate too much oxygen at the time of sealing, and further a necessary amount of oxygen can be maintained in the atmosphere in the outer tube for a long period of time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は二重管形管球の内管外面および外管内面の少な
くとも一方に金属酸化物からなる光学膜を設けたものに
おいて、光学膜の高温耐久性を向上したものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides an optical film made of a metal oxide on at least one of the outer surface of the inner tube and the inner surface of the outer tube of a double-tube type bulb. Among these, the high-temperature durability of the optical film is improved.

(従来の技術) 近年、レフランプやシールドビームランプなどにおいて
、ハロゲン電球内管を外管内に気密封装したものが開発
され、大出力が得られるために賞用されるようになった
。特に、近年に到り、このような二重管形ハロゲン電球
において、内管外面に光学膜たとえば可視光透過赤外線
反射膜を設け、かつ外管内を真空にするかまたは不活性
ガスを封入したものが開発された。
(Prior Art) In recent years, reflex lamps, sealed beam lamps, etc., in which the inner tube of a halogen bulb is hermetically sealed inside the outer bulb, have been developed and have become prized for their ability to provide high output. In particular, in recent years, such double-tube halogen light bulbs have been provided with an optical film, such as a visible light-transmissive infrared reflective film, on the outer surface of the inner tube, and in which the inside of the outer tube is evacuated or filled with inert gas. was developed.

このような可視光透過赤外線反射膜は酸化チタン(Fi
O□)、酸化タンタル(TaO□)、酸化ジルコン(Z
rOz)などの金属酸化物からなる高屈折率層と、シリ
カ(Sin、 )、酸化セレン(SeO□)などの金属
酸化物からなる低屈折率層とを6〜21層交互重層して
なるもので、層の厚さを適当にしたことによって、光の
干渉を利用して可視光を透過し、赤外線を反射するもの
である。この可視光透過赤外線反射膜の作用により、フ
ィラメントから放射された光のうち可視光はこの反射膜
を透過して外管内を介して外界に放射され、赤外線はこ
の反射膜で反射されてフィラメントに帰還してこれを加
熱する。したがって、このハロゲン電球は高効率でしか
も赤外線の少ないいわゆる冷光を放射する利点がある。
Such a visible light transmitting infrared reflective film is made of titanium oxide (Fi
O□), tantalum oxide (TaO□), zirconium oxide (Z
It is made up of 6 to 21 alternate layers of high refractive index layers made of metal oxides such as rOz) and low refractive index layers made of metal oxides such as silica (Sin, ) and selenium oxide (SeO□). By adjusting the layer thickness appropriately, visible light is transmitted through light and infrared rays are reflected using light interference. Due to the action of this visible light transmitting infrared reflective film, the visible light emitted from the filament passes through this reflective film and is radiated to the outside world through the outer tube, and the infrared light is reflected by this reflective film and returns to the filament. Return and heat it up. Therefore, this halogen bulb has the advantage of being highly efficient and emitting so-called cold light with little infrared radiation.

しかして、このような二重管形ハロゲン電球は内管の冷
却が悪いので、動作中、内管のバルブの温度が著しく高
温になるばかりか、封止部の温度もバルブ温度に近い程
度まで上昇する。そして、上述のとおり、外管内を真空
または窒素、アルゴンなどの不活性ガス雰囲気にしてお
けば、モリブデン導入箔が酸化されることがない。
However, since the inner tube of such double-tube halogen bulbs has poor cooling, not only does the temperature of the bulb in the inner tube become extremely high during operation, but the temperature of the sealing part also reaches a level close to the bulb temperature. Rise. As described above, if the inside of the outer tube is kept in a vacuum or in an inert gas atmosphere such as nitrogen or argon, the molybdenum-introduced foil will not be oxidized.

しかしながら、上述のとおり、点灯中、内管バルブ温度
が非常な高温になり、たとえば上述のレフランプやシー
ルドビームランプにおいては内管のバルブ外面温度換言
すれば可視光透過赤外線反射膜の温度が500〜800
℃にも達する。そして、実験によれば、酸化チタン、酸
化タンタル、酸化セレンなどの金属酸化物膜を直空中ま
たは純窒素や純アルゴンなどの不活性ガス中で長時間加
熱した場合、金属酸化物膜温度が500℃を越すと金属
酸化物に脱酸素現像が生起し、次第に低級酸化物に移行
し、遂には還元金属にまでなることが判明した。そして
、上述の二重管形ハロゲン電球における可視光透過赤外
線反射膜内において、このような成分金属酸化物の脱酸
素現象が生じると、透過または反射する波長域が変化し
て所期の作用を失ない、遂には膜が黒化して光出力が大
幅に低下する。
However, as mentioned above, during lighting, the temperature of the inner bulb becomes extremely high.For example, in the reflex lamps and sealed beam lamps mentioned above, the temperature of the outer surface of the bulb of the inner bulb, in other words, the temperature of the visible light transmitting infrared reflective film, is 500 - 800
It can even reach ℃. According to experiments, when a metal oxide film such as titanium oxide, tantalum oxide, or selenium oxide is heated for a long time in direct air or in an inert gas such as pure nitrogen or pure argon, the temperature of the metal oxide film reaches 500%. It has been found that when the temperature exceeds °C, deoxidation development occurs in the metal oxide, and the metal oxide gradually changes to a lower oxide, and finally becomes a reduced metal. When such a deoxidation phenomenon of component metal oxides occurs in the visible light transmitting infrared reflective film of the above-mentioned double tube halogen light bulb, the wavelength range that is transmitted or reflected changes and the desired effect is not achieved. Eventually, the film will turn black and the light output will drop significantly.

これに対し、本件発明者は上述のような二重管形ハロゲ
ン電球において、外管内を弱酸化性雰囲気たとえば不活
性ガス分圧300〜1520Torrに対し、酸素分圧
0.0076〜76Torrを含む混合ガス雰囲気にし
たことによって、点灯時の高温によっても光学膜を構成
する金属酸化物が脱酸素(還元)されるおそれがなく、
しかも導入箔などの導入導体が酸化によって劣化される
おそれもないようにする技術を開発し、これを特願昭6
3−334889号として提案した。
In contrast, the inventor of the present invention has developed a double-tube halogen light bulb as described above, in which the inside of the outer bulb is placed in a weakly oxidizing atmosphere, such as a mixture containing an oxygen partial pressure of 0.0076 to 76 Torr and an inert gas partial pressure of 300 to 1520 Torr. By creating a gas atmosphere, there is no risk that the metal oxides that make up the optical film will be deoxidized (reduced) even at high temperatures during lighting.
In addition, he developed a technology to prevent the introduction conductor such as the introduction foil from being deteriorated by oxidation, and applied for this by patent application in 1986.
It was proposed as No. 3-334889.

(発明が解決しようとする課題) このように、外管的雰囲気中の酸素濃度適量には上限と
下限があり、上限を越えると導入導体の酸化によって寿
命が短くなり、下限を割ると光学膜を構成する金属酸化
物の脱酸素が始まる。しかも、外管的雰囲気中の酸素濃
度は点灯中に次第に減少する。さらに、この酸素濃度の
適量は管種、出力、構造によっても差がある。さらに、
製造時において、仮りに外管内に酸素濃度3000pp
m以上の不活性ガスを充填したのち、外管内に酸素濃度
50ppm以下の不活性ガスを封入する可視光透過赤外
線反射膜のない通常の二重管形ハロゲン電球を封止しよ
うとすると、その切換えに際して排気m/cの排気系お
よび給気系を10時間以上真空洗浄を行なって給気系内
面に吸着された酸素を排除する必要がある。このことは
外管的雰囲気中の酸素濃度適量の異なる複数管種を順次
排気し、外管内にそれぞれの酸素濃度の雰囲気ガスを封
入するときも同様である。
(Problem to be solved by the invention) As described above, there is an upper limit and a lower limit to the appropriate amount of oxygen concentration in the outer tube atmosphere, and when the upper limit is exceeded, the life of the introduced conductor is shortened, and when the lower limit is below, the optical film Deoxygenation of the metal oxides that make up the metal oxides begins. Furthermore, the oxygen concentration in the outer tube atmosphere gradually decreases during lighting. Furthermore, the appropriate amount of oxygen concentration varies depending on the pipe type, output, and structure. moreover,
During manufacturing, if the oxygen concentration in the outer tube is 3000 pp.
If you try to seal a normal double-tube halogen bulb without a visible light-transmissive infrared reflective film, which is filled with inert gas of 50 ppm or more and then filled with an inert gas with an oxygen concentration of 50 ppm or less in the outer bulb, the switching At this time, it is necessary to perform vacuum cleaning on the exhaust system and air supply system of the exhaust m/c for 10 hours or more to eliminate oxygen adsorbed on the inner surface of the air supply system. This also applies when a plurality of tube types having different appropriate oxygen concentrations in the outer tube atmosphere are sequentially evacuated and atmospheric gases having respective oxygen concentrations are filled in the outer tube.

そこで、本発明の課題は品種や定格などの如何んを問わ
ず、同一条件で外管内界囲気を設定し、しかも必要な酸
素濃度を満すとともに、点灯中における雰囲気中の酸素
の自然減耗を補充できる管球を提供することである。
Therefore, the problem of the present invention is to set the ambient air inside the outer tube under the same conditions regardless of the product type or rating, satisfy the necessary oxygen concentration, and prevent the natural depletion of oxygen in the atmosphere during lighting. The objective is to provide refillable tubes.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は二重管形の管球であって、内管外面および外管
内面の少なくとも一方に金属酸化物からなる光学膜を形
成したものにおいて、外管内に酸素放出体を封装したこ
とによって、当初の外管的雰囲気中に強いて酸素を含有
させる必要をなくし、封止後において必要な酸素を外管
内に発生させ、さらに点灯中における外管内酸素の自然
減耗を補充できるようにした。
(Means for Solving the Problems) The present invention provides a double-tube type bulb in which an optical film made of a metal oxide is formed on at least one of the outer surface of the inner tube and the inner surface of the outer tube. By sealing the oxygen emitter, it is no longer necessary to forcefully contain oxygen in the initial atmosphere of the outer tube, and the necessary oxygen is generated inside the outer tube after sealing, and furthermore, the natural depletion of oxygen in the outer tube during lighting is eliminated. can be replenished.

(作 用) 外管内に酸素放出体を封装しておけば、外管内に酸素を
全く含まない不活性ガスを充填し、または外管内を完全
真空にし、封止後必要な酸素を放出させれば、排気m/
cにおいて酸素を含む雰囲気ガスを充填する必要がない
。また、点灯中において、外管雰囲気中に少量ずつ酸素
を放出すれば、自然減耗を補充することができるので、
封止時に過剰の酸素を封入する必要がなく、しかも長期
にわたり外管的雰囲気中の酸素の必要量を維持できる。
(Function) If an oxygen releaser is sealed inside the outer tube, the necessary oxygen can be released after sealing by filling the outer tube with an inert gas that does not contain any oxygen or by making the outer tube a complete vacuum. If, exhaust m/
There is no need to fill the atmosphere gas containing oxygen in c. In addition, if oxygen is released little by little into the outer tube atmosphere while the light is on, natural depletion can be replenished.
There is no need to seal in excess oxygen during sealing, and the required amount of oxygen in the outer tube atmosphere can be maintained for a long period of time.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明を適用してなるシールドビーム形二重管
ハロゲン電球の一例を示す。図中、(1)はシールドビ
ーム形外管、(2)はこの外管(1)内に封装されたハ
ロゲン電球内管、(3)はこの内管(2)外面に形成さ
れた光学膜の1種である可視光透過赤外線反射膜(破線
で示す。)、(4)は外管(1)内に封装された酸素放
出体、(5)は外管(1)の端部に装着された口金であ
る。
FIG. 1 shows an example of a sealed beam type double tube halogen light bulb to which the present invention is applied. In the figure, (1) is a sealed beam outer tube, (2) is a halogen bulb inner tube sealed within this outer tube (1), and (3) is an optical film formed on the outer surface of this inner tube (2). (4) is an oxygen emitter sealed in the outer tube (1), and (5) is attached to the end of the outer tube (1). This is the amount that was paid.

上記外管(1)は硬質ガラス製PAR3gシールドビー
ム形バルブ(11)で、反射鏡(13a)の内面にアル
ミニウムなどの反射膜(12)(−点鎖線で示す。)を
形成し、前面をレンズ(13b)で閉塞してエポキシ樹
脂系などの接着剤(14)で接着するかあるいはガラス
溶接しである。そして、このバルブ(11)内には上記
ハロゲン電球内管(2)が後述する手段で封装されてい
る。
The outer bulb (1) is a hard glass PAR3g sealed beam bulb (11), and a reflective film (12) made of aluminum or the like (indicated by a dashed line) is formed on the inner surface of a reflecting mirror (13a), and the front surface is It is closed with a lens (13b) and bonded with an adhesive (14) such as an epoxy resin, or it is welded with glass. The halogen bulb inner tube (2) is sealed inside the bulb (11) by means described later.

なお、上記において外管(1)のバルブ(11)を形成
するのにアルミニウム反射膜(12)を形成した反射鏡
(13a)部とレンズ(13b)部とは両者の開繊部を
溶融して接合する場合が多く、この接合手段の場合は接
合時のみならず、その前後工程においてもガラス加工の
ため予熱および徐冷工程を経て作業が行なわれている。
In addition, in order to form the bulb (11) of the outer tube (1) in the above, the opening portions of the reflecting mirror (13a) portion and the lens (13b) portion on which the aluminum reflective film (12) is formed are melted. In the case of this joining method, glass processing is performed through preheating and slow cooling steps not only at the time of joining, but also before and after the joining.

これら作業は硬質ガラスであるためその加工温度が高く
、反射[(13a)部内面に形成したアルミニウムなど
の反射[ll(12)が酸化や自暴化しその反射率を下
げ、電球の効率低下を招くことがあるが、この反射膜(
I2)上に酸化亜鉛(ZnO)や酸化けい素(Sin2
)などの耐熱性の透明な薄膜を形成しておけば反射膜(
I2)の反射率を低下させることなく酸化や自暴化を防
ぐことができる。
These operations involve high processing temperatures because the glass is hard, and the reflection [ll (12) of aluminum formed on the inner surface of the part (13a)] oxidizes and becomes self-destructive, lowering its reflectance and causing a decrease in the efficiency of the light bulb. Sometimes, this reflective film (
I2) Zinc oxide (ZnO) and silicon oxide (Sin2)
) can be used as a reflective film (
Oxidation and self-destruction can be prevented without reducing the reflectance of I2).

上記ハロゲン電球内管(2)は第2図に拡大して示すよ
うに、石英ガラスなどの耐熱ガラスからなる筒形(T形
)バルブ(21)の端部を圧潰封止して封止部(22)
を形成し、この封止部(22)に導入導体の1例である
l対のモリブデン導入箔(23) 、 (23)を埋設
し、この導入箔(23) 、 (23)に接続したl対
の内導線(24) 、 (24)をバルブ(21)内の
両端部に導入して、それらの間にタングステンコイルフ
ィラメント(25)を装架してバルブ(21)の中心線
に位置させて、その中間部をアンカ(26)で支持して
あり、モリブデン導入箔(23) 、 (23)に接続
した1対の外導線(27) 、 (27)を封止部(2
2)端面から導出しである。そうして、バルブ(21)
外面には上述した可視光透過赤外線反射膜(3)を形成
するとともに、バルブ(21)内にはアルゴンなどの不
活性ガスとともに所要のハロゲンを封入しである。そし
て、外導線(27) 、 (27)を上述した外管(1
)の図示しないフェルールにろう付けされたサポートワ
イヤ(15) 、 (1−5)に接続して電気的接続と
機械的支持とを行なっている。ちなみに、このハロゲン
電球内管(2)の定格は110V851i1である。
As shown in an enlarged view in FIG. 2, the halogen bulb inner tube (2) is made by crushing and sealing the end of a cylindrical (T-shaped) bulb (21) made of heat-resistant glass such as quartz glass. (22)
A pair of molybdenum introduced foils (23), (23), which are an example of introduction conductors, are buried in this sealing part (22), and l connected to these introduced foils (23), (23). A pair of inner conductors (24) and (24) are introduced into both ends of the bulb (21), and a tungsten coil filament (25) is installed between them and positioned at the center line of the bulb (21). The middle part is supported by an anchor (26), and a pair of outer conductors (27), (27) connected to the molybdenum introduced foils (23), (23) are connected to the sealing part (2).
2) Derived from the end face. Then, the valve (21)
The above-described visible light transmitting and infrared reflecting film (3) is formed on the outer surface, and the required halogen is sealed in the bulb (21) together with an inert gas such as argon. Then, the outer conductors (27) and (27) are connected to the outer tube (1) described above.
) are connected to support wires (15) and (1-5) brazed to ferrules (not shown) for electrical connection and mechanical support. By the way, the rating of this halogen bulb inner tube (2) is 110V851i1.

上記可視光透過赤外線反射膜(3)は第3図に模型的に
拡大して示すように、酸化チタン(TiO2)、酸化タ
ンタル(TaO□)、酸化ジルコン(ZrOz )など
の金属酸化物からなる高屈折率層(3H) (右下り斜
線)と、シリカ(SiO□)、酸化セレン(SeO□)
などの金属酸化物からなる低屈折率層(3L)(右上り
斜線)とを合計8層交互重層したもので、光の干渉によ
り可視光を透過し、赤外線を反射するものである。
The visible light transmitting infrared reflecting film (3) is made of metal oxides such as titanium oxide (TiO2), tantalum oxide (TaO□), and zirconium oxide (ZrOz), as shown schematically and enlarged in Fig. 3. High refractive index layer (3H) (slanted line downward to the right), silica (SiO□), selenium oxide (SeO□)
A total of 8 layers of low refractive index layers (3L) (diagonal lines on the upper right) made of metal oxides are alternately layered, and visible light is transmitted through light interference and infrared rays are reflected.

上記酸素放出体(4)はガス吸着性シリカ焼結体で、た
とえば第4図に示すような粒経分布(標準篩による。)
を有する沈降性シリカ粉末を長方形棒状に型打ち成形し
、ついで300℃で5分間焼結して得られるもので、1
個当りの重量は後述するように計算して定める。そもそ
も、ガス吸着体は一般に、吸着ガス濃度(吸着体1g当
りの吸着ガス量。)と雰囲気中の当該ガス濃度(分圧ま
たは雰囲気IQ中の絶対量。)との間にはそのときの温
度に応じた平衡関係が存在する。そして、もしも吸着ガ
ス濃度がそのときの温度と雰囲気濃度とにおける平衡状
態より過剰であるときは、この過剰分が急速に放出され
て新たな平衡関係が成立したとき安定する。さらに、平
衡状態にあるとき、何らかの理由によって雰囲気中の当
該ガスの濃度が低下すれば、平衡関係が破れて、ガス吸
着体から過剰になった当該ガスの一部が放出されて雰囲
気中の濃度が上昇し、新たな平衡関係が成立する。
The oxygen releasing body (4) is a gas-adsorbing silica sintered body, and has a particle size distribution as shown in, for example, FIG. 4 (based on a standard sieve).
It is obtained by molding precipitated silica powder into a rectangular rod shape and then sintering it at 300°C for 5 minutes.
The weight per piece is calculated and determined as described below. In the first place, in gas adsorbents, there is generally a difference between the adsorbed gas concentration (the amount of adsorbed gas per 1 g of adsorbent) and the gas concentration in the atmosphere (partial pressure or absolute amount in the atmosphere IQ). There is an equilibrium relationship depending on . If the adsorbed gas concentration is in excess of the equilibrium state between the temperature and atmospheric concentration at that time, this excess is rapidly released and the system becomes stable when a new equilibrium relationship is established. Furthermore, if the concentration of the gas in the atmosphere decreases for some reason when it is in an equilibrium state, the equilibrium relationship will be broken and a portion of the excess gas will be released from the gas adsorbent and the concentration in the atmosphere will decrease. increases, and a new equilibrium relationship is established.

そして、温度が低いときは吸着ガス濃度が高いところで
平衡関係が成立し、温度が高くなるに従って吸着ガス濃
度が低い方向に平衡関係が移行する。
When the temperature is low, an equilibrium relationship is established where the adsorbed gas concentration is high, and as the temperature increases, the equilibrium relationship shifts toward a lower adsorbed gas concentration.

そして、上述のガス吸着性シリカ焼結体からなる酸素放
出体(4)も上述した一般的なガス吸着体と同様な性質
を有し、しかも酸素吸着能が特に大きく、さらに吸着さ
れた酸素によって性能が劣化することがない。
The oxygen releasing body (4) made of the gas-adsorbing sintered silica has the same properties as the general gas adsorbing body described above, and also has a particularly high oxygen adsorption ability, and furthermore, the oxygen releasing body (4) made of the gas-adsorbing sintered silica Performance will not deteriorate.

そして、本実施例の特徴は製造直後において、外管(1
)内にはアルゴン90容量%、窒素10容量%からなる
不活性ガスが充填され、製造後の最初の点灯において、
内管(2)からの熱によって、酸素放出体(4)から酸
素が放出されて弱酸化性になっている。ちなみに酸素放
出後の外管(1)内容囲気の一例を上げると上述の不活
性混合ガス450〜650Torrに対し酸素分圧が0
.04〜3.3Torr(10(1〜5000PPM)
が好ましい。そして、長期点灯中、外管(1)内界囲気
中の酸素が次第に減耗するに従って酸素放出体(4)か
ら酸素が次第に放出され、寿命末期に到るまで上述の酸
素分圧の過酸必要量が維持されるようになっている。
The feature of this embodiment is that the outer tube (1
) is filled with an inert gas consisting of 90% argon and 10% nitrogen by volume.
Heat from the inner tube (2) releases oxygen from the oxygen emitter (4), making it weakly oxidizing. By the way, to give an example of the atmosphere inside the outer tube (1) after oxygen is released, the oxygen partial pressure is 0 for the above-mentioned inert mixed gas of 450 to 650 Torr.
.. 04~3.3Torr (10 (1~5000PPM)
is preferred. During long-term lighting, oxygen is gradually released from the oxygen release body (4) as the oxygen in the surrounding atmosphere inside the outer tube (1) is gradually depleted, and the above-mentioned oxygen partial pressure is required until the end of the life. The amount is maintained.

二のため、酸素放出体(4)は予め吸着特性の解ってい
るものを用い、最初の点灯において必要な酸素を放出し
、かつ必要な残存吸着量を維持できるよう、酸素放出体
(4)の適量を上述のように定め、点灯中適当な温度に
なる部位としてサポートワイヤ(15) 、 (15)
に装着しである。
For this reason, the oxygen releaser (4) should be one whose adsorption properties are known in advance, and the oxygen releaser (4) should be used so that it can release the necessary oxygen at the first lighting and maintain the required residual adsorption amount. The appropriate amount of the support wire (15) is determined as described above, and the support wire (15) is used as the part that maintains an appropriate temperature during lighting.
It is attached to.

つぎに、この実施例ハロゲン電球の作用を説明する。こ
のハロゲン電球をソケットに装着して通電すれば、ハロ
ゲン電球内管(2)のフィラメント(25)が高温に熱
せられ、大量の赤外線とともに可視光を放射し、これら
の光がバルブ(21)を透過して可視光透過赤外線反射
膜(3)に入射し、可視光はこの膜(3)を透過して外
管(1)のアルミニウム反射膜(12)で反射されてレ
ンズ(13b)から前方に投射され、赤外線はこの可視
光透過赤外線反射膜(3)で反射されてフィラメント(
25)に帰還してこれを加熱し、この結果1発光効率が
格段に向上し、かつ赤外線の少ない可視光、いわゆる冷
光を放射できる。
Next, the operation of the halogen light bulb of this embodiment will be explained. When this halogen bulb is installed in a socket and energized, the filament (25) of the halogen bulb inner tube (2) is heated to a high temperature and emits visible light along with a large amount of infrared rays, and these lights illuminate the bulb (21). The visible light passes through and enters the visible light transmitting infrared reflective film (3), and the visible light passes through this film (3) and is reflected by the aluminum reflective film (12) of the outer tube (1) to the front from the lens (13b). The infrared rays are reflected by this visible light transmitting infrared reflecting film (3) and are reflected by the filament (
25) and heats it. As a result, the luminous efficiency is significantly improved, and visible light with little infrared radiation, so-called cold light, can be emitted.

しかして、このような点灯状態において、フィラメント
(25)からの発熱により、ハロゲン電球内管(2)の
バルブ(21)と封止部(22)とが高温に熱せられ、
しかもこの内管(2)が外管(1)内に封装されかつ外
管(1)内は熱伝導の悪い混合希ガスが封入されている
ので冷却が悪く、このため、点灯中内管バルブ(21)
の温度は800℃近くまで上昇し、封止部(22)もこ
れに近い温度まで上昇する。しがしながら、外管(1)
内は最初の点灯によって酸素放出体(4)から放出され
た酸素を含む弱酸化性不活性ガス雰囲気になっているの
で、可視光透過赤外線反射膜(3)を構成する各金属酸
化物は分解酸素圧力と雰囲気酸素圧力とがほぼバランス
しており、高温で長時間熱せられているにもかかわらず
、これら金属酸化物が酸化も還元もしない。さらに点灯
時間が長くなるに従って外管(1)内容囲気の酸素が次
第に失なわれるが、酸素放出体(4)から順次放出され
て補充されるので、寿命末期に到るまで必要最小限の酸
素濃度が維持され、金属酸化物が当初の酸化物組成たと
えばTie、、5in2の酸化程度が維持される。
In such a lighting state, the bulb (21) and the sealing part (22) of the halogen bulb inner tube (2) are heated to a high temperature due to the heat generated from the filament (25).
Moreover, this inner tube (2) is sealed inside the outer tube (1), and the inside of the outer tube (1) is filled with a mixed rare gas with poor heat conduction, so cooling is poor. (21)
The temperature of the sealing portion (22) rises to nearly 800° C., and the temperature of the sealing portion (22) also rises to a temperature close to this. While holding the outer tube (1)
When the interior is first turned on, there is a weakly oxidizing inert gas atmosphere containing oxygen released from the oxygen emitter (4), so the metal oxides that make up the visible light transmitting infrared reflective film (3) decompose. The oxygen pressure and atmospheric oxygen pressure are almost balanced, and these metal oxides do not oxidize or reduce even though they are heated at high temperatures for long periods of time. Furthermore, as the lighting time becomes longer, oxygen in the atmosphere inside the outer bulb (1) is gradually lost, but it is gradually released from the oxygen release body (4) and replenished, so the minimum amount of oxygen is required until the end of the life. The concentration is maintained and the degree of oxidation of the metal oxide is maintained at the original oxide composition, eg, Tie, .5in2.

また、外管(1)内の酸化性が適当に低く維持されるの
で、この雰囲気ガスが外導線(27) 、 (27)に
沿って侵入して高温のモリブデン導入fi (23) 
、 (23)に接触しても、モリブデン導入箔(23)
 、 (23)がほとんど酸化されず、長期点灯しても
気密性を損なうことがない。
In addition, since the oxidizing property inside the outer tube (1) is maintained appropriately low, this atmospheric gas enters along the outer conductors (27) and (27) and introduces high-temperature molybdenum fi (23).
, (23) Even if it comes into contact with the molybdenum-introduced foil (23)
, (23) is hardly oxidized and the airtightness is not impaired even after long-term lighting.

さらに、本実施例ハロゲン電球は外管(1)内の当初充
填する雰囲気ガスが上述のアルゴン窒素混合ガスで良い
ので、充填に際してPPM単位の微量の空気や窒素が混
入しても害がなく、また反対に、この実施例ハロゲン電
球に外管雰囲気ガスを充填した直後に他の管種ハロゲン
電球に雰囲気ガスを充填して、これにPPM単位の微量
のアルゴン・窒素混合ガスが混入しても害がない。さら
に、外管(1)内界囲気ガスの点灯中必要な酸素含有量
を異にする複数種のハロゲン電球を連続的に排気し雰囲
気ガスを充填する場合、総てのハロゲン電球に同じ成分
の混合ガスを封入すればよいので、給気系を長時間真空
洗浄する必要がなくなり、生産性が向上した。
Furthermore, in the halogen bulb of this embodiment, the atmosphere gas initially filled in the outer bulb (1) may be the above-mentioned argon-nitrogen mixed gas, so there is no harm even if a small amount of air or nitrogen in units of ppm gets mixed in during filling. On the other hand, if a halogen bulb of another tube type is filled with atmospheric gas immediately after the halogen bulb of this embodiment is filled with atmospheric gas, even if a trace amount of argon/nitrogen mixed gas in units of PPM is mixed into the halogen bulb. No harm. Furthermore, when multiple types of halogen bulbs with different oxygen contents are continuously evacuated and filled with atmospheric gas while the outer bulb (1) inner ambient gas is turned on, all halogen bulbs must contain the same component. Since it is only necessary to fill in the mixed gas, there is no need to vacuum clean the air supply system for a long time, improving productivity.

なお、前述の実施例はシールドビーム形ハロゲン電球に
ついて説明したが、本発明はこれに限らず、ハロゲン電
球内管を管形や球形の外管内に収容したものでもよく、
また電球はハロゲン電球に限らず他の電球であっても差
支えない。また、本発明は電球に限らず高圧金属蒸気放
電灯など他の管球にも適用できる。要するに本発明は、
外管内に内管を封装して内管外面または外管内面のどち
らか一方または両方に可視光透過赤外線反射膜を形成し
、点灯中外管内面が高温となるものにおいて上述のとお
り、外管内に酸素放出体を封装すれば、製造当初の外管
内雰囲気を酸素を含まない不活性ガスまたは真空にして
も封止後において適当な低濃度の酸素を放出させること
ができ、可視光透過赤外線反射膜の脱酸素と、導入箔の
酸化とを同時に防止できる。また、本発明において、金
属酸化物膜は可視光透過赤外線反射膜に限らず、可視光
反射赤外線透過膜、防眩膜なとでもよく、要は金属酸化
物からなる光学膜であればよい。
In addition, although the above-mentioned embodiment explained a sealed beam type halogen light bulb, the present invention is not limited to this, and the halogen light bulb inner bulb may be housed in a tubular or spherical outer bulb.
Furthermore, the light bulb is not limited to a halogen light bulb, and may be any other light bulb. Furthermore, the present invention is applicable not only to light bulbs but also to other bulbs such as high-pressure metal vapor discharge lamps. In short, the present invention
In cases where the inner tube is sealed within the outer tube and a visible light transmitting infrared reflective film is formed on either the outer surface of the inner tube or the inner surface of the outer tube or both, and the inner surface of the outer tube becomes hot during lighting, as described above, If the oxygen emitting body is sealed, even if the atmosphere inside the outer tube is an oxygen-free inert gas or vacuum at the time of manufacture, a suitable low concentration of oxygen can be released after sealing. It is possible to simultaneously prevent the deoxidation of the foil and the oxidation of the introduced foil. Furthermore, in the present invention, the metal oxide film is not limited to a visible light transmitting infrared reflective film, but may also be a visible light reflective infrared transmitting film or an anti-glare film, as long as it is an optical film made of a metal oxide.

さらに、酸素放出体は上述のガス吸着性シリカ焼結体に
限らず、たとえばシリカゲルなど他のガス吸着体でもよ
い。さらに、酸素放出体は各種過酸化物などでもよく、
あるいは酸素ガスをガラスカプセルに封入したものでも
よく、さらにこれら酸素放出体から酸素を放出させる手
段はレーザー光照射など他の手段を用いてもよく、さら
に、この場合、酸素放出を数百時間ごとに少しずつ繰返
して加熱し、必要な酸素を補充してもよい。
Further, the oxygen emitting body is not limited to the above-mentioned gas-adsorbing sintered silica, but may be other gas-adsorbing bodies such as silica gel. Furthermore, the oxygen releaser may be various peroxides, etc.
Alternatively, oxygen gas may be sealed in a glass capsule, and other means such as laser light irradiation may be used to release oxygen from these oxygen emitters. You may replenish the necessary oxygen by heating repeatedly in small portions.

〔発明の効果〕〔Effect of the invention〕

このように、本発明は発光部を内蔵した内管を間隙を介
してガラス外管内に気密封装し、かつ内管外面および外
管内面の少なくとも一方に金属酸化物からなる光学膜を
形成したものにおいて、外管内に酸素放出体を封装した
ので、製造当初外管内を酸素を含まない不活性ガス雰囲
気にしたり、あるいは真空雰囲気にして、最初の点灯ま
たは他の手段によって酸素放出体から適当量の酸素を放
出させて外管内雰囲気を弱酸化性にすることができ、外
管内雰囲気の封入の生産性が向上し、さらに、必要によ
っては寿命中に酸素を適当に追加放出させて外管内雰囲
気中の酸素の自然減耗を補充することができるので寿命
末期に到るまで光学膜を構成する金属酸化物の脱酸素と
導入導体の酸化とを同時に防止できる。
As described above, the present invention provides a device in which an inner tube containing a light emitting section is hermetically sealed within a glass outer tube through a gap, and an optical film made of a metal oxide is formed on at least one of the outer surface of the inner tube and the inner surface of the outer tube. In this method, since the oxygen emitter was sealed inside the outer tube, the inside of the outer tube was made into an oxygen-free inert gas atmosphere or a vacuum atmosphere at the time of manufacture, and an appropriate amount of oxygen was released from the oxygen emitter by the initial lighting or other means. Oxygen can be released to make the atmosphere inside the outer tube weakly oxidizing, improving the productivity of sealing the atmosphere inside the outer tube.Furthermore, if necessary, additional oxygen can be released appropriately during the life of the outer tube to make the atmosphere inside the outer tube weakly oxidizing. Since the natural depletion of oxygen can be replenished, deoxidation of the metal oxide constituting the optical film and oxidation of the introduced conductor can be simultaneously prevented until the end of the life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のハロゲン電球の一実施例の一部切欠し
て内部を示す側面図、第2図は同じく要部であるハロゲ
ン電球内管の拡大断面図、第3図は同じく可視光透過赤
外線反射膜の模型的拡大断面図、第4図は酸素放出体の
一例を製造する原料粉末の粒径分布を示すグラフである
。 (1)・・外管、(1]〉・・・バルブ、(12)・・
・反射膜、(13a)・・・反射鏡、(13b)・・・
レンズ、(2)・・・内管、(21)・・・バルブ、 
(22)・・・封止部、(23)・・・導入導体の一例
であるモリブデン導入箔、(25)・・・発光部の一例
であるフィラメント、(3)・・・光学膜の一例である
可視光透過赤外線反射膜、(3H)・・高屈折率層、(
3L)・・・低屈折率層。
Fig. 1 is a partially cutaway side view showing the inside of an embodiment of the halogen bulb of the present invention, Fig. 2 is an enlarged sectional view of the inner tube of the halogen bulb, which is the main part, and Fig. 3 is also a visible light bulb. FIG. 4, which is a schematic enlarged cross-sectional view of a transmitting infrared reflective film, is a graph showing the particle size distribution of raw material powder for producing an example of an oxygen emitter. (1)...Outer tube, (1]>...Valve, (12)...
- Reflective film, (13a)...Reflector, (13b)...
Lens, (2)...inner tube, (21)...bulb,
(22)...Sealing part, (23)...Molybdenum introduction foil which is an example of an introduced conductor, (25)...Filament which is an example of a light emitting part, (3)...An example of an optical film Visible light transmitting infrared reflective film, (3H)...high refractive index layer, (
3L)...Low refractive index layer.

Claims (1)

【特許請求の範囲】[Claims] 発光部を内蔵した内管を間隙を介してガラス外管内に気
密封装し、かつ上記内管外面および上記外管内面の少な
くとも一方に金属酸化物からなる光学膜を形成したもの
において、上記外管内に酸素放出体を封装したことを特
徴とする管球。
An inner tube having a built-in light emitting part is hermetically sealed inside a glass outer tube through a gap, and an optical film made of a metal oxide is formed on at least one of the outer surface of the inner tube and the inner surface of the outer tube, wherein A tube characterized in that an oxygen emitting body is sealed in the tube.
JP2053365A 1990-03-05 1990-03-05 Bulb Pending JPH03254060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053365A JPH03254060A (en) 1990-03-05 1990-03-05 Bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053365A JPH03254060A (en) 1990-03-05 1990-03-05 Bulb

Publications (1)

Publication Number Publication Date
JPH03254060A true JPH03254060A (en) 1991-11-13

Family

ID=12940785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053365A Pending JPH03254060A (en) 1990-03-05 1990-03-05 Bulb

Country Status (1)

Country Link
JP (1) JPH03254060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142627A (en) * 2012-01-11 2013-07-22 Shimadzu Corp Moisture meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142627A (en) * 2012-01-11 2013-07-22 Shimadzu Corp Moisture meter

Similar Documents

Publication Publication Date Title
US5610469A (en) Electric lamp with ellipsoidal shroud
US20030168980A1 (en) High pressure discharge lamp, method for producing the same and lamp unit
JPS5981830A (en) Metal halide arc discharge lamp with means for suppressing convection current in outside container and operating and assembling method therefor
US4734614A (en) Electric lamp provided with an interference filter
US4463277A (en) Compact halogen-cycle incandescent lamp, and lamp unit utilizing such lamp as a light source
JPH02177248A (en) Halogen bulb
JPH06203811A (en) Lamp including tungsten - halogen light source
US6867544B2 (en) High pressure discharge lamp and method for producing the same
JP4416518B2 (en) High pressure discharge lamp manufacturing method, glass tube for high pressure discharge lamp, and lamp member for high pressure discharge lamp
US7198534B2 (en) Method for manufacturing high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp element for high-pressure discharge lamp
US20100328955A1 (en) Incandescent illumination system incorporating an infrared-reflective shroud
US3983513A (en) Incandescent lamp having a halogen-containing atmosphere and an integral reflector of non-reactive specular metal
US7456556B2 (en) Lamp for heating having a reflective film for transmitting different radiation portions
JP3176631B2 (en) Metal halide discharge lamp
JPH03254060A (en) Bulb
US5098326A (en) Method for applying a protective coating to a high-intensity metal halide discharge lamp
JP2007511037A (en) Electric lamp with optical interference film
JP2001015066A (en) Compact self-ballast fluorescent lamp
JP3866369B2 (en) Multi-tube fluorescent lamp and lighting device
JPH09274890A (en) Ceramic discharge lamp
JP2001160377A (en) Tungsten halogen lamp, headlight for automobiles, and illuminator
JPH08315784A (en) Incandescent lamp and reflection type lighting system using this
JPH01109656A (en) Low pressure mercury vapor discharge lamp
JP2001035441A (en) Compact self-ballasted fluorescent lamp
WO2003088293A2 (en) Lamp having an inner and an outer vessel