JPH0325381A - Current detection system for overhead conductor - Google Patents
Current detection system for overhead conductorInfo
- Publication number
- JPH0325381A JPH0325381A JP1161674A JP16167489A JPH0325381A JP H0325381 A JPH0325381 A JP H0325381A JP 1161674 A JP1161674 A JP 1161674A JP 16167489 A JP16167489 A JP 16167489A JP H0325381 A JPH0325381 A JP H0325381A
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- optical fiber
- fiber transmission
- overhead
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims description 20
- 239000004020 conductor Substances 0.000 title abstract 2
- 239000013307 optical fiber Substances 0.000 claims abstract description 58
- 230000003287 optical effect Effects 0.000 claims abstract description 49
- 230000005540 biological transmission Effects 0.000 claims abstract description 42
- 238000007526 fusion splicing Methods 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 2
- 239000010959 steel Substances 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Locating Faults (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は架空電線、特に架空送電線路の架空地線等に流
れる事故電流を検出する架空電線の電流検出システムに
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an overhead power line current detection system for detecting a fault current flowing in an overhead power line, particularly an overhead ground wire of an overhead power transmission line.
(従来の技術)
第1図は架空地線等に流れる事故電流を検出する電流検
出システムの回路構成図である。(Prior Art) FIG. 1 is a circuit configuration diagram of a current detection system that detects fault current flowing through an overhead ground wire or the like.
架空送電線路の架空地線(1)に対して、これと略直交
する面内に装着した分割型のコア(20とコイル(22
)から成る電流変成器(2)と、過電流を防止するため
の放電アレスタ(31)、電流変成器(2)の出力を電
気的にデジタル信号に変換するためのA/D変換回路(
32)を具えた電流検出回路部(3)と、上記デジタル
の電気信号をデジタルの光信号として発光する発光ダイ
オード等の発光素子(4)、及び発光素子(4)による
デジタルの光信号を伝送するための光ファイバ伝送線(
5)を具えており、光ファイバ伝送線(5)により伝送
されたデジタルの光信号は遠隔地に設けた光/電気変換
回路(l!)により電気信号に変換し、さらにD/A変
換回路(l2)により再びアナログの電気信号に戻し、
その出力を用いて架空地線(1)に流れた電流を測定す
る。A split core (20) and a coil (22) are installed in a plane substantially orthogonal to the overhead ground wire (1) of the overhead power transmission line.
), a discharge arrester (31) for preventing overcurrent, and an A/D conversion circuit (
32), a light emitting element (4) such as a light emitting diode that emits the digital electric signal as a digital optical signal, and a digital optical signal transmitted by the light emitting element (4). Optical fiber transmission line (for
5), the digital optical signal transmitted by the optical fiber transmission line (5) is converted into an electrical signal by an optical/electrical conversion circuit (l!) installed at a remote location, and then a D/A conversion circuit. (l2) returns it to an analog electrical signal,
The output is used to measure the current flowing through the overhead ground wire (1).
しかして、通常上記電流変成器(2)、電流検出回路部
(3)、発光素子(4)、蓄電池(7)及び過充電防止
回路(8)は一つの収納箱(IO)に収納して架空地線
(1)に取付け、電流検出回路部(3)を駆動するため
の電源となる太陽電池(9)は別個に設置する。Therefore, the current transformer (2), current detection circuit section (3), light emitting element (4), storage battery (7) and overcharge prevention circuit (8) are usually housed in one storage box (IO). A solar cell (9) that is attached to the overhead ground wire (1) and serves as a power source for driving the current detection circuit section (3) is installed separately.
(解決しようとする課題)
近時、架空送電線路の鉄塔からの各種情報の伝送手段と
して、光複合架空地線(OPGW)内の光ファイバを利
用する方法が知られており、最近のOPGWにはすべて
シングルモード型光ファイバしか内蔵されていない例が
多い。(Problem to be solved) Recently, a method of using optical fibers in an optical composite overhead ground wire (OPGW) has been known as a means of transmitting various information from the tower of an overhead power transmission line. In many cases, all of them have only single-mode optical fiber built-in.
一方、電流変成器からの信号を光信号に変換する際には
、その電源が太陽電池で駆動出来る、温度特性にすぐれ
ている等の理由で、発光素子として発光ダイオードが主
に使用されている。この発光ダイオードは発光する部分
が面状であるため、発光した光の広がりが大きく、シン
グルモード型光ファイバは光の通る部分が狭いため光が
入射し難い。このため発光ダイオードの光の伝送路とし
ては一般にマルチモード型光ファイバが利用されている
。On the other hand, when converting a signal from a current transformer into an optical signal, a light emitting diode is mainly used as a light emitting element because it can be powered by a solar cell and has excellent temperature characteristics. . Since the light-emitting diode has a planar light-emitting portion, the emitted light spreads widely, and the single-mode optical fiber has a narrow portion through which light passes, making it difficult for light to enter the fiber. For this reason, multimode optical fibers are generally used as light transmission paths for light emitting diodes.
従って、OPGw内のシングルモード型光ファイバを伝
送路として使用するには、マルチモード型光ファイバで
伝送されてきた光信号を一度電気信号に変換し、再度シ
ングルモード型光ファイバに有効に光結合出来る発光素
子、例えばレーザーダイオードを用いて光信号に変換し
、シングルモード型光ファイバにより伝送する必要があ
る。このため、その変換回路を構成する電子部品と、そ
れを駆動する電源が必要となるという問題点がある。Therefore, in order to use the single mode optical fiber in the OPGw as a transmission path, the optical signal transmitted through the multimode optical fiber must be converted into an electrical signal, and then optically coupled effectively to the single mode optical fiber again. It is necessary to convert the signal into an optical signal using a light-emitting device such as a laser diode, and transmit it through a single-mode optical fiber. Therefore, there is a problem in that electronic components constituting the conversion circuit and a power source to drive them are required.
(課題を解決するための手段)
本発明は上述の問題点を解消した架空電線の電流検出シ
ステムを提供するもので、その特徴は、発光素子に接続
されたマルチモード型光ファイバ伝送線をシングルモー
ド型光ファイバ伝送線に融着接続し、シングルモード型
光ファイバ伝送線で遣隔地に設けた光/電気変換回路に
光信号を伝送すること・にある。(Means for Solving the Problems) The present invention provides a current detection system for overhead electric wires that solves the above-mentioned problems. The purpose is to fusion-splice a mode type optical fiber transmission line and transmit an optical signal to an optical/electrical conversion circuit installed at a remote location using a single mode type optical fiber transmission line.
(作用)
マルチモード型光ファイバとシングルモード型光ファイ
バの構造比較を行なうと第1表の通りである。(Function) Table 1 shows a comparison of the structures of multi-mode optical fibers and single-mode optical fibers.
第 1 表
上表のように、マルチモード型光ファイバとシングルモ
ード型光ファイバの相違は、光が通るコア径が違うこと
にある。As shown in Table 1, the difference between multimode optical fiber and single mode optical fiber is that the core diameter through which light passes is different.
従って、マルチモード型光ファイバとシングルモード型
光ファイバを直接融着接続すると、融着接続部分で光の
通り道に段差が出来るため、マルチモード型光ファイバ
を通ってきた光はすべてシングルモード型光ファイバに
入ることが出来ないが、その一部は入ることが出来る。Therefore, if you directly fusion splice a multimode optical fiber and a single mode optical fiber, there will be a step in the path of light at the fusion spliced part, so all the light that passes through the multimode optical fiber will become single mode light. It cannot enter the fiber, but some of it can.
これがマルチモード型光ファイバとシングルモード型光
ファイバの融着接続による光損失(ロス)である。本願
発明者等はこのマルチモード型光ファイバとシングルモ
ード型光ファイバの融着接続の実験を行ない第2表の結
果を得た。融着接続部分での光損失は約−17dBであ
ることが判明した。従って、この融着接続部分でこれだ
けのロスが発生しても、受光部の受光感度内に光が届け
ば光信号の伝送は可能となる。This is the optical loss caused by fusion splicing between a multimode optical fiber and a single mode optical fiber. The inventors conducted an experiment on fusion splicing this multimode optical fiber and single mode optical fiber, and obtained the results shown in Table 2. The optical loss at the fusion splice was found to be approximately -17 dB. Therefore, even if this much loss occurs in this fusion splicing portion, transmission of the optical signal is possible as long as the light reaches the light receiving sensitivity of the light receiving section.
第 2 表
上表中、波長1.3メm((it−LED)はシステム
マージンがないため不適である。Table 2 In the above table, the wavelength of 1.3 mm ((it-LED) is unsuitable because there is no system margin.
(実施例)
第2図は本発明の架空電線の電流検出システムの一具体
例の要部の回路構成図である。(Embodiment) FIG. 2 is a circuit configuration diagram of a main part of a specific example of the current detection system for an overhead electric wire according to the present invention.
電流変成器(2)、電流検出回路部(3)、発光素子(
4〉等を1つの収納箱(lO)に収納し、架空地線(1
)に取付けてある。電流変成器(2)からの電気信号を
発光ダイオード等の発光素子(4)で光信号として発光
し、この光信号を発光素子(0に接続したマルチモード
型光ファイバ伝送線(5目にて例えば鉄塔等に設置した
光ファイバ接続箱(l4)まで伝送し、上記接続箱(l
4)内でシングルモード型光ファイバ伝送線(52)に
直接融着接続(53)する。そしてシングルモード用光
合波器(+3)において他の鉄塔情報等と波長多重し、
例えばopaw内のシングルモード型光ファイバ伝送線
(52)により、遠隔地の中央監視所等に設置した光/
電気変換回路に伝送する。ここで上記光信号を電気信号
に変換し、さらにDハ変換回路によりアナログの電気信
号に戻し、その出力を用いて架空地線(1)に流れる電
流を測定する。Current transformer (2), current detection circuit section (3), light emitting element (
4〉, etc. are stored in one storage box (lO), and the overhead ground wire (1
) is attached. The electric signal from the current transformer (2) is emitted as an optical signal by a light emitting element (4) such as a light emitting diode, and this optical signal is transmitted to a multimode optical fiber transmission line (5th point) connected to the light emitting element (0). For example, it is transmitted to an optical fiber junction box (l4) installed on a steel tower, etc.
4), it is directly fusion spliced (53) to the single mode optical fiber transmission line (52). Then, it is wavelength-multiplexed with other tower information etc. in the single mode optical multiplexer (+3),
For example, by using the single mode optical fiber transmission line (52) in OPAW, optical/
Transmit to electrical conversion circuit. Here, the above-mentioned optical signal is converted into an electric signal, and further converted back to an analog electric signal by a D-conversion circuit, and the output is used to measure the current flowing through the overhead ground wire (1).
第3図は本発明の架空電線の電流検出システムの他の具
体例の要部の回路構成図である。FIG. 3 is a circuit configuration diagram of a main part of another specific example of the current detection system for an overhead wire according to the present invention.
本具体例においては、波長1.3μm11.54ms0
.8μmの3波長多重の構成を示している。In this specific example, the wavelength is 1.3 μm, 11.54 ms0
.. This figure shows a three-wavelength multiplexing configuration of 8 μm.
架空地線(1)に所定の間隔をおいて電流変成器(2)
を装着し、それぞれの電流変成器(2)に対応して、電
流変成器(2)からの電気信号を光信号として発光する
それぞれ波長の異なる発光素子を用いた。発光素子とし
ては1.3jm波長のシングルモード用発光素子(SM
−LED)(41)、1.5メ鵬波長のマルチモード用
発光素子(CI−LED)(42)、及び0.851l
一波長のマルチモード用発光素子(Gl−LED)(4
3)である。A current transformer (2) is installed at a predetermined interval on the overhead ground wire (1).
was installed, and light-emitting elements having different wavelengths were used, corresponding to each current transformer (2), for emitting light as an optical signal from an electric signal from the current transformer (2). The light emitting element is a single mode light emitting element (SM) with a wavelength of 1.3jm.
-LED) (41), 1.5-meter wavelength multi-mode light emitting element (CI-LED) (42), and 0.851l
Single wavelength multimode light emitting element (Gl-LED) (4
3).
上記1 .311m波長のシングルモード用発光素子(
41)の光信号をシングルモード型光ファイバ(52)
で、又1.5*m波長のマルチモード用発光素子(42
)の光信号をマルチモード型光ファイバ(5l)に融着
接続(53)l,たシングルモード型光ファイバ(52
)で1.3μ■とI.5g閣の長波長同士のシングルモ
ード光合波器(13a)に伝送して波長多重し、さらに
、0.85β一波長のマルチモード用発光素子(43)
の光信号を、マルチモード型光ファイバ(5!)に融着
接続(53)l,たシングルモード型光ファイバ(52
)で、1.3μ一と0.85μ国の長波長と短波長の光
結合器(13b)に送り、ここでさきに波長多重した光
信号とさらに波長多重する。Above 1. 311m wavelength single mode light emitting element (
The optical signal of 41) is transferred to a single mode optical fiber (52).
Also, a 1.5*m wavelength multimode light emitting element (42
) to a multimode optical fiber (5l) by fusion splicing (53)l, and a single-mode optical fiber (52l) to a single-mode optical fiber (52l).
) with 1.3 μ■ and I. It is transmitted to a single mode optical multiplexer (13a) between long wavelengths of the 5g cabinet and wavelength multiplexed, and then a 0.85β single wavelength multimode light emitting element (43)
The optical signal is fusion spliced (53) to a multimode optical fiber (5!), and a single mode optical fiber (52)
), the signal is sent to a long-wavelength and short-wavelength optical coupler (13b) in 1.3μ and 0.85μ countries, where it is further wavelength-multiplexed with the previously wavelength-multiplexed optical signal.
このように波長多重した光信号を、例えばOPGWのシ
ングルモード型光ファイバ(52)を利用して遠隔地に
伝送する。この伝送されてきた3種類の波長の光信号を
光分波器(15)によってそれぞれの波長に分離し、伝
送端末局(!8)に設置した光/7I!気変換回路(1
B)によって元の電気信号に戻し、判別装置によって識
別する。なお、図面において(I9)は光伝送装置であ
る。The wavelength-multiplexed optical signal is transmitted to a remote location using, for example, an OPGW single-mode optical fiber (52). The transmitted optical signals of three different wavelengths are separated into their respective wavelengths by an optical demultiplexer (15), and the optical/7I! Qi conversion circuit (1
B), the signal is returned to the original electrical signal and identified by a discriminator. In the drawings, (I9) is an optical transmission device.
(発明の効果)
以上説明したように、本発明の架空電線の電流検出シス
テムによれば、マルチモード型光ファイバとシングルモ
ード型光ファイバを融着接続するため、融着接続部分で
光損失が発生し、余り長距離の光伝送は出来ないが、O
PGWに内蔵されているシングルモード型光ファイバを
利用して伝送するようなとき、従来マルチモード型光フ
ァイバからシングルモード型光ファイバに伝送する際に
必要とした変換回路がなくなり、これを構成する電子部
品や、それを駆動する電源等が不要となる。(Effects of the Invention) As explained above, according to the current detection system for overhead electric wires of the present invention, since a multimode optical fiber and a single mode optical fiber are fusion spliced, optical loss is reduced at the fusion splice portion. occurs, and long distance optical transmission is not possible, but O
When transmitting using a single-mode optical fiber built into a PGW, the conversion circuit that was previously required when transmitting from a multi-mode optical fiber to a single-mode optical fiber is no longer required. No electronic components or power supplies are needed to drive them.
従って、光伝送のための電源が容易に確保出来ないとこ
ろでの情報伝送で、特に高磁界下での情報伝送が必要と
される架空送電線分野での電流検出に用いるとき、極め
て効果的である。Therefore, it is extremely effective when used for information transmission in places where power sources for optical transmission cannot be easily secured, especially when used for current detection in the field of overhead power transmission lines where information transmission under high magnetic fields is required. .
第1図は架空電線の電流検出システムの1例の回路構成
図である。
変換回路、
バ接続箱、
送端末局、
13. 13a, 13b・・・光合波器、14・・・
光ファイ+5・・・光分波器、17・・・判別装置、+
8・・・伝l9・・・光伝送装置。
魯番の具体例の要部の回路構成図である。
1・・・架空地線、2・・・電流変成器、3・・・電流
検出回路部、4・・・発光素子、41・・・1.3μ鵬
波長のシングルモード用発光素子、42・・・I.5j
m波長のマルチモード用発光素子、43…0 .85u
+波長のマルチモード用発光素子、6・・・光ファイバ
伝送線、51・・・マルチモード型光ファイバ伝送線、
52・・・シングルモード型光ファイバ伝送線、53・
・・融着接続部、l・・・収納箱、111B・・・光/
電気変換回路、12・・・D/A擾
■
図
奪
2
囚FIG. 1 is a circuit configuration diagram of an example of a current detection system for overhead electric wires. Conversion circuit, connection box, transmitting terminal station, 13. 13a, 13b... optical multiplexer, 14...
Optical fiber +5... Optical demultiplexer, 17... Discrimination device, +
8...Eden 19...Optical transmission device. FIG. 2 is a circuit configuration diagram of a main part of a specific example of a number. DESCRIPTION OF SYMBOLS 1... Overhead ground wire, 2... Current transformer, 3... Current detection circuit section, 4... Light emitting element, 41... Single mode light emitting element with 1.3μ wavelength, 42... ...I. 5j
m wavelength multimode light emitting element, 43...0. 85u
+ wavelength multimode light emitting element, 6... optical fiber transmission line, 51... multimode optical fiber transmission line,
52... Single mode optical fiber transmission line, 53...
...Fusion splicing part, l...Storage box, 111B...light/
Electrical conversion circuit, 12...D/A 澾■ Diagram 2 Prisoner
Claims (4)
る面内に装着したコアとコイルから成る電流変成器によ
り架空地線を流れる電流を検出し、電流変成器からの電
気信号を光信号として発光する発光素子を具え、発光素
子による光信号を光ファイバ伝送線により遠隔地に設け
た光/電気変換回路に伝送し、ここで電気信号に変換し
てその出力を用いて架空地線に流れる電流を測定する架
空電線の電流検出システムにおいて、上記発光素子に接
続されたマルチモード型光ファイバ伝送線をシングルモ
ード型光ファイバ伝送線に融着接続し、上記シングルモ
ード型光ファイバ伝送線で遠隔地に設けた光/電気変換
回路に光信号を伝送することを特徴とする架空電線の電
流検出システム。(1) A current transformer consisting of a core and a coil installed in a plane substantially perpendicular to the overhead ground wire of an overhead power transmission line detects the current flowing through the overhead ground wire, and converts the electrical signal from the current transformer into It is equipped with a light-emitting element that emits light as an optical signal, and the optical signal from the light-emitting element is transmitted via an optical fiber transmission line to an optical/electrical conversion circuit installed at a remote location, where it is converted into an electrical signal and the output is used to send it to an overhead location. In a current detection system for an overhead power line that measures the current flowing through the line, a multimode optical fiber transmission line connected to the light emitting element is fusion-spliced to a single mode optical fiber transmission line, and the single mode optical fiber transmission line is connected to the single mode optical fiber transmission line. A current detection system for overhead power lines, which is characterized by transmitting an optical signal to an optical/electrical conversion circuit installed in a remote location via a wire.
ド型光ファイバ伝送線に融着接続して、電流検出回路か
らの光信号を光合波器によって他の光信号と波長多重し
て遠隔地まで伝送することを特徴とする請求項(1)記
載の架空電線の電流検出システム。(2) Multi-mode optical fiber transmission line is fusion-spliced to single-mode optical fiber transmission line, and the optical signal from the current detection circuit is wavelength-multiplexed with other optical signals using an optical multiplexer and transmitted to a remote location. The current detection system for overhead electric wires according to claim 1, characterized in that:
発光素子を用い、これにシングルモード型光ファイバ伝
送線を融着接続して上記短波長の光信号を遠隔地まで伝
送することを特徴とする請求項(1)記載の架空電線の
電流検出システム。(3) Using a light-emitting element that emits light with a short wavelength of 1 μm or less, and fusion-splicing a single-mode optical fiber transmission line to this light-emitting element to transmit the short-wavelength optical signal to a remote location. A current detection system for an overhead electric wire according to claim (1).
電流検出部に対応してそれぞれ異なる波長の光信号に変
換し、これら異なる波長の光信号をシングルモード型光
ファイバ伝送線に融着接続してこれらの光信号を波長多
重合成してシングルモード型光ファイバに出力する合波
手段と、波長多重された光信号を波長別に取出す分波手
段とを具えていることを特徴とする請求項(1)記載の
架空電線の電流検出システム。(4) In the overhead transmission line, each of the multiple current detection units installed at a predetermined interval is converted into an optical signal of a different wavelength, and these optical signals of different wavelengths are fused to a single-mode optical fiber transmission line. A claim characterized in that it comprises a multiplexing means that connects and wavelength-multiplexes these optical signals and outputs them to a single-mode optical fiber, and a demultiplexing means that extracts the wavelength-multiplexed optical signals by wavelength. The current detection system for overhead electric wires according to item (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1161674A JPH0325381A (en) | 1989-06-23 | 1989-06-23 | Current detection system for overhead conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1161674A JPH0325381A (en) | 1989-06-23 | 1989-06-23 | Current detection system for overhead conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0325381A true JPH0325381A (en) | 1991-02-04 |
Family
ID=15739689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1161674A Pending JPH0325381A (en) | 1989-06-23 | 1989-06-23 | Current detection system for overhead conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0325381A (en) |
-
1989
- 1989-06-23 JP JP1161674A patent/JPH0325381A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6909821B2 (en) | Network for distributing signals to a plurality of users | |
US4844573A (en) | Electro-optical converter including ridgid support for optical fiber coupler, telephone set using the coupler and method of making same | |
CN103370888B (en) | Optical network communication system with optical line terminal transceiver and method of operation thereof | |
US11489591B2 (en) | Apparatus for monitoring fiber signal traffic at a fiber connector | |
EP1905176B1 (en) | Optical network monitor pcb | |
CN106452568A (en) | OSC (Optical Supervising Channel) optical module with OTDR (Optical Time Domain Reflectometer)) function and method for realizing real-time and interruption service detection thereof | |
CN107925477A (en) | Monitored using the optical-fiber network of photon switch | |
CN206164535U (en) | OSC optical module with OTDR function | |
JPH0325381A (en) | Current detection system for overhead conductor | |
JPS6289008A (en) | Module for optical communication | |
JP2002357782A (en) | Multiplexing and demultiplexing chip and optical module for bi-directional transmission | |
EP1018814A2 (en) | Optical communication apparatus | |
KR100516822B1 (en) | Optical Jumer Code | |
EP1250772B1 (en) | Network for distributing signals to a plurality of users | |
US6894770B2 (en) | Inspection apparatus for optical transmission device | |
JP2002300110A (en) | Light-power/signal supply device, and optical signal/ power multiplex transmission system utilizing the device | |
KR101904992B1 (en) | Portable multi-channel optical line tester, optical module and production method thereof | |
CN112583481B (en) | Optical cable fiber core optical signal acquisition device, resource detection equipment and platform | |
Hirota et al. | Fiber identification below an optical splitter with a test light injection tool | |
KR100628838B1 (en) | Optical signal detector | |
JPH10261999A (en) | Optical network equipment | |
Uematsu et al. | High-efficiency light injection and extraction using fiber bending | |
US6259839B1 (en) | Optical communication connector | |
HU203177B (en) | Telecommunication system with light guiding lines | |
Joy et al. | Communication with Optical Fiber Link |