JPH03253772A - Fluid machine - Google Patents
Fluid machineInfo
- Publication number
- JPH03253772A JPH03253772A JP2049307A JP4930790A JPH03253772A JP H03253772 A JPH03253772 A JP H03253772A JP 2049307 A JP2049307 A JP 2049307A JP 4930790 A JP4930790 A JP 4930790A JP H03253772 A JPH03253772 A JP H03253772A
- Authority
- JP
- Japan
- Prior art keywords
- impeller
- motor
- pump
- power source
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 37
- 230000005611 electricity Effects 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005086 pumping Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000002826 coolant Substances 0.000 description 5
- 238000010248 power generation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Hydraulic Turbines (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、流体搬送装置における駆動源7羽根車の一体
構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an integral structure of seven impellers of drive sources in a fluid conveying device.
従来の装置は、特開昭62−258185号公報に記載
のように、流路の外側にポンプ駆動用流路を設は水車羽
根を回転させ、この回転力を駆動力としてポンプ羽根を
回転して揚水を行なっていた。As described in Japanese Patent Application Laid-Open No. 62-258185, a conventional device has a pump drive flow path outside the flow path, rotates a water turbine blade, and uses this rotational force as a driving force to rotate the pump blade. water was being pumped.
また、コロナ社、「流体機械」p55に掲載のように、
ポンプ主軸と流体の流れ方向が同一である軸流ポンプで
は、駆動源であるモータは流路の外側、すなわち配管外
側に設けられていた。Also, as published in Coronasha's "Fluid Machinery" p55,
In an axial flow pump in which the main shaft of the pump and the fluid flow direction are the same, the motor serving as the driving source is provided outside the flow path, that is, outside the piping.
上記目的を達成するために、羽根車駆動用モータと羽根
車を一体構造にし、流路中に、直接、設置した。In order to achieve the above object, the impeller driving motor and the impeller were made into an integral structure and installed directly in the flow path.
また、必要であれば駆動用電源も一体構造の中に組み込
んだ。Additionally, if necessary, a driving power source was also incorporated into the integrated structure.
さらに、ポンプと発電機の両方の目的で使用するため、
ポンプとして使用する時は、モータを羽根車駆動用モー
タとして用い、発電機として使用する時は、モータを発
電機として用いた。Additionally, for use as both a pump and a generator,
When used as a pump, the motor was used as an impeller driving motor, and when used as a generator, the motor was used as a generator.
高温、低温流体中で用いる時は冷却、加熱機能を付与し
た。When used in high-temperature or low-temperature fluids, cooling and heating functions are provided.
効率の向上のためには、羽根車の羽根角度9回転速度9
機械本体の向きを可変にした。To improve efficiency, the impeller blade angle 9 rotation speed 9
The direction of the machine body is variable.
高性能化、高信頼性の達成のためには、電源と直接接続
せずに動作可能なモータ、セラミックで製造した羽根車
、蓄電機能のある電源を用いた。In order to achieve high performance and reliability, we used a motor that can operate without being directly connected to a power source, an impeller made of ceramic, and a power supply with a power storage function.
上記従来技術は、駆動源を流路とは別の位置に設けるた
め、装置全体が大きくなってしまう問題があった。例え
ば、特開昭62−258185号公報では水車羽根やポ
ンプ駆動用流路を設けなければならないし、「流体機械
」軸流ポンプでは、配管外側にモータを設けるため、装
置の小形化を図る上でネックになってしまう。また、軸
流ポンプはシャフトが長くなるため、振動防止のための
軸受を流路中に数カ所設ける必要がある。The above-mentioned conventional technology has a problem in that the entire device becomes large because the driving source is provided at a position different from the flow path. For example, in Japanese Unexamined Patent Publication No. 62-258185, water turbine blades and a flow path for driving the pump must be provided, and in the case of a "fluid machine" axial flow pump, a motor is provided outside the piping, which makes it easier to downsize the device. It becomes a bottleneck. Furthermore, since the shaft of an axial flow pump is long, it is necessary to provide several bearings in the flow path to prevent vibration.
本発明の目的は、ポンプ構造を簡素にし小型化を図るこ
とにより、任意の場所に容易に設置可能なポンプを提供
することにある。An object of the present invention is to provide a pump that can be easily installed at any location by simplifying the pump structure and reducing its size.
本発明の他の目的は、冷却、加熱の機能をもつことによ
り任意温度の流体条件下で使用可能な流体機械を提供す
ることにある。Another object of the present invention is to provide a fluid machine that can be used under fluid conditions at any temperature by having cooling and heating functions.
モータや電源を一体型にすることにより、シャフトを短
くすることができ、装置が簡素で小型化が可能になる。By integrating the motor and power supply, the shaft can be shortened, making the device simpler and smaller.
また、モータを電源によって回転させれば、羽根車をポ
ンプ羽根として用いることができ、揚水が可能なポンプ
となる。一方、水流によって羽根車を回転させれば、モ
ータが発電機となり発電が可能となる。Furthermore, if the motor is rotated by a power source, the impeller can be used as a pump blade, resulting in a pump capable of pumping water. On the other hand, if the impeller is rotated by the water flow, the motor becomes a generator and it becomes possible to generate electricity.
冷却、加熱機能は、流体機械中の各部品を運転最適条件
に保持し、良好な運転を達成する。The cooling and heating functions maintain each component in the fluid machine in optimal operating conditions to achieve good operation.
以下、本発明の一実施例を第2図により説明する。第2
図は壁面9で囲まれた流路内に本発明による流体機械を
設置したものである。本流体機械は固定柱8によって壁
面9に固定されたケーシング1内に羽根車7を回転する
動力としてモータがあり、モータ固定子4はケーブル3
を介して電源2より電気を得、モータ回転子5を回転さ
せる。An embodiment of the present invention will be described below with reference to FIG. Second
The figure shows a fluid machine according to the present invention installed in a flow path surrounded by a wall surface 9. This fluid machine has a motor as a power for rotating an impeller 7 in a casing 1 fixed to a wall surface 9 by a fixed column 8, and a motor stator 4 is connected to a cable 3.
Electricity is obtained from the power source 2 via the motor to rotate the motor rotor 5.
モータ回転子5の回転はシャフト6を介し羽根車7に伝
わり、羽根車7を回転させる。ここで羽根車7にスクリ
ューやポンプインペラを用いれば、羽根車の回転方向に
応じて流体を一方向に押し出す。これにより揚水が可能
となりポンプとしての性能をもつことになる。第2図の
場合、電源2は機械本体とは別に流路の外側に設置し、
固定柱8内のケーブル3を通してモータに電気を送る方
法である。The rotation of the motor rotor 5 is transmitted to the impeller 7 via the shaft 6, causing the impeller 7 to rotate. If a screw or a pump impeller is used for the impeller 7, the fluid will be pushed out in one direction depending on the rotation direction of the impeller. This makes it possible to pump water and has the performance of a pump. In the case of Fig. 2, the power supply 2 is installed outside the flow path separately from the main body of the machine.
This is a method of sending electricity to the motor through the cable 3 inside the fixed column 8.
第3図は、電源2を本体内に収めたタイプの本発明流体
機械である。近年、電池性能も向上し、小型で強力なも
のが開発されているが、これら電池類を電源2として本
体と一体にしてしまえば、流路外側に電源等の設備を設
ける必要がなく、装置全体が小型になるとともに、任意
の場所に本流体機械を設置することが可能になる。FIG. 3 shows a fluid machine of the present invention of a type in which a power source 2 is housed within the main body. In recent years, battery performance has improved, and compact and powerful batteries have been developed, but if these batteries are integrated into the main unit as power source 2, there is no need to install equipment such as a power source outside the flow path, and the device The overall size becomes smaller and the fluid machine can be installed at any location.
以上第2図、第3図のタイプにおいては、モータや電源
2をケーシング1に収め流体中に設置することから、流
体が冷却材としても働き、装置全体の発熱を取り去るこ
とができる。また、シャツト6が短くできるため、軸受
の数も少なくでき摩擦熱等による熱のロスを小さくする
ことができる。In the types shown in FIGS. 2 and 3 above, since the motor and power source 2 are housed in the casing 1 and installed in the fluid, the fluid also acts as a coolant and can remove heat from the entire device. Further, since the shirt 6 can be shortened, the number of bearings can be reduced, and heat loss due to frictional heat or the like can be reduced.
さらに、一体構造であること、シャフトが短くてすむこ
と、電源2やモータも小型で高性能なものにすることに
より、装置全体の小型化が図れ任意の場所への設置や携
帯用としての用途が考えられ、多方面への適用が可能と
なる。Furthermore, the integrated structure, short shaft, and compact, high-performance power supply 2 and motor make the entire device more compact, allowing it to be installed in any location or used as a portable device. can be considered and can be applied in many fields.
第1図は、高温もしくと低温流体中で用いる場合の本装
置構成図である。例えば高温流体中で用いる時には流体
を冷却材として用いることができないため、電源2.モ
ータをカバー10内に収め、冷却材循環器11から循環
配管12を通ってケーシングl内を循環する冷却材によ
り、モータや電源を冷却する。FIG. 1 is a diagram showing the configuration of this apparatus when used in high-temperature or low-temperature fluids. For example, when using in a high temperature fluid, the fluid cannot be used as a coolant, so the power source 2. The motor is housed in a cover 10, and the motor and power source are cooled by a coolant circulating in the casing l from a coolant circulator 11 through a circulation pipe 12.
以上述べたように、本流体機械は小型に製作可能であり
、任意の場所で用いることができ、かつ、任意の条件(
ex、高温中や常温中)でも使用できる。As mentioned above, this fluid machine can be made small, can be used in any location, and can be used under any conditions (
It can be used even at high temperature or room temperature.
第4図以降は、実際の製品に用いた例である。The figures from FIG. 4 onwards are examples used in actual products.
第4図は、業務用や家庭用で用いるホースに本発明を用
いた例である。水槽15にホース14端部を沈め、水槽
15中やホース14中間部に本発明を設ければ、水槽1
5中の水をノズル16から噴射することができ、すなわ
ち、水槽中の流体を他へ移送することができる。FIG. 4 shows an example in which the present invention is applied to a hose used for business or home use. If the end of the hose 14 is submerged in the water tank 15 and the present invention is installed in the water tank 15 or in the intermediate part of the hose 14, the water tank 1
The water in 5 can be injected from the nozzle 16, ie the fluid in the tank can be transferred to another.
第5図は揚水発電に用いた例である。第1図。Figure 5 shows an example of use in pumped storage power generation. Figure 1.
第2図および第3図に示した本発明で、モータを発電機
としても用いれば、揚水発電が可能になる。In the present invention shown in FIGS. 2 and 3, if the motor is also used as a generator, pumped storage power generation becomes possible.
すなわち、余剰電力を利用して本発明流体機械20をポ
ンプとして用い、放水路上9の水を水圧管18を通して
」二水槽17に揚水する。一方、発電の際には、第1図
に示すモータを発電機として用いて発電する。すなわち
、上水槽17から放水路19に水を流し水の位置エネル
ギにより、流体機械20の羽根車(第1図2羽根車7)
を回転させる。羽根車7の回転はシャフト6を伝わりモ
ータ回転子を強勢回転させる。その結果、モータ固定子
4で発電された電気がケーブル3を通り外部へ伝送され
る。That is, the fluid machine 20 of the present invention is used as a pump using surplus power to pump water on the water outlet 9 to the second water tank 17 through the penstock 18. On the other hand, when generating electricity, the motor shown in FIG. 1 is used as a generator to generate electricity. That is, water is flowed from the water tank 17 to the discharge channel 19, and the potential energy of the water is used to drive the impeller of the fluid machine 20 (the impeller 7 in FIG. 1).
Rotate. The rotation of the impeller 7 is transmitted through the shaft 6 and forces the motor rotor to rotate. As a result, the electricity generated by the motor stator 4 is transmitted to the outside through the cable 3.
第5図に示す揚水発電の場合には、電気は外部に送られ
るが、第2図や第3図での電源2を蓄電機能をもったも
のにすれば、発電した電気を貯めておき、必要な時にモ
ータに流すことにより、容易に発電機、ポンプの両者の
機能を用いることができる。In the case of pumped storage power generation shown in Figure 5, electricity is sent to the outside, but if the power source 2 in Figures 2 and 3 has a power storage function, the generated electricity can be stored. By supplying power to the motor when necessary, it is possible to easily use the functions of both a generator and a pump.
第6図は本発明を用いたカートリッジ式流体機械を示し
たものである。フランジ22をもつ配管21内に固定柱
8により固定した流体機械20を設置する。このフラン
ジ付配管を任意の位置に取付け、用途に応じてポンプや
発電機として用いる。FIG. 6 shows a cartridge type fluid machine using the present invention. A fluid machine 20 fixed by a fixing column 8 is installed inside a pipe 21 having a flange 22. This flanged piping can be installed at any location and used as a pump or generator depending on the purpose.
以上述べたものは、回転部は設けるがその他の部分は固
定状態である。第5図に示すような揚水ポンプに代表さ
れるように、本発明では用途によって水流の方向が変わ
り、ある時はケーシング側から、また別な時は羽根車側
から流れることが考えられる。流体機械にとっては、常
に、同一の流れ方向が効率等を考えると望ましい。これ
を実現するためには、第工図に示す固定柱とケーシング
の固定方法や固定柱と壁面の固定方法を改善すれば、風
見鶏のように主流の方向に常に正対することが可能にな
る。例えば、第1図において、ケーシングを固定柱周り
水平方向に回転可能にすれば、主流方向の水平方向の変
化には追従できる。In the above-mentioned device, a rotating portion is provided, but other portions are in a fixed state. As typified by the water pump shown in FIG. 5, in the present invention, the direction of the water flow changes depending on the application, and it is conceivable that the water flow may flow from the casing side at some times and from the impeller side at other times. For fluid machines, it is desirable to always have the same flow direction in consideration of efficiency and the like. In order to achieve this, by improving the method of fixing the fixed column and casing as shown in the construction drawing, and the method of fixing the fixed column and wall surface, it will be possible to always face the direction of the mainstream like a weather vane. For example, in FIG. 1, if the casing is made horizontally rotatable around the fixed column, it can follow horizontal changes in the mainstream direction.
また、ポンプ全体の向きを変えるのでなくそれぞれの用
途に応じて羽根車の羽根角度や羽根回転数を可変にすれ
ば効率の向上が期待できる。Furthermore, efficiency can be expected to improve if the impeller blade angle and blade rotation speed are varied according to each application, rather than changing the direction of the entire pump.
将来的には、電源とポンプをケーブル等で接続せずに、
離れた位置から電気を電磁波等で送電する技術が確立さ
れれば、電源を近隣の位置や一体構造の中に有しない流
体機械ができる。さらに羽根車等をセラミックなどの耐
食性の高い材料で製作すれば、信頼性の高い流体機械と
なる。In the future, we will be able to connect the power supply and pump without using cables, etc.
If technology for transmitting electricity from a remote location using electromagnetic waves or the like is established, it will be possible to create fluid machines that do not have a power source nearby or in an integrated structure. Furthermore, if the impeller and other parts are made of highly corrosion-resistant materials such as ceramics, the fluid machine will be highly reliable.
本発明によれば、構造が簡単で小型化が可能となるため
、任意の場所に設置できまた携帯用としての用途も考え
られる。According to the present invention, the structure is simple and can be miniaturized, so it can be installed at any location and can also be used as a portable device.
また機器の冷却についても、電源やモータ等を流路中に
設置するため流体を冷却材として使用できる他、流体条
件により一層の冷却、加熱が要であれば必要機能を持た
せることにより、種々の条件下で使用することができる
。Regarding equipment cooling, fluid can be used as a coolant because power sources, motors, etc. are installed in the flow path, and if further cooling or heating is required depending on fluid conditions, various functions can be added by adding the necessary functions. It can be used under the following conditions.
第1図は、本発明の一実施例の流体機械の縦断面図、第
2図、第3図は本発明の他の実施例の縦断面図、第4図
は本発明をホースに用いた適用例の説明図、第5図は本
発明を揚水発電に用いた適用例の説明図、第6図はカー
トリッジ式流体機械の例の説明図である。
工・・ケーシング、2・・・電源、3・・・ケーブル、
4・モータ固定子、5 モータ回転子、6・・シャフト
、粥
1
図
第
図
弔
図Fig. 1 is a longitudinal cross-sectional view of a fluid machine according to an embodiment of the present invention, Figs. 2 and 3 are longitudinal cross-sectional views of other embodiments of the present invention, and Fig. 4 is a longitudinal cross-sectional view of a fluid machine according to an embodiment of the present invention. FIG. 5 is an explanatory diagram of an application example in which the present invention is used for pumped storage power generation, and FIG. 6 is an explanatory diagram of an example of a cartridge type fluid machine. Engineering...Casing, 2...Power supply, 3...Cable,
4. Motor stator, 5. Motor rotor, 6.. Shaft, gruel 1.
Claims (1)
と、前記モータの回転を伝えるシャフトと、前記シャフ
トの回転により動作する羽根車とからなる回転機械にお
いて、 前記モータと前記シャフトと羽根車、もしくは、前記電
源と前記モータと前記シャフトと前記羽根車を一体とし
、流路内に設置したことを特徴とする流体機械。 2、請求項1において、機械発熱部を冷却する、もしく
は機械低温部を加熱する機能をもつ流体機械。[Scope of Claims] 1. A rotating machine comprising a power source, a motor rotated by electricity from the power source, a shaft transmitting the rotation of the motor, and an impeller operated by the rotation of the shaft, comprising: A fluid machine characterized in that the shaft and the impeller, or the power source, the motor, the shaft, and the impeller are integrated and installed in a flow path. 2. The fluid machine according to claim 1, which has a function of cooling a mechanical heat generating part or heating a mechanical low temperature part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2049307A JPH03253772A (en) | 1990-03-02 | 1990-03-02 | Fluid machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2049307A JPH03253772A (en) | 1990-03-02 | 1990-03-02 | Fluid machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03253772A true JPH03253772A (en) | 1991-11-12 |
Family
ID=12827291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2049307A Pending JPH03253772A (en) | 1990-03-02 | 1990-03-02 | Fluid machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03253772A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002250300A (en) * | 2000-09-25 | 2002-09-06 | Gpm Geraete & Pumpenbau Gmbh Dr Eugen Schmidt Merbelsrod | Electrically driven coolant pump |
-
1990
- 1990-03-02 JP JP2049307A patent/JPH03253772A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002250300A (en) * | 2000-09-25 | 2002-09-06 | Gpm Geraete & Pumpenbau Gmbh Dr Eugen Schmidt Merbelsrod | Electrically driven coolant pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100426668B1 (en) | Motor-driven pump with a plurality of impellers | |
US7235894B2 (en) | Integrated fluid power conversion system | |
US5332369A (en) | Pump unit with cooling jacket for electric motor | |
US7385303B2 (en) | Integrated fluid power conversion system | |
US9093871B2 (en) | Bidirectional pumping and energy recovery system | |
US5474429A (en) | Fluid-displacement apparatus especially a blower | |
JPS6193295A (en) | Fluid machine | |
JP2001193680A (en) | Rotary machine | |
CN110486217B (en) | Disrotatory bidirectional axial flow water pump turbine | |
EP2647105A2 (en) | Improved rotating electric machine | |
JPH1070858A (en) | Dynamo-electric machine with hollow rotor | |
US4246490A (en) | Rotating nozzle generator | |
JP2002106456A (en) | Hydraulic blade integrated rotary electric machine | |
JPH03253772A (en) | Fluid machine | |
JPS626892A (en) | Water jet generating device | |
JP2004211568A (en) | Compressed-air supplying system of fuel cell vehicle | |
CN211422943U (en) | Water pump capable of automatically adjusting water supply amount | |
KR101953971B1 (en) | Fluid machinery having impeller using magnetic levitation | |
CN209510658U (en) | A kind of device of the pressurized water supply of submersible pump | |
RU2084773C1 (en) | Pump-heat generator | |
JPH06177437A (en) | Method and apparatus for hot drain water generation by utilizing thermocouple | |
KR102554856B1 (en) | water supply piping water turbine system | |
CN217632946U (en) | Centrifugal circulating pump | |
CN217270843U (en) | Straight cylinder type circulating water pump | |
CN217074763U (en) | Pump jet propeller |