JPH03253520A - Treatment of nickel oxide ore - Google Patents

Treatment of nickel oxide ore

Info

Publication number
JPH03253520A
JPH03253520A JP5189290A JP5189290A JPH03253520A JP H03253520 A JPH03253520 A JP H03253520A JP 5189290 A JP5189290 A JP 5189290A JP 5189290 A JP5189290 A JP 5189290A JP H03253520 A JPH03253520 A JP H03253520A
Authority
JP
Japan
Prior art keywords
ore
magnesium silicate
mgo
nickel oxide
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5189290A
Other languages
Japanese (ja)
Other versions
JP2945053B2 (en
Inventor
Kenichi Inoue
賢一 井上
Retsu Nagabayashi
長林 烈
Takashi Yamauchi
隆 山内
Morihiro Hasegawa
長谷川 守弘
Masahiro Kinugasa
衣笠 雅普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5189290A priority Critical patent/JP2945053B2/en
Publication of JPH03253520A publication Critical patent/JPH03253520A/en
Application granted granted Critical
Publication of JP2945053B2 publication Critical patent/JP2945053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To concentrate Fe and Ni magnesium silicate nickel ore by mixing a carbonaceous material as a reducing agent, boric acid compd. and silicic acid at specific ratios with the magnesium silicate nickel, pelletizing the mixture and subjecting the pellets to a reducing treatment, then screening the Fe-Ni alloy. CONSTITUTION:The carbonaceous material, such as coke, as the reducing agent of the oxide of Ni and Fe is added at 3 to 10wt.%, one or >=2 kinds of sodium borate, calcium borate and choremanite at 1 to 3wt.% or borax at 2 to 6wt.% and silica so as to attain 0.33 to 0.54 MgO/SiO2wt. ratio as additives to the powder of the magnesium silicate Ni ore which contains a slight ratio of the oxide of the Ni and Fe and in which the gangue of SiO2 and MgO occupies the greater part. The mixture is then pelletized. The pellets are heated in a rotary furnace, such as rotary kiln to reduce the oxide of the Ni and Fe to the form of metal. The Fe and Ni are magnetically separated from the SiO2-MgO gangue components. The Fe and Ni are recovered in the form of metal at a high yield from the low-grade magnesium silicate Ni ore, by which the Fe-Ni alloy as the subsequent raw material for stainless steels is smelted with the electric power lower than heretofore.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は製鋼原料となるニッケル、鉄混合物を製造する
ための酸化ニッケル鉱石の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for processing nickel oxide ore for producing a nickel-iron mixture that is a raw material for steelmaking.

(従来技術とその問題点) 酸化ニッケル鉱石を用いたフェロニッケル製造方法とし
てはクルップレン法、キルン−電気炉法、溶鉱炉法など
が挙げられる。クルップレン法では鉱石と炭材1石灰石
等を混合造粒し、これを乾燥後ロータリーキルンに装入
し、還元、造滓、メタル造粒と反応過程を経由して生成
した半溶融物はクリンカーとして排出される。このクリ
ンカーは水砕された後、選別工程(粉砕、篩別、比重選
別、磁力選別)へ送られメタルが回収される。このプロ
セスは高価な電力の消費が少ないという利点を有する反
面、収率が低い、使用する炭材(13〜14%)や、石
灰(6〜7%)などの添加量が多い等の問題がある。
(Prior art and its problems) Examples of methods for producing ferronickel using nickel oxide ore include the Kruppren method, the kiln-electric furnace method, and the blast furnace method. In the Krupplen method, ore and carbonaceous materials such as limestone are mixed and granulated, and after drying, this is charged into a rotary kiln, and the semi-molten material produced through the reaction process of reduction, slag, and metal granulation is discharged as clinker. be done. After this clinker is pulverized, it is sent to a sorting process (pulverization, sieving, specific gravity sorting, and magnetic sorting) to recover metals. Although this process has the advantage of low consumption of expensive electricity, it has problems such as low yield and large amounts of added carbon material (13-14%) and lime (6-7%). be.

一方キルンー電気炉法では、還元剤を配合して造粒した
鉱石をロータリーキルン(800〜900℃)で仮焼鉱
とし、これを電気炉に装入し、高温(約1600℃)で
脈石ごと溶解するために漠大な電気エネルギーを消費す
る。また、溶鉱炉法においては多量の炭材(コークスを
30%)とフラックス(石灰石を約19%)、を消費す
ることが問題点として挙げられる。
On the other hand, in the kiln-electric furnace method, the ore is granulated with a reducing agent and turned into calcined ore in a rotary kiln (800-900℃), which is then charged into an electric furnace and heated together with the gangue at a high temperature (approximately 1600℃). It consumes a large amount of electrical energy to melt. Another problem with the blast furnace method is that it consumes large amounts of carbonaceous material (30% coke) and flux (about 19% limestone).

以上のように、いずれの方法でも多量の脈石を含む鉱石
にニッケルと鉄をあわせて12〜18%)を全量処理し
ているために炭材、添加剤、そしてエネルギー源に大き
な費用を投じている。そこで簡単な予備処理によって、
鉱石中のニッケル、鉄を濃縮する方法が必要とされてい
る。
As mentioned above, in either method, the entire amount of ore containing a large amount of gangue (including nickel and iron (12-18%)) is processed, resulting in large costs for carbon materials, additives, and energy sources. ing. Therefore, by simple preliminary processing,
A method is needed to concentrate nickel and iron in ore.

例えばニッケル鉱石の濃縮方法の1つとして還元−磁選
法が提案されている。この処理法では鉱石に還元剤とし
てコークスを5%、添加剤としてほう酸ナトリウムを5
%添加してペレットに造粒している。このペレットをロ
ータリーキルンで1300℃で還元することによりNi
を99.5%、Feを98.4%金属化でき、還元ペレ
ットを湿式磁選することでNi品位9.5%、Fe品位
54.8% のNiとFe濃化物をNi回収率99.1
%、Fe回収率98.0%で得ている。
For example, a reduction-magnetic separation method has been proposed as one of the methods for concentrating nickel ore. In this treatment method, 5% coke is added to the ore as a reducing agent, and 5% sodium borate is added as an additive.
% is added and granulated into pellets. By reducing this pellet at 1300°C in a rotary kiln, Ni
99.5% of Ni and 98.4% of Fe can be metallized, and by wet magnetic separation of the reduced pellets, Ni and Fe concentrates with a Ni grade of 9.5% and Fe grade of 54.8% can be converted to a Ni recovery rate of 99.1.
%, with an Fe recovery rate of 98.0%.

この処理法は還元によってメタル粒がペレット表面に大
きく成長するため選別しやすく、メタルの回収率が高い
という利点を有するが、添加剤として用いるほう酸ナト
リウムが高価であり、5%という添加量は多いというこ
とが欠点である。
This treatment method has the advantage that the metal particles grow large on the pellet surface due to reduction, making it easy to sort and have a high metal recovery rate. However, the sodium borate used as an additive is expensive, and the amount of 5% added is high. That is a drawback.

この他にもいくつかの方法が考えられているものの、い
ずれも実用化には到ってはいない。その原因は酸化ニッ
ケル鉱石中のNiが少量であり、しかも珪酸塩中に極め
て微細に分散しているため物理的には選鉱が困難である
こと、還元する場合鉱石の融点近い(約1400℃)高
温で処理するためエネルギー費が高くなること、などで
ある。
Several other methods have been considered, but none have been put into practical use. The reason for this is that the Ni content in the nickel oxide ore is small and is extremely finely dispersed in the silicate, making it physically difficult to benefit the ore.When reduced, the temperature is close to the melting point of the ore (approximately 1400°C). Energy costs are high due to high temperature processing.

Claims (1)

【特許請求の範囲】[Claims] 酸化ニッケル鉱石と還元剤、添加剤を所定の割合で混合
、造粒し、これを還元処理後選別することによってニッ
ケルと鉄の濃化物を得ることからなる酸化ニッケル鉱石
の処理方法において:酸化ニッケル鉱石、還元剤、およ
び添加剤からなる混合物の組成が還元剤として炭材が3
〜10重量%、添加剤としてほう酸ナトリウム、ほう酸
カルシウム、コレマナイトのうち1種または2種以上を
1〜3重量%、もしくはほう砂2〜6重量%、およびシ
リカをMgO/SiO_2重量比が0.33〜0.54
となる量を使用することを特徴とする酸化ニッケル鉱石
の処理方法。
In a method for processing nickel oxide ore, which consists of mixing nickel oxide ore, a reducing agent, and an additive in a predetermined ratio, granulating it, and obtaining a concentrate of nickel and iron by sorting it after reduction treatment: Nickel oxide The composition of the mixture consisting of ore, reducing agent, and additives is such that carbonaceous material is used as reducing agent.
~10% by weight, 1~3% by weight of one or more of sodium borate, calcium borate, and colemanite as additives, or 2~6% by weight of borax, and silica at a MgO/SiO_2 weight ratio of 0. 33-0.54
A method for processing nickel oxide ore, characterized in that an amount of nickel oxide ore is used.
JP5189290A 1990-03-05 1990-03-05 Nickel oxide ore processing method Expired - Lifetime JP2945053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5189290A JP2945053B2 (en) 1990-03-05 1990-03-05 Nickel oxide ore processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189290A JP2945053B2 (en) 1990-03-05 1990-03-05 Nickel oxide ore processing method

Publications (2)

Publication Number Publication Date
JPH03253520A true JPH03253520A (en) 1991-11-12
JP2945053B2 JP2945053B2 (en) 1999-09-06

Family

ID=12899536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189290A Expired - Lifetime JP2945053B2 (en) 1990-03-05 1990-03-05 Nickel oxide ore processing method

Country Status (1)

Country Link
JP (1) JP2945053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526936A (en) * 2007-05-11 2010-08-05 ポスコ Method for producing molten iron containing nickel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526936A (en) * 2007-05-11 2010-08-05 ポスコ Method for producing molten iron containing nickel

Also Published As

Publication number Publication date
JP2945053B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
CN101280361B (en) Process method of tailings in vanadium extraction
CN104694758A (en) Technique for comprehensively utilizing iron-containing dust mud
CN103451346B (en) Copper smelting slag reduction method
CN104185687A (en) Method for separately recovering iron from non-metal waste slag discharged from process of refining non-ferrous metal such as copper, zinc and lead by physical chemical screening method
CN102534194A (en) Method for producing ferronickel from laterite-nickel ore
CN102978318A (en) Method for realizing phosphorus removal of oolitic high-phosphorus iron ores by combining enhanced gas-based reduction and high-temperature smelting separation
CN111647753B (en) Method for recovering zinc by direct reduction of melting gasification furnace
CN102643976B (en) Composite additive for producing nickel-iron particles by using laterite, and application method thereof
CN102344981A (en) Separation and direct reduction process of iron and boron in boron-containing iron ore concentrate
CN105087864A (en) Method for directly producing titanium carbide from vanadium titano-magnetite
CN114350939A (en) Pellet for producing alkaline fine iron ore by magnetizing roasting and preparation method thereof
CN103602773B (en) Method for comprehensive utilization of paigeite through direct reduction-electric furnace melting separation of rotary hearth furnace
US2836487A (en) Process for the separation of iron from other metals accompanying iron in ores or waste materials
CN102732715B (en) Sodium-salt-modified paigeite and application thereof in reducing and sorting of hard-to-process iron-containing resource
CN108796236A (en) A kind of method of valuable constituent element comprehensive reutilization in copper ashes
JPH03253520A (en) Treatment of nickel oxide ore
CN103993117A (en) Method for preparing manganese-iron alloy based on low-grade manganese ore
CN103695634A (en) Method for producing ferro-nickel alloy from low-grade laterite-nickel ore in half-molten state
CN110643830B (en) Method for producing zinc oxide and ferrosilicon alloy by using copper slag
CN111979423B (en) Method for reinforced recovery of valuable metals in copper smelting slag by using gypsum slag
CN102703683B (en) Mixed reduction method of oolitic hematite and paigeite
CN110592400A (en) Novel vanadium extraction and dressing combined method for high-silicon low-calcium stone coal
CN1598007A (en) Pyrogenic enrichment method of valuable metals in ocean cobalt-rich crusts
JPH02250929A (en) Treatment of nickel oxide ore
JP3510408B2 (en) Method for producing coke for iron-containing metallurgy and iron-containing granulated product