JPH03253436A - Headlamp lighting device for vehicle - Google Patents

Headlamp lighting device for vehicle

Info

Publication number
JPH03253436A
JPH03253436A JP2049397A JP4939790A JPH03253436A JP H03253436 A JPH03253436 A JP H03253436A JP 2049397 A JP2049397 A JP 2049397A JP 4939790 A JP4939790 A JP 4939790A JP H03253436 A JPH03253436 A JP H03253436A
Authority
JP
Japan
Prior art keywords
discharge lamp
temperature
electric discharge
transformer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049397A
Other languages
Japanese (ja)
Inventor
Masao Sakata
雅男 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2049397A priority Critical patent/JPH03253436A/en
Publication of JPH03253436A publication Critical patent/JPH03253436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To perform proper hot restart by controlling currents flowing to the electric discharge lamp-bulb with the integral values of an integrating means for integrating currents of primary winding of a transformer to discharge the currents at a specified time constant. CONSTITUTION:When a switch 2 is turned ON when an electric discharge lamp 5 is at a low temperature after a long time has elapsed after lights-out, a capacitor 12 has been discharged, and input voltage of a control circuit 6 is zero. At this time, a control circuit 6 sets an oscillating circuit 7 into oscillation at a low frequency to turn a transistor 8 ON/OFF at a low frequency. The secondary winding side of a transformer 3 has a low impedance with respect to a low frequency, so that a high current flows to heat up the electric discharge lamp in a short time, and lighting is stabilized. An integration constant determined by resistances 9, 10 and the condenser 12 is taken to be equal to the temperature time constant of the electric discharge lamp 5. When the lamp is lighted immediately after lights-out, the oscillating circuit 7 is oscillated at a high frequency by residual charge of the capacitor 12, and a high current does not flow to the electric discharge lamp 5. Proper hot start can thus be performed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、放電灯を用いた車両用前照灯の点灯装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a lighting device for a vehicle headlamp using a discharge lamp.

〔従来技術〕[Prior art]

例えば水銀ランプやナトリウムランプ等のように金属蒸
気を封入した放電灯は、車両用の前照灯として使用した
場合、小型、軽量、高効率などの点で、現在のフィラメ
ントタイプのバルブよりも有利な点が多い。
For example, discharge lamps filled with metal vapor, such as mercury lamps and sodium lamps, are more advantageous than current filament-type bulbs in terms of size, weight, and high efficiency when used as vehicle headlights. There are many points.

上記のごとき放電灯の点灯過程においては、絶縁破壊直
後に大電流を流してやれば、急速にガス温度を上げるこ
とが出来、したがって瞬時点灯が可能となるが、点灯開
始時に大電流を流すように設定すると、放電安定状態に
なったときに流れる電流が大きすぎて光量がオーバース
ペックになると共に放電灯の寿命が短くなる。逆に、最
初の電流を比較的低めの値に設定すれば、始動時から安
定光量に達するまで時間が長くなるという問題がある。
In the above-mentioned lighting process of a discharge lamp, if a large current is passed immediately after the insulation breaks down, the gas temperature can be rapidly raised, making instant lighting possible. If this is set, the current that flows when the discharge reaches a stable state will be too large, resulting in an overspecified light amount and shortening the life of the discharge lamp. On the other hand, if the initial current is set to a relatively low value, there is a problem that it takes a long time from the time of starting until the stable light amount is reached.

そのため従来の放電灯点灯装置としては1例えば、特開
昭56−7392号公報に記載されているようなバルブ
電圧を検出して点灯直後の電流を制御する方式、或いは
特開昭63−174300号公報に記載されているよう
なタイマを用いて点灯後一定時間で動作を切り替える方
式等が提案されている。
For this reason, conventional discharge lamp lighting devices include a system that detects the bulb voltage and controls the current immediately after lighting, as described in JP-A-56-7392, for example, or JP-A-63-174,300. A method has been proposed in which the operation is switched at a certain time after lighting using a timer as described in the official gazette.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前者の方式においては、バルブ電圧検出用のト
ランスが必要となるため、寸法、重量の増大やコスト増
加を招くという問題があり、車両の前照灯用には適用困
難である。
However, the former method requires a transformer for detecting the bulb voltage, resulting in increased size, weight, and cost, making it difficult to apply to vehicle headlights.

また、後者の方式においては、交通信号による停止時等
における短時間消灯後の点灯、すなわちホット・リスタ
ートの際にも過大電流を流すことになり、スパッタリン
グによる電極の損耗や光量低下等、信頼性や耐久性に問
題を生じ、かつ不要な電力消費を行なうという問題があ
り、やはり車両の前照灯用には適用困難である。
In addition, in the latter method, an excessive current flows even when the light is turned on after being turned off for a short period of time, such as when the light is stopped due to a traffic signal, or during a hot restart. There are problems with performance and durability, and unnecessary power consumption, so it is difficult to apply it to vehicle headlights.

本発明は、上記のごとき従来技術の問題を解決するため
になされたものであり、ホット・リスタート時にも適正
な制御を行なうことが出来、かつ小型、軽量、低コスト
で車両の前照灯に適した点灯装置を提供することを目的
とする。
The present invention has been made to solve the problems of the prior art as described above, and provides a small, lightweight, and low-cost vehicle headlight that can perform appropriate control even during a hot restart. The purpose is to provide a lighting device suitable for.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明においては、特許請
求の範囲に記載するように構成している。
In order to achieve the above object, the present invention is configured as described in the claims.

すなわち、本発明においては、トランスを備えた直流/
交流インバータの該トランスの1次巻線に流れる電流を
積分し、所定の時定数で放電する積分手段を備え、上記
積分値に基づいて放電灯バルブに流れる電流を制御する
ように構成したものである。
That is, in the present invention, a direct current/
It is equipped with an integrating means that integrates the current flowing through the primary winding of the transformer of the AC inverter and discharges it at a predetermined time constant, and is configured to control the current flowing through the discharge lamp bulb based on the integrated value. be.

上記の積分値は、放電灯バルブの積算消費電力にほぼ等
しく、かつ点灯動作開始後の積算消費電力は放電灯バル
ブの温度にほぼ等しい、また、積分手段は所定の時定数
で放電するので、消灯機長時間経過後と、短時間経過後
(ホット・リスタート時)とでは、再点灯時に残留して
いる積分値が異なっている。したがって、本発明におい
ては、点灯動作開始時に放電灯バルブの温度に対応した
電流を流すことが出来、また、ホット・リスタートにお
いても適正な電流を流すことが出来る。
The above integral value is approximately equal to the cumulative power consumption of the discharge lamp bulb, and the cumulative power consumption after the start of lighting operation is approximately equal to the temperature of the discharge lamp bulb, and since the integrating means discharges at a predetermined time constant, The integral value that remains when the lights are turned off again is different between after a long time has elapsed and after a short time (at the time of hot restart). Therefore, in the present invention, it is possible to flow a current corresponding to the temperature of the discharge lamp bulb at the start of lighting operation, and it is also possible to flow an appropriate current even at a hot restart.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の一実施例の回路図である。 FIG. 1 is a circuit diagram of an embodiment of the present invention.

第1図において、バッテリ電源1からの直流電力は、ス
イッチ2を介してトランス3の1次巻線の一端に供給さ
れ、かつ制御回路6および発振回路7の電源系統に供給
される。トランス3の他の一端は、トランジスタ8と抵
抗9を介して接地される。トランジスタ8は、発振回路
7の出力によってオン/オフ制御され、トランス3の1
次巻線には発振回路7の出力周波数に応じて断続する電
流が流れる。
In FIG. 1, DC power from a battery power supply 1 is supplied to one end of a primary winding of a transformer 3 via a switch 2, and then to a power supply system of a control circuit 6 and an oscillation circuit 7. The other end of the transformer 3 is grounded via a transistor 8 and a resistor 9. The transistor 8 is controlled on/off by the output of the oscillation circuit 7, and is controlled by the output of the oscillation circuit 7.
An intermittent current flows through the next winding in accordance with the output frequency of the oscillation circuit 7.

トランス3の2次巻線には、限流コンデンサ4を介して
放電灯バルブ5が接続されている。
A discharge lamp bulb 5 is connected to the secondary winding of the transformer 3 via a current limiting capacitor 4.

トランジスタ8のエミッタ端子に接続されている抵抗9
は、電流検出用の抵抗であり、この端子電圧は抵抗11
とコンデンサ12とからなる積分回路に与えられる。
A resistor 9 connected to the emitter terminal of the transistor 8
is a resistor for current detection, and this terminal voltage is the resistor 11
and a capacitor 12.

この積分回路の出力、すなわち抵抗11とコンデンサ1
2との接続点の電圧は、制御回路6に与えられる。
The output of this integrating circuit, that is, resistor 11 and capacitor 1
The voltage at the connection point with 2 is applied to the control circuit 6.

制御回路6は、上記の積分電圧に応じて異なった制御電
圧(詳細後述)を発振回路7へ送り、発振回路7はその
制御電圧に対応した周波数の信号でトランジスタ8をオ
ン/オフする。すなわち発振回路7は電圧制御発振器と
して動作する。
The control circuit 6 sends different control voltages (described in detail later) to the oscillation circuit 7 in accordance with the above-mentioned integrated voltage, and the oscillation circuit 7 turns on/off the transistor 8 with a signal having a frequency corresponding to the control voltage. That is, the oscillation circuit 7 operates as a voltage controlled oscillator.

また、抵抗9.抵抗11およびコンデンサ12によって
決定される積分時定数は、放電灯バルブ5の温度時定数
にほぼ一致させておく。
Also, resistance 9. The integration time constant determined by the resistor 11 and the capacitor 12 is made approximately equal to the temperature time constant of the discharge lamp bulb 5.

次に作用を説明する。Next, the effect will be explained.

まず、消灯後半分長い時間が経過した後、すなわち放電
灯バルブ5の温度が低い時に、スイッチ2をオンして点
灯する場合には、積分回路のコンデンサ12の電荷は、
抵抗11と抵抗9とを通じて完全に放電されており、制
御回路6への入力電圧は0である。この状態では、制御
回路6は発振回路7が低い発振周波数f□(例えば3k
Hz程度)で発振するような制御電圧を出力する。した
がってトランジスタ8は低い周波数f1でオン/オフし
、トランス3の2次側には周波数f□で巻数比に応じた
高電圧のバルブ廃動電圧が発生する。
First, when turning on the switch 2 to turn on the lamp after half a long time has elapsed since the lamp was turned off, that is, when the temperature of the discharge lamp bulb 5 is low, the electric charge of the capacitor 12 of the integrating circuit is
It is completely discharged through the resistor 11 and the resistor 9, and the input voltage to the control circuit 6 is zero. In this state, the control circuit 6 controls the oscillation circuit 7 to operate at a low oscillation frequency f□ (for example, 3k).
outputs a control voltage that oscillates at a frequency of around Hz). Therefore, the transistor 8 is turned on and off at a low frequency f1, and a high valve deactivation voltage is generated on the secondary side of the transformer 3 at a frequency f□ in accordance with the turns ratio.

限流コンデンサ4は、低い周波数f□に対しては低いイ
ンピーダンスを有しているため、トランス3の2次側負
荷インピーダンスは低く、結果として放電灯バルブ5に
は過渡的な大電流が流れる。
Since the current limiting capacitor 4 has a low impedance with respect to the low frequency f□, the secondary load impedance of the transformer 3 is low, and as a result, a large transient current flows through the discharge lamp bulb 5.

したがって放電灯バルブ5の温度は急速に上昇し、その
ため短時間で安定点灯状態に達することができる。
Therefore, the temperature of the discharge lamp bulb 5 rises rapidly, and therefore a stable lighting state can be reached in a short time.

点灯後、放電灯バルブ5で消費される電力は、トランス
3の1次巻線電流検出用の抵抗9によってモニタするこ
とができる。これは定電圧駆動であること、および1次
側と2次側の電流が比例関係にあることによるもので、
抵抗9による電圧降下分が2次側消費電力に比例する。
After lighting, the power consumed by the discharge lamp bulb 5 can be monitored by a resistor 9 for detecting the primary winding current of the transformer 3. This is due to constant voltage drive and the proportional relationship between the primary and secondary currents.
The voltage drop caused by the resistor 9 is proportional to the power consumption on the secondary side.

この2次側消費電力は、限流コンデンサ4の消費電力と
放電灯バルブ5の消費電力の和であるが、通常、電力利
用効率の観点から限流コンデンサ4の消費電力は放電灯
バルブ5の消費電力に比べて十分小さく設定するので、
2次側の消費電力は放電灯バルブ5の消費電力にほぼ等
しいといえる。
This secondary side power consumption is the sum of the power consumption of the current limiting capacitor 4 and the power consumption of the discharge lamp bulb 5. Normally, from the viewpoint of power utilization efficiency, the power consumption of the current limiting capacitor 4 is the sum of the power consumption of the discharge lamp bulb 5. Since it is set sufficiently small compared to the power consumption,
It can be said that the power consumption on the secondary side is approximately equal to the power consumption of the discharge lamp bulb 5.

したがって抵抗9の電圧降下分を積分することにより、
放電灯バルブ5の積算消費電力を知ることが出来る。そ
して点灯動作時における放電灯バルブ5の温度は、上記
の積算消費電力にほぼ対応する。
Therefore, by integrating the voltage drop across resistor 9,
The cumulative power consumption of the discharge lamp bulb 5 can be known. The temperature of the discharge lamp bulb 5 during the lighting operation approximately corresponds to the above-mentioned integrated power consumption.

また、抵抗9、抵抗11およびコンデンサ12によって
決定される積分時定数は、放電灯バルブ5の温度時定数
にほぼ一致させであるので、点灯動作時における放電灯
バルブ5の温度は、上記の積分値にほぼ対応することに
なる。
Further, since the integral time constant determined by the resistor 9, the resistor 11, and the capacitor 12 is made to almost match the temperature time constant of the discharge lamp bulb 5, the temperature of the discharge lamp bulb 5 during lighting operation is determined by the above-mentioned integral. It will roughly correspond to the value.

したがって、スイッチ2をオンにしてから時間が経過す
ると、コンデンサ12には放電灯バルブ5の温度に比例
した電荷が充電されることになる。
Therefore, as time passes after the switch 2 is turned on, the capacitor 12 is charged with an electric charge proportional to the temperature of the discharge lamp bulb 5.

制御回!I&6は、上記の充電電荷が一定量以上すなわ
ち端子電圧が一定値以上になった場合には。
Control times! I&6 is when the above-mentioned charged charge is above a certain amount, that is, when the terminal voltage is above a certain value.

発振回路7を前記f工より高い周波数fz(例えば10
kHz)で発振させるような制御電圧を出力する。
The oscillation circuit 7 is set to a frequency fz higher than the frequency fz (for example, 10
It outputs a control voltage that causes oscillation at a frequency of kHz (kHz).

このため、トランス3の2次側には高い周波数f2の電
圧が生じ、それによって限流コンデンサ4のインピーダ
ンスが上昇するので、放電灯バルブ5には前記の場合よ
り小さな定常動作状態の電流が流れる。
Therefore, a voltage with a high frequency f2 is generated on the secondary side of the transformer 3, which increases the impedance of the current limiting capacitor 4, so that a current smaller than that in the above case flows through the discharge lamp bulb 5 in a steady operating state. .

次ぎに、放電灯が消灯されてから短時間のうちに再点灯
されたホット・リスタートの場合には、コンデンサ12
には電荷が残っており、そのため発振回路7は出力周波
数f2の制御信号を出方するため、放電灯バルブ5には
不要な大電流は流れない。
Then, in the case of a hot restart, where the discharge lamp is turned off and then turned on again within a short period of time, capacitor 12
Since the oscillation circuit 7 outputs a control signal of the output frequency f2, an unnecessary large current does not flow through the discharge lamp bulb 5.

なお、上記の実施例においては、発振回路7の出力周波
数を低い値f工と高い値f2との2段階に切り替える場
合を例示したが、コンデンサ12の端子電圧に応じて多
段階あるいは連続的に周波数を変えることも出来る。
In the above embodiment, the case where the output frequency of the oscillation circuit 7 is switched to two stages, a low value f and a high value f2, was illustrated, but it can be changed in multiple stages or continuously depending on the terminal voltage of the capacitor 12. You can also change the frequency.

次ぎに、第2図は、本発明の第2の実施例の回路図であ
る。
Next, FIG. 2 is a circuit diagram of a second embodiment of the present invention.

この実施例は、放電灯バルブ5の温度時定数が温度上昇
時と放熱時とで大きく異なることに対応するために、積
分回路における充電時の時定数と放電時の時定数と異な
った値にしたものである。
In this embodiment, in order to cope with the fact that the temperature time constant of the discharge lamp bulb 5 differs greatly between when the temperature rises and when heat is dissipated, the time constant during charging and the time constant during discharging in the integrating circuit are set to different values. This is what I did.

なお、一般に、放熱時の温度時定数の方が大きな値にな
る。
Note that, in general, the temperature time constant during heat radiation has a larger value.

第2図において、抵抗9の端子電圧は、ダイオード10
を介して積分回路に与えられる。また、コンデンサ12
の出力端子は放電用の抵抗13を通して接地されている
In FIG. 2, the terminal voltage of resistor 9 is
is applied to the integrator circuit via. In addition, capacitor 12
The output terminal of is grounded through a discharge resistor 13.

上記の構成において、抵抗11の抵抗値をR2、抵抗1
3の抵抗値R1,コンデンサ12の容量を02とし、ダ
イオード1oの抵抗分を無視すれば、積分回路の充電時
すなわち温度上昇時の積分時定数tuPは、 tup=Rz”Xcz/(Rz+Ra)  −= (1
)となり、また、放電時すなわち放熱時の時定数t1゜
wnは、 t sown =Rz X Cz        ・”
 (2)となる。
In the above configuration, the resistance value of the resistor 11 is R2, and the resistance value of the resistor 1 is R2.
If the resistance value R1 of 3, the capacitance of capacitor 12 is 02, and the resistance of diode 1o is ignored, the integration time constant tuP when charging the integrating circuit, that is, when the temperature rises, is tup=Rz"Xcz/(Rz+Ra) - = (1
), and the time constant t1゜wn during discharge, that is, heat radiation, is t sown = Rz X Cz ・”
(2) becomes.

上記のように充電時と放電時との時定数を変えることが
出来るので、R2、R1、c2の値を適当に設定するこ
とにより、温度上昇時の温度時定数と放熱時の温度時定
数とに一致した充電、放電時定数に設定することが出来
る。
As mentioned above, the time constants during charging and discharging can be changed, so by appropriately setting the values of R2, R1, and c2, the temperature time constant during temperature rise and the temperature time constant during heat dissipation can be changed. The charging and discharging time constants can be set to match.

次ぎに、第3図は、本発明の第3の実施例の回M図であ
る。
Next, FIG. 3 is a diagram of a third embodiment of the present invention.

この実施例は、第2図の実施例と同様の効果を得るため
の他の回路を示す。
This embodiment shows another circuit for obtaining the same effect as the embodiment of FIG.

第3図において、抵抗l工の抵抗値をR2、抵抗15の
抵抗値R4,コンデンサ12の容量を02とし、ダイオ
ード14の抵抗分を無視すれば、積分回路の充電時すな
わち温度上昇時の積分時定数tuPは、 tuF=R2XC2−(3) となり、また、放電時すなわち放熱時の時定数t do
wnは、 t down=R2・R4(R2+ R4) X C2
−(4)となる。
In Fig. 3, if the resistance value of the resistor 1 is R2, the resistance value of the resistor 15 is R4, and the capacitance of the capacitor 12 is 02, and the resistance of the diode 14 is ignored, then the integration when the integrating circuit is charged, that is, when the temperature rises, is The time constant tuP is tuF=R2XC2-(3), and the time constant t do during discharge, that is, heat radiation.
wn is t down=R2・R4(R2+R4) X C2
-(4).

したがって、この場合にもR2、R,、Czの値を適当
に設定することにより、温度上昇時の温度時定数と放熱
時の温度時定数とに一致した充電、放電時定数に設定す
ることが出来る。
Therefore, in this case as well, by appropriately setting the values of R2, R, and Cz, it is possible to set the charging and discharging time constants to match the temperature time constants during temperature rise and temperature time constants during heat dissipation. I can do it.

次ぎに、第4図は、本発明の第4の実施例の回路図であ
る。
Next, FIG. 4 is a circuit diagram of a fourth embodiment of the present invention.

この実施例は周囲環境温度の影響をなくしたものである
This embodiment eliminates the influence of ambient temperature.

第4図において、コンデンサ12の出力端子の電圧は、
差動増幅器16の正相入力端子に入力される。
In FIG. 4, the voltage at the output terminal of the capacitor 12 is
It is input to the positive phase input terminal of the differential amplifier 16.

また、感温抵抗17と18との直列回路が基準電源19
に接続され、両感温抵抗の接続点の電圧が差動増幅器1
6の逆相入力端子に入力される。
Further, the series circuit of the temperature sensitive resistors 17 and 18 is connected to the reference power supply 19.
The voltage at the connection point of both temperature-sensitive resistors is connected to differential amplifier 1.
It is input to the negative phase input terminal of No.6.

上記の感温抵抗17の抵抗値は周囲温度の上昇に対して
線形に上昇し、また、感温抵抗18の抵抗値は線形に減
少する。そしてこれらの比例係数の絶対値を等しくする
ことにより、2つの感温抵抗17および18の直列合成
抵抗を一定に保ったままで分圧比を温度に応じて変化さ
せることができる。
The resistance value of the temperature-sensitive resistor 17 increases linearly as the ambient temperature increases, and the resistance value of the temperature-sensitive resistor 18 decreases linearly. By making the absolute values of these proportional coefficients equal, the voltage division ratio can be changed depending on the temperature while keeping the series combined resistance of the two temperature sensitive resistors 17 and 18 constant.

したがって差動増幅器16の逆相入力端子の電圧は周囲
の温度変化に対して線形に減少する。そのため差動増幅
器16の出力は、放電灯バルブ5の点灯後の温度上昇分
と周囲温度との和となるので、制御回路6は周囲温度に
依存しないで放電灯バルブ5の絶対温度を検出すること
ができる。
Therefore, the voltage at the negative phase input terminal of the differential amplifier 16 decreases linearly with respect to ambient temperature changes. Therefore, the output of the differential amplifier 16 is the sum of the temperature rise after the discharge lamp bulb 5 is turned on and the ambient temperature, so the control circuit 6 detects the absolute temperature of the discharge lamp bulb 5 without depending on the ambient temperature. be able to.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明によれば。 As explained above, according to this invention.

点灯動作開始後の積算消費電力に基づいて放電灯バルブ
の電流制御を行なうように構成したことにより、ホット
・リスタートに際しても適正な制御が出来るので、長寿
命化、高信頼性化が可能となり、また、特別なトランス
等が不必要なので、装置の小型化、軽量化、低コスト化
が出来る、等の効果が得られる。
By configuring the current control of the discharge lamp bulb based on the cumulative power consumption after the start of lighting operation, appropriate control can be performed even in the event of a hot restart, resulting in longer life and higher reliability. In addition, since a special transformer or the like is not required, effects such as miniaturization, weight reduction, and cost reduction of the device can be obtained.

また、第2、第3の実施例においては、上記の効果に加
えて、放電灯バルブの温度上昇時と放熱時との温度時定
数の差に適合した制御を行なうことが出来、また、第4
の実施例においては、周囲温度の影響を受けない制御が
可能になるという効果が得られる。
Furthermore, in the second and third embodiments, in addition to the above-mentioned effects, it is possible to perform control that is suitable for the difference in temperature time constant between when the temperature of the discharge lamp bulb increases and when it dissipates heat. 4
In this embodiment, it is possible to achieve control that is not affected by the ambient temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図はそれぞれ本発明の実施例の回路図で
ある。 〈符号の説明〉 l・・・バッテリ電源 2・・・スイッチ 3・・・トランス 4・・・コンデンサ 5・・・放電灯バルブ 6・・・制御回路 7・・・発振回路 8・・・トランジスタ 9・・・抵抗 0.14・・・ダイオード 1.13.15・・・抵抗 2・・・コンデンサ 6・・・差動増幅器 7.18・・・感温抵抗 9・・・基準電源
1 to 4 are circuit diagrams of embodiments of the present invention, respectively. <Explanation of symbols> l... Battery power source 2... Switch 3... Transformer 4... Capacitor 5... Discharge lamp bulb 6... Control circuit 7... Oscillation circuit 8... Transistor 9... Resistor 0.14... Diode 1.13.15... Resistor 2... Capacitor 6... Differential amplifier 7.18... Temperature sensitive resistor 9... Reference power supply

Claims (1)

【特許請求の範囲】 トランスの1次巻線に印加する直流電流を所定周波数で
断続することによって上記トランスの2次巻線に発生す
る交流電力で放電灯を点灯する装置において、 上記トランスの1次巻線に流れる電流を積分し、所定の
時定数で放電する積分手段と、 該積分手段の出力に基づいて上記周波数を制御する周波
数制御手段と、を備えたことを特徴とする車両用前照灯
点灯装置。
[Scope of Claims] A device for lighting a discharge lamp with AC power generated in the secondary winding of the transformer by intermittent DC current applied to the primary winding of the transformer at a predetermined frequency, comprising: 1 of the transformer; A vehicle front comprising: an integrating means for integrating the current flowing through the next winding and discharging it at a predetermined time constant; and a frequency controlling means for controlling the frequency based on the output of the integrating means. Light lighting device.
JP2049397A 1990-03-02 1990-03-02 Headlamp lighting device for vehicle Pending JPH03253436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049397A JPH03253436A (en) 1990-03-02 1990-03-02 Headlamp lighting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049397A JPH03253436A (en) 1990-03-02 1990-03-02 Headlamp lighting device for vehicle

Publications (1)

Publication Number Publication Date
JPH03253436A true JPH03253436A (en) 1991-11-12

Family

ID=12829904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049397A Pending JPH03253436A (en) 1990-03-02 1990-03-02 Headlamp lighting device for vehicle

Country Status (1)

Country Link
JP (1) JPH03253436A (en)

Similar Documents

Publication Publication Date Title
US5142203A (en) Lighting circuit for high-pressure discharge lamp for vehicles
JP2587710B2 (en) Lighting circuit for vehicle discharge lamps
GB2233796A (en) Lighting circuit for high-pressure discharge lamp for vehicles
JPH04229991A (en) Lighting device
JP3440667B2 (en) Discharge lamp lighting device
US5252891A (en) Uninterruptible fluorescent lamp circuit available for emergency lighting
CA1207014A (en) Arc lamp power supply
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
JPH03253436A (en) Headlamp lighting device for vehicle
JPH02215090A (en) Discharge lamp lighting device
JPH1055891A (en) Fluorescent lamp lighting device
JP3736109B2 (en) Discharge lamp lighting device
JP4122576B2 (en) Lighting control circuit for high intensity discharge lamp
JP3793339B2 (en) High-intensity discharge lamp lighting device
JPH0582271A (en) Discharge lamp lighting device
JP2001118691A (en) Lighting device of high pressure discharge lamp
JP3295999B2 (en) Discharge lamp lighting device
JP3197170B2 (en) Lighting circuit of discharge lamp
JPH0330186Y2 (en)
JP2705292B2 (en) Vehicle headlights
JPH0210698A (en) Device for lighting discharge lamp
JPH07122373A (en) Discharge lamp lighting circuit device for automobile
JPH0689793A (en) Discharge lamp drive circuit
JPH02215088A (en) Discharge lamp lighting device
JPS6158958B2 (en)