JPH0325337B2 - - Google Patents

Info

Publication number
JPH0325337B2
JPH0325337B2 JP62032362A JP3236287A JPH0325337B2 JP H0325337 B2 JPH0325337 B2 JP H0325337B2 JP 62032362 A JP62032362 A JP 62032362A JP 3236287 A JP3236287 A JP 3236287A JP H0325337 B2 JPH0325337 B2 JP H0325337B2
Authority
JP
Japan
Prior art keywords
molecular weight
temperature
extrusion
stretching
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62032362A
Other languages
Japanese (ja)
Other versions
JPS62216723A (en
Inventor
Tetsuo Kanemoto
Koji Tanaka
Masatami Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP57101183A external-priority patent/JPS58217322A/en
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP62032362A priority Critical patent/JPS62216723A/en
Publication of JPS62216723A publication Critical patent/JPS62216723A/en
Publication of JPH0325337B2 publication Critical patent/JPH0325337B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粘度平均分子量100万以上の超高分
子量ポリエチレンの単結晶集合体から構成された
マツト状物を、特定条件下で押出し次いで延伸し
てなる特定高性能の成形製品に関する。この成形
製品は、ヤング率と破断強度が極めて高く構造材
等として好適に使用することができる。 一般に、高分子量ポリエチレン材料は延伸する
ことにより分子構造を変化させ物性を向上させる
ことができるが、ポリエチレンの分子量が大きく
なると、それにつれて材料の延伸性が低下し高い
倍率で延伸することが困難となり、このため延伸
による材料物性の向上を十分に達成することがで
きなくなる。例えば、分子量5〜30万の普通の高
密度ポリエチレンの溶融成形物は延伸比35程度ま
で延伸でき、延伸により成形品の物性が向上する
が、分子量100万以上の超高分子量ポリエチレン
の加熱加圧成形物は延伸比が5〜7と低く高倍率
で延伸を行うことが困難で、このため延伸による
物性向上が達成できない。 もつとも、超高分子量ポリエチレンの場合、濃
度1重量%以上のデカリン溶液を冷却水て急冷し
て得られるゲルは、高倍率での延伸が可能で、こ
のゲルを延伸比40〜50倍で温度90〜130℃でニツ
プ延伸すると、得られた成形品はかなり良好な物
性を示すようになる。しかし、実用上物性向上は
十分でない。 本発明者らは、超高分子量ポリエチレンに関し
一層高性能の成形製品を得るべく研究を重ねた結
果、超高分子量ポリエチレンの単結晶集合体から
構成されたマツト状物を特定条件で押出、延伸す
ると、得られた成形製品が後述のごとき驚異的に
優れた物性を示すことを見出し、本発明を完成さ
せた。 すなわち、本発明は、粘度平均分子量100万以
上の超高分子量ポリエチレンの単結晶集合体から
構成されたマツト状物を、押出温度70〜135℃、
押出比4〜8で押出し、次いで延伸温度90〜135
℃、全延伸比100〜250で延伸してなる、ヤング率
110ギガパスカル以上、破断強度3.5ギガパスカル
以上の超高分子量ポリエチレン成形製品である。 本発明においてマツト状物は、結晶性を積極的
に増大させて、ゲルを作らないようにする点に特
色があり、かくて単結晶集合体から構成されたマ
ツト状分は、4〜8倍に押出成形した場合低温延
伸可能であり、また、高温延伸すると高弾性、高
強度の成形製品となる。この成形製品は、全延伸
比100〜250でヤング率110ギガパスカル以上、破
断強度3.5ギガパスカル以上を示し際立つて高性
能のものである。このことは、次表に示す比較成
形製品A〜Cとの比較から明らかである。
The present invention relates to a molded product with a specific high performance, which is obtained by extruding and stretching a mat-like material made of a single crystal aggregate of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1 million or more under specific conditions. This molded product has extremely high Young's modulus and breaking strength and can be suitably used as a structural material. Generally, by stretching high molecular weight polyethylene materials, it is possible to change the molecular structure and improve the physical properties, but as the molecular weight of polyethylene increases, the stretchability of the material decreases, making it difficult to stretch at a high magnification. Therefore, it becomes impossible to sufficiently improve the physical properties of the material by stretching. For example, a melt-molded product of ordinary high-density polyethylene with a molecular weight of 50,000 to 300,000 can be stretched to a stretching ratio of about 35, and stretching improves the physical properties of the molded product, but ultra-high molecular weight polyethylene with a molecular weight of 1 million or more is heated and pressed. The molded product has a low stretching ratio of 5 to 7, making it difficult to stretch at a high magnification, and therefore, improvement in physical properties cannot be achieved by stretching. However, in the case of ultra-high molecular weight polyethylene, the gel obtained by rapidly cooling a decalin solution with a concentration of 1% by weight or more with cooling water can be stretched at a high magnification, and this gel can be stretched at a stretching ratio of 40 to 50 times at a temperature of 90%. When nip-stretched at ~130°C, the resulting molded article exhibits fairly good physical properties. However, the improvement in physical properties is not sufficient for practical purposes. As a result of repeated research into ultra-high molecular weight polyethylene in order to obtain molded products with even higher performance, the inventors of the present invention discovered that by extruding and stretching a pine-like material composed of a single-crystal aggregate of ultra-high molecular weight polyethylene under specific conditions. They discovered that the resulting molded product exhibited surprisingly excellent physical properties as described below, and completed the present invention. That is, in the present invention, a mat-like material composed of a single crystal aggregate of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1 million or more is extruded at a temperature of 70 to 135°C.
Extrusion at extrusion ratio 4-8, then stretching temperature 90-135
℃, Young's modulus obtained by stretching at a total stretching ratio of 100 to 250
It is an ultra-high molecular weight polyethylene molded product with a strength of 110 gigapascals or more and a breaking strength of 3.5 gigapascals or more. In the present invention, the mat-like material is characterized in that the crystallinity is actively increased to prevent the formation of gel, and thus the mat-like material composed of single crystal aggregates is 4 to 8 times more When extruded, it can be stretched at low temperatures, and when stretched at high temperatures, it becomes a molded product with high elasticity and high strength. This molded product exhibits outstanding high performance, with a Young's modulus of 110 gigapascals or more and a breaking strength of 3.5 gigapascals or more at a total stretch ratio of 100 to 250. This is clear from a comparison with comparative molded products A to C shown in the following table.

【表】 本発明成形製品の優れた物性は材材料の特有な
結晶状態と関係があるが、同じ単結晶集合体から
なるマツト状物でも普通の高密度ポリエチレンの
場合には成形品にみるべき物性向上が発現しな
い。 建築材料として広く使用されている炭素鋼はヤ
ング率240ギガパスカル、破断強度0.6ギガパスカ
ルであり、この炭素鋼と対比すると、本発明成形
品は、ヤング率が上限で同等であり、強度が約6
倍以上である。しかも、本発明成形製品は鋼に比
し密度が約1/8と軽いから、高弾性、高強度の軽
量材料として極めて有用なものである。 本発明における超高分子量ポリエチレンは粘度
平均分子量100万以上のものである。粘度平均分
子量は測定粘度から下記式により算出されるもの
である。 〔η〕=6.20×10-4・M0.70 式中〔η〕:極限粘度、 M:粘度平均分子量 このような超高分子量ポリエチレンは、市販さ
れている。このものから次のようにしてマツト状
物を得ることができる。前記超高分子量ポリエチ
レンを溶剤に加熱溶解して濃度1重量%未満の溶
液を調製する。溶剤としては例えばドデカン、キ
シレン、ジクロロベンゼン、デカリン、テトラリ
ンが用いられ、単独溶剤でも混合溶剤でもよい。
溶解させるための加熱温度は通常は使用溶剤の沸
点温度であり約130℃以上である。加熱溶解に当
つては、ポリエチレンの劣化を防ぐため、酸化防
止剤を添加したり、不活性ガス例えば窒素ガスを
使用するのが好ましい。 溶液の濃度は1重量%未満、好ましくは0.5重
量%以下であり、この濃度において、徐冷の速度
を調整して、ゲルの生成を防止し、所期の単結晶
集合体を好適に生成させることができる。 この濃度の溶液から超高分子量ポリエチレンの
単結晶集合体を析出させる。そのためには、好ま
しくは、溶液を、前記溶解加熱の温度より低く、
かつ実質的にゲルを生ぜず結晶を生ぜしめる温度
条件下に置く。具体的には、溶液を、ゲルが生成
しない程度の冷却速度で徐冷するか、又は結晶が
析出しうる一定温度に保持する。一定温度をどこ
に設定するかは、溶剤の種類、溶液の濃度等によ
り異なり、例えば0.2重量%キシレン溶液では約
90℃以下の一定温度に保持する。徐冷結晶化の場
合も等温結晶化の場合もゲルの生成を避けること
が重要である。 単結晶集合の析出した懸濁液を脱溶剤処理、例
えば濾過、蒸発などに付してマツト状物とする。
このマツト状物は超高分子量ポリエチレン単結晶
集合体から構成されており、特有の結晶状態に基
づき延伸性が顕著に向上しており、このものを特
定の条件で押出、延伸すると、成形製品は優れた
物性を示す。 本発明は、前記マツト状物を押出温度70〜135
℃、押出比4〜8で押出し、次いで延伸温度90〜
135℃、全延伸比100〜250で延伸してなる、ヤン
グ率110ギガパスカル以上、破断強度3.5ギガパス
カル以上の超高分子量ポリエチレン成形製品であ
る。 ここに全延伸比とは、〔押出比×延伸比〕の数
値のことである。 押出は、例えば固相押出などの常法で行うこと
ができる。固相押出は次のように行う。まず、普
通の高密度ポリエチレンを溶融成形して直径1
cm、長さ10cmのビレツトを作り、このビレツトを
縦方向に2分割して分割ビレツトとし、その間に
本発明のマツト製品を1枚又はそれ以上はさみ、
これを高圧固相押出装置によりダイス(例えば入
口直径10mm、ダイス角20℃、出口直径5.7〜1.5
mm)を通して押出をする。押出物は、同時に得ら
れる分割ビレツト(普通の高密度ポリエチレン)
の押出物と容易に分離して取り出すことができ
る。 本発明においてはマツト状物が押出温度70〜
135℃、押出比4〜8で押出されるが、押出圧は
通常500〜3500気圧である。 押出は1段又は2段以上で行うことができる。
2段押出すると、1段押出に比し接続の延伸にお
ける延伸比が数倍にもなり全延伸比が増大し、ひ
いては成形品の物性が大幅に向上し、好ましい結
果が得られる。 本発明において押出後に行われる延伸は、延伸
温度90〜135℃、全延伸比つまり〔押出比×延伸
比〕100〜250で行われる。延伸はニツプ延伸、ロ
ール延伸等の常法で行うことができるが、ニツプ
延伸は成形品に特に優れた物性を与えるので好適
である。 次に、本発明を実施例と参考例により説明す
る。 参考例 1 〔マツト状物の製造〕 粘度平均分子量210万の超高分子量ポリエチレ
ン(ハイゼツクスミリオン240M、三井石油科学
社製)0.8g、酸化防止剤(2,6−ジ−tert−ブ
チル−p−クレゾールとヘプタデシル−3,5−
ジ−tert−ブチル−ビドロキシフエニルプロピオ
ネートの3対2混合物)0.004g及びキシレン400
mlを500ml三角フラスコに入れ、窒素ガス気流下
で125〜135℃の沸点温度に加熱して、濃度0.2重
量%の溶液Aを得た。この溶液85℃をシリコンオ
イル中に約15時間、等温保持した。単結晶集合体
の析出した懸濁液を濾紙で吸引濾過し、室温で減
圧乾燥して厚さ0.2mmのマツト状物を得た。 実施例 1 〔成形製品の製造〕 得られたマツト状物を、後記実施例2における
と同様な方法により、まず押出温度110℃、押出
圧800気圧、押出比6で押出し、次いで延伸温度
21℃、延伸比6.7(全延伸比42)で延伸した。ヤン
グ率73ギガパスカル、破断強度1.5ギガパスカル
の成形品を得た。この物性は、マツト状物が低温
延伸可能であることを示している。 実施例 2 参考例1で得たマツト状物の幅1cm、長さ10cm
のもの1枚を分割ビレツト(普通の高密度ポリエ
チレン製、直径1cm、長さ10cmのビレツトを縦方
向に2分割したもの)にはさみ、入口直径10mm、
ダイス角20°、出口直径4mmのダイスを通して、
押出温度110℃、押出圧800気圧で押出した。押出
比6の押出物を得た。この押出物は、同時に押出
された分割ビレツトの押出物と容易に分離するこ
とができた。 前記の押出物を長さ40mmに切断し、ゲージ長10
mmとなるようにチヤツクに固定し、温度可変装置
のついた延伸装置(テンシロン引張機)を用いて
空気中110℃、引張速度4mm/minでニツプ延伸
した。延伸比38.8(全延伸比233)の成形品を得
た。成形品の物性はヤング率192ギガパスカル、
破断強度4.5ギガパスカルであつた。 実施例 3 実施例1及び実施例2におけると同様にして、
押出温度110℃、押出圧800気圧、押出比6で押出
を行つた後、延伸した。延伸条件と、得られた成
形品の物性は下記第2表に示すとおりであつた。 実施例 4 実施例1における等温結晶化に代えて、次のよ
うに徐冷結晶化を行つた。すなわち、実施例1に
おいて125〜135℃の沸点温度に加熱して得られた
溶液Aを室温に放置することにより放置開始40分
後80℃、3時間後30℃、15時間後室温となした。 徐冷後、実施例1と同様に濾過、乾燥、押出を
行つたのち、下記第2票に示す延伸条件で延伸し
た。得られた成形品の物性は同表に示すとおりで
あつた。
[Table] The excellent physical properties of the molded product of the present invention are related to the unique crystalline state of the material, but even a pine-like product made of the same single crystal aggregate should be seen as a molded product in the case of ordinary high-density polyethylene. No improvement in physical properties occurs. Carbon steel, which is widely used as a building material, has a Young's modulus of 240 gigapascals and a breaking strength of 0.6 gigapascals.Compared to this carbon steel, the molded product of the present invention has a Young's modulus of about the same at the upper limit and a strength of about 6
That's more than double that. Furthermore, the molded product of the present invention has a density that is approximately 1/8 that of steel, making it extremely useful as a lightweight material with high elasticity and strength. The ultra-high molecular weight polyethylene in the present invention has a viscosity average molecular weight of 1 million or more. The viscosity average molecular weight is calculated from the measured viscosity using the following formula. [η] = 6.20×10 -4 ·M 0.70 In the formula, [η]: Intrinsic viscosity, M: Viscosity average molecular weight Such ultra-high molecular weight polyethylene is commercially available. A pine-like material can be obtained from this material in the following manner. The ultra-high molecular weight polyethylene is heated and dissolved in a solvent to prepare a solution having a concentration of less than 1% by weight. As the solvent, for example, dodecane, xylene, dichlorobenzene, decalin, and tetralin are used, and they may be used alone or as a mixed solvent.
The heating temperature for dissolving is usually the boiling point temperature of the solvent used, which is about 130°C or higher. In heating and melting, in order to prevent polyethylene from deteriorating, it is preferable to add an antioxidant or to use an inert gas such as nitrogen gas. The concentration of the solution is less than 1% by weight, preferably less than 0.5% by weight, and at this concentration the rate of slow cooling is adjusted to prevent the formation of gels and to suitably form the desired single crystal aggregates. be able to. A single crystal aggregate of ultra-high molecular weight polyethylene is precipitated from a solution of this concentration. For this purpose, the solution is preferably heated to a temperature lower than the temperature of the melting heating.
and placed under temperature conditions that substantially do not form gels but form crystals. Specifically, the solution is slowly cooled at a cooling rate that does not generate gel, or is maintained at a constant temperature at which crystals can precipitate. Where to set the constant temperature varies depending on the type of solvent, the concentration of the solution, etc. For example, for a 0.2% xylene solution, the temperature is approximately
Maintain a constant temperature below 90℃. It is important to avoid gel formation in both slow and isothermal crystallization. The precipitated suspension of single crystal aggregates is subjected to solvent removal treatment, such as filtration and evaporation, to form a mat-like substance.
This mat-like material is composed of an ultra-high molecular weight polyethylene single crystal aggregate, and has significantly improved stretchability due to its unique crystalline state. When this material is extruded and stretched under specific conditions, the molded product becomes Shows excellent physical properties. In the present invention, the mat-like material is extruded at a temperature of 70 to 135.
℃, extrusion at extrusion ratio 4~8, then stretching temperature 90~
This is an ultra-high molecular weight polyethylene molded product that has been stretched at 135°C and a total stretching ratio of 100 to 250, and has a Young's modulus of 110 gigapascals or more and a breaking strength of 3.5 gigapascals or more. The total stretching ratio here refers to the value of [extrusion ratio x stretching ratio]. Extrusion can be carried out by conventional methods such as solid phase extrusion. Solid phase extrusion is performed as follows. First, ordinary high-density polyethylene was melt-molded to create a diameter of 1 mm.
cm, a billet with a length of 10 cm is made, and this billet is divided into two in the vertical direction to form a split billet, and one or more pieces of the matte product of the present invention are sandwiched between them,
This is processed into a die (for example, inlet diameter 10 mm, die angle 20°C, outlet diameter 5.7 to 1.5
mm). The extrudate is a split billet (ordinary high-density polyethylene) obtained at the same time.
can be easily separated from the extrudate and taken out. In the present invention, the pine-like material is extruded at a temperature of 70~
It is extruded at 135°C and an extrusion ratio of 4 to 8, and the extrusion pressure is usually 500 to 3500 atmospheres. Extrusion can be carried out in one stage or in two or more stages.
In two-stage extrusion, compared to one-stage extrusion, the stretching ratio in the drawing of connections is several times higher, increasing the total stretching ratio, and as a result, the physical properties of the molded product are greatly improved, and favorable results can be obtained. In the present invention, the stretching performed after extrusion is carried out at a stretching temperature of 90 to 135°C and a total stretching ratio of [extrusion ratio x stretching ratio] 100 to 250. Stretching can be carried out by conventional methods such as nip stretching and roll stretching, but nip stretching is preferred because it gives particularly excellent physical properties to the molded product. Next, the present invention will be explained with reference to Examples and Reference Examples. Reference Example 1 [Manufacture of pine-like product] 0.8 g of ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2.1 million (Hi-Zex Million 240M, manufactured by Mitsui Oil Science Co., Ltd.), antioxidant (2,6-di-tert-butyl-p) -Cresol and heptadecyl-3,5-
0.004 g (3:2 mixture of di-tert-butyl-hydroxyphenyl propionate) and 400 g xylene
ml was placed in a 500 ml Erlenmeyer flask and heated to a boiling point temperature of 125-135°C under a nitrogen gas stream to obtain a solution A having a concentration of 0.2% by weight. This solution was kept isothermally at 85° C. in silicone oil for about 15 hours. The precipitated suspension of single crystal aggregates was suction filtered through filter paper and dried under reduced pressure at room temperature to obtain a mat-like material with a thickness of 0.2 mm. Example 1 [Manufacture of molded product] The obtained pine-like product was first extruded at an extrusion temperature of 110°C, an extrusion pressure of 800 atm, and an extrusion ratio of 6 in the same manner as in Example 2 described later, and then stretched at a stretching temperature of 6.
It was stretched at 21°C and at a stretching ratio of 6.7 (total stretching ratio 42). A molded product with a Young's modulus of 73 gigapascals and a breaking strength of 1.5 gigapascals was obtained. This physical property indicates that the mat-like material can be stretched at low temperatures. Example 2 The pine-like material obtained in Reference Example 1 had a width of 1 cm and a length of 10 cm.
Place one piece between split billets (ordinary high-density polyethylene billets with a diameter of 1 cm and a length of 10 cm, divided into two vertically), an inlet diameter of 10 mm,
Through a die with a die angle of 20° and an exit diameter of 4 mm,
Extrusion was carried out at an extrusion temperature of 110°C and an extrusion pressure of 800 atm. An extrudate with an extrusion ratio of 6 was obtained. This extrudate could be easily separated from the coextruded split billet extrudate. The above extrudate was cut to a length of 40 mm, and the gauge length was 10.
The film was fixed to a chuck so that the film had a diameter of 1.5 mm, and was nip-stretched in air at 110° C. at a stretching speed of 4 mm/min using a stretching device (Tensilon tensile machine) equipped with a temperature variable device. A molded product with a stretch ratio of 38.8 (total stretch ratio of 233) was obtained. The physical properties of the molded product are Young's modulus of 192 gigapascals,
The breaking strength was 4.5 gigapascals. Example 3 As in Example 1 and Example 2,
After extrusion was carried out at an extrusion temperature of 110° C., an extrusion pressure of 800 atm, and an extrusion ratio of 6, it was stretched. The stretching conditions and the physical properties of the obtained molded product were as shown in Table 2 below. Example 4 Instead of isothermal crystallization in Example 1, slow cooling crystallization was performed as follows. That is, solution A obtained by heating to a boiling point temperature of 125 to 135 °C in Example 1 was left at room temperature, and the temperature was 80 °C after 40 minutes, 30 °C after 3 hours, and room temperature after 15 hours. . After slow cooling, filtration, drying, and extrusion were performed in the same manner as in Example 1, followed by stretching under the stretching conditions shown in Sheet 2 below. The physical properties of the obtained molded article were as shown in the same table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 粘度平均分子量100万以上の超高分子量ポリ
エチレンの単結晶集合体から構成されたマツト状
物を、押出温度70〜135℃、押出比4〜8で押出
し、次いで延伸温度90〜135℃、全延伸比100〜
250で延伸してなる、ヤング率110ギガパスカル以
上、破断強度3.5ギガパスカル以上の超高分子量
ポリエチレン成形製品。 2 マツト状物が、粘度平均分子量100万以上の
超高分子量ポリエチレンを溶剤中で加熱溶解して
得た濃度1重量%未満の溶液を、該加熱の温度よ
り低く、かつ実質的にゲルを生ぜず結晶を生ぜし
める温度条件下に置くことにより該ポリエチレン
を単結晶集合体として析出させ、次いで脱溶剤処
理して形成されたものである特許請求の範囲1の
成形製品。
[Claims] 1. A pine-like material composed of a single crystal aggregate of ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1 million or more is extruded at an extrusion temperature of 70 to 135°C and an extrusion ratio of 4 to 8, and then stretched at a stretching temperature of 4 to 8. 90~135℃, total stretching ratio 100~
An ultra-high molecular weight polyethylene molded product that has been stretched at 250° C. and has a Young's modulus of 110 gigapascals or more and a breaking strength of 3.5 gigapascals or more. 2 The mat-like material is obtained by heating and dissolving ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1 million or more in a solvent, and melting the solution with a concentration of less than 1% by weight at a temperature lower than the heating temperature and substantially forming a gel. The molded product according to claim 1, wherein the polyethylene is precipitated as a single crystal aggregate by placing the polyethylene under temperature conditions that cause crystallization, and then subjected to solvent removal treatment.
JP62032362A 1982-06-12 1987-02-17 High-molecular weight polyethylene molded product Granted JPS62216723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032362A JPS62216723A (en) 1982-06-12 1987-02-17 High-molecular weight polyethylene molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57101183A JPS58217322A (en) 1982-06-12 1982-06-12 Ultra-high molecular weight polyethylene produt
JP62032362A JPS62216723A (en) 1982-06-12 1987-02-17 High-molecular weight polyethylene molded product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57101183A Division JPS58217322A (en) 1982-06-12 1982-06-12 Ultra-high molecular weight polyethylene produt

Publications (2)

Publication Number Publication Date
JPS62216723A JPS62216723A (en) 1987-09-24
JPH0325337B2 true JPH0325337B2 (en) 1991-04-05

Family

ID=26370917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032362A Granted JPS62216723A (en) 1982-06-12 1987-02-17 High-molecular weight polyethylene molded product

Country Status (1)

Country Link
JP (1) JPS62216723A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308255A1 (en) * 2001-10-30 2003-05-07 Dsm N.V. Process for the manufacturing of a shaped part of ultra high molecular weight polyethylene and a fibre made with this process
US7344672B2 (en) * 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene

Also Published As

Publication number Publication date
JPS62216723A (en) 1987-09-24

Similar Documents

Publication Publication Date Title
Lloyd et al. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation
US3801692A (en) Production of novel open-celled microporous film
EP0210059A1 (en) Process for preparing microporous polyethylene film
US4255376A (en) Solvent stretch process for preparing microporous films from precursor films of controlled crystalline structure
JP3395907B2 (en) Improved polymeric membrane
JPH0556251B2 (en)
JPH0325337B2 (en)
EP0736563A1 (en) Process for the manufacture of totally bio-decomposable films with high mechanical characteristics and relevant products and applications
JPH0331331B2 (en)
US4519969A (en) Stretched fluorine type film and method for manufacture thereof
JPS6235380B2 (en)
JPS6089333A (en) Molded item of ultra-high-molecular weight polypropylene
JPS6037201B2 (en) Manufacturing method of porous polypropylene hollow fiber
JPH02104715A (en) Method for manufacturing a stereoregular polystyrene fiber
JP3307027B2 (en) Method for producing porous resin molded article
JPS61283527A (en) Manufacture of poly-epsilon-caproamide biaxially oriented film
JPS6312767B2 (en)
JPH0611796B2 (en) Polyvinyl alcohol molding and method for producing the same
JPH05104620A (en) Manufacture of polypropylene oriented matter
JPH044028A (en) Porous membrane and production thereof
JPH01501611A (en) Process for producing polyethylene products of high tensile strength and modulus and low creep and products thus obtained
JPH09157423A (en) Porous film having high strength and its production
JP2012176998A (en) Polyolefin microporous film
JP3549311B2 (en) Method for producing microporous polyolefin membrane
Rudin et al. New process for ultradrawn polyethylene structures