JPH03253228A - Tapped ferroresonance three-phase power balancer - Google Patents

Tapped ferroresonance three-phase power balancer

Info

Publication number
JPH03253228A
JPH03253228A JP2050166A JP5016690A JPH03253228A JP H03253228 A JPH03253228 A JP H03253228A JP 2050166 A JP2050166 A JP 2050166A JP 5016690 A JP5016690 A JP 5016690A JP H03253228 A JPH03253228 A JP H03253228A
Authority
JP
Japan
Prior art keywords
phase
terminals
parallel
currents
phase input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2050166A
Other languages
Japanese (ja)
Inventor
Akira Sato
昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2050166A priority Critical patent/JPH03253228A/en
Publication of JPH03253228A publication Critical patent/JPH03253228A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To balance three-phase input currents by a method wherein loads are obtained between taps provided at the middle part of the windings of the respective saturation reactors of respective parallel resonance circuits which are connected to each other in a -connection and output terminals which are not the terminals to which the respective saturation reactors are not connected through respective transformers. CONSTITUTION:Linear reactors composed of gapped cores 1, 2 and 3 and windings 10, 11 and 12 applied to the gapped cores 1, 2 and 3 are connected to the respective lines of a three-phase input side and the one side terminals of the linear reactor are used as input terminals 22, 23 and 24. Saturation reactors 4, 5 and 6 whose cores are used in a saturated range and capacitors C are connected between respective output side terminals 25, 26 and 27 in parallel with each other to provide parallel ferroresonance circuits. The respective load currents of the respective phases are so shunted as to make magnetomotive forces in the respective saturation reactors have magnitudes equal to each other and directions opposite to each other. Further, the reactive currents of the respective phases are synthesized with the load currents to balance three- phase input currents.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は工場や高層ビルなどに用いる三相人力電力平衡
用電源に好適のタップ付鉄共振形三相電力平衡装置 [従来の技術] 電気鉄道のように三相電源から上り、下り線の電気車を
それぞれ負荷とし、その三相入力側子の平衡を目的とし
た従来の平衡装置としては第4図に示すような三相・二
相変換器としてのスコツトトランスがある。この装置は
単相の変圧器を二個用い、T座変圧器(Tt)の−次巻
線の一端を主座変圧器(Tm)の−次巻線の中点0に接
続し一次側の残りの3端子を3相電RU、V、Wに接続
する。二次例は同じ極性の端子を接続して中性点を0−
とすれば0−と他の2端子U、Vとの間に2相交瀉を得
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a tapped iron-resonant three-phase power balancing device suitable for a three-phase human power balancing power supply used in factories, high-rise buildings, etc. [Prior Art] Electricity A conventional balancing device that aims to balance the three-phase input side of a three-phase power source, such as a railway, with electric cars on the up and down lines as loads, is a three-phase/two-phase system as shown in Figure 4. There is a Scotto transformer as a converter. This device uses two single-phase transformers, one end of the secondary winding of the T-seat transformer (Tt) is connected to the midpoint 0 of the secondary winding of the main transformer (Tm), and the primary side Connect the remaining three terminals to the three-phase power supply RU, V, and W. A secondary example is to connect terminals of the same polarity and set the neutral point to 0-
If so, two-phase crossover will be obtained between 0- and the other two terminals U and V.

また、その他第5図に示すことく三相の鉄共振形定電圧
変圧器の出力側の一方の線間に線形インダクタンスをも
う一方の線間にコンデンサを接続し、残りの線間に接続
した単相負荷に対し三相入力側子を平衡させる電源も開
発されている。
In addition, as shown in Figure 5, a linear inductance was connected between one line of the output side of a three-phase iron-resonant constant voltage transformer, a capacitor was connected between the other line, and a capacitor was connected between the remaining lines. Power supplies have also been developed that balance three-phase inputs against single-phase loads.

なお、第4〜第5図中の符号はIUI  IUp  F
tは電流、VWt ”LI+ VWt V a b+ 
ELIt Euは電圧、C,Caはコンデンサ、L、L
aは線形リアクトル部分、SRは飽和リアクトル部分、
Tt、T園は変圧器を示す。
In addition, the symbols in FIGS. 4 and 5 are IUI IUp F.
t is current, VWt ”LI+ VWt V a b+
ELIt Eu is voltage, C, Ca are capacitors, L, L
a is a linear reactor part, SR is a saturated reactor part,
Tt and Ten indicate transformers.

[発明が解決しようとする問題点コ しかしながら、第4図に示す装置では2相出力の各相の
出力負荷インピーダンスが互に等しく平衡していなけれ
ば三相入力側子が平衡しないという問題点がある。また
、第5図に示す装置では出力として単相負荷のみて同時
に不平衡の2相、3相負荷を取り出せず三相入力側子を
平衡させるためには並列鉄共振特性そのものを調整する
方法しかきく、これには限度があり三相入力電流を広範
囲の負荷に対して平衡させるためには不敵である。
[Problems to be Solved by the Invention]However, in the device shown in FIG. 4, there is a problem that unless the output load impedances of each phase of the two-phase output are equally balanced, the three-phase input side will not be balanced. be. In addition, in the device shown in Figure 5, only a single-phase load is output, and unbalanced two-phase and three-phase loads cannot be taken out at the same time.The only way to balance the three-phase input side is to adjust the parallel ferro-resonance characteristic itself. However, there are limits to this, and it is unbeatable for balancing three-phase input currents over a wide range of loads.

本発明はこのような問題点を解決しようとするもので三
相出力端から単相負荷および不平衡な2相、3相負荷を
同時に取っても、変化する負荷に対しても飽和リアクト
ルに設けたタップ位置をあらかしめ調整しておけば用い
る並列鉄共振特性を三相入力電流が負荷変化に対して平
衡する理論値の並列共振特性Ztに合せることができる
ため、さらに三相入力電流がよく平衡する鉄共振形三相
電力平衡装置を提供することを目的とする。
The present invention is an attempt to solve such problems.Even if a single-phase load and an unbalanced two-phase or three-phase load are simultaneously taken from the three-phase output terminal, the saturation reactor can be installed to handle changing loads. By adjusting the tap position in advance, the parallel iron resonance characteristic to be used can be matched to the theoretical parallel resonance characteristic Zt at which the three-phase input current is balanced against load changes. It is an object of the present invention to provide a balanced fero-resonant three-phase power balance device.

[問題を解決するための手段] 三相入力側各線に線形リアクトルを有し、その出力側三
相各線間にコンデンサと飽和リアクトルをそれぞれ並列
に接続して並列鉄共振回路を構成し、その△結線されて
いる各並列鉄共振回路の各飽和リアクトルの巻線の中間
に設けたタップとその飽和リアクトルの接続されている
両端子を除くもう一つの出力銅端子との間からそれぞれ
変圧器を会して負荷を得ることを特徴としている。
[Means for solving the problem] A linear reactor is provided on each line on the three-phase input side, and a capacitor and a saturation reactor are connected in parallel between each line on the three-phase output side to form a parallel iron-resonant circuit. Connect the transformer between the tap provided in the middle of the winding of each saturation reactor of each connected parallel ferro-resonant circuit and the other output copper terminal of the saturation reactor excluding the connected terminals. It is characterized by obtaining a load.

[作用] 上述の様な構成により、−次鋼へ入力された三相電圧に
より飽和リアクトルに設けたタップ位置の両儒巻線に流
れるそれぞれの負荷電流はその飽和リアクトル中の起磁
力が互に逆方向で等しくなるように各相とも分流し、同
時に入力倒各線間に接続された並列鉄共振回路に遅れ、
進みの無効電流を流し、その各相の無効電流を用いて負
荷電流との合成により三相入力電流を平衡させる。
[Function] With the above-mentioned configuration, the respective load currents flowing through the two Confucian windings at the tap positions provided in the saturation reactor due to the three-phase voltage input to the second steel are such that the magnetomotive force in the saturation reactor is mutually Each phase is divided equally in the opposite direction, and at the same time, the input is delayed to the parallel iron resonant circuit connected between each line,
A leading reactive current is passed, and the reactive current of each phase is used to balance the three-phase input current by combining it with the load current.

[実施例] 以下、図面により本発明の一実施例としてのタップ付鉄
共振形三相電力平衡装置について説明すると、第1図は
全体構成図、第2図はその電気回路図、第3図はそれぞ
れの作用を説明するためのグラフである。
[Example] Hereinafter, a tapped iron-resonant three-phase power balance device as an example of the present invention will be explained with reference to the drawings. Fig. 1 is an overall configuration diagram, Fig. 2 is an electric circuit diagram thereof, and Fig. 3 is a diagram. is a graph for explaining each effect.

第1図は本発明の具体的構成を示す。三相入力側各線に
それぞれギャップ付磁心1 (2,3)に巻線10 (
11,12)が巻かれた線形リアクトルが接続され、そ
の一方が入力側子22 (23゜24)となり、その出
力銅端子25 (26,27)各線間に磁心を飽和部分
て用いる飽和リアクトル4 (5,6)とそれぞれにコ
ンデンサCを並列に接続して並列鉄共振回路を構成して
いる。
FIG. 1 shows a specific configuration of the present invention. Each wire on the three-phase input side has a magnetic core with a gap 1 (2, 3) has a winding 10 (
11, 12) is connected, one of which becomes the input side terminal 22 (23゜24), and its output copper terminal 25 (26, 27). A saturation reactor 4 using a saturated part of the magnetic core between each wire. (5, 6) and a capacitor C is connected in parallel to each of them to form a parallel iron-resonant circuit.

また、この飽和リアクトルの巻線13(14゜15)に
設けたタップ13a (14a、15a)と並列鉄共振
回路が接続されている両端子以外のもう一方の端子25
 (26,27)との間に変圧器7 (8,9)の−次
巻線16 (17,18)を施し、その二次倒巻線19
 (20,21)を△結線をして三相出力端子2B (
29,30)から負荷を得るものである。
In addition, the tap 13a (14a, 15a) provided on the winding 13 (14°15) of this saturation reactor and the other terminal 25 other than both terminals to which the parallel iron resonant circuit is connected
(26, 27) and the secondary winding 16 (17, 18) of the transformer 7 (8, 9), and the secondary inverted winding 19
Connect (20, 21) △ and three-phase output terminal 2B (
29, 30).

次に、第1図に示す構成の動作を第2図に示す等価回路
を用いて説明する。第2図において符号りは、三相入力
側各線と直列に接続されたそれぞれギャップを有する磁
心1 (2,3)による線形リアクトルを示す。符号S
Rは入力電圧を印加すると第3図に示す電圧−電流特性
を持つ飽和リアクトルであり、その両端子にコンデンサ
Cが接続されて並列鉄共振回路を構成し、これら各線間
の3つの並列鉄共振回路が△接続されている。
Next, the operation of the configuration shown in FIG. 1 will be explained using the equivalent circuit shown in FIG. 2. In FIG. 2, reference numerals indicate linear reactors each having a magnetic core 1 (2, 3) connected in series with each line on the three-phase input side and each having a gap. code S
R is a saturation reactor that has the voltage-current characteristics shown in Figure 3 when an input voltage is applied, and a capacitor C is connected to both terminals of the reactor to form a parallel iron-resonant circuit. The circuit is △ connected.

また、この飽和リアクトル磁心に巻かれている巻線13
 (14,15)に施されているタップとその飽和リア
クトルの接続されている両端子を除くもう一方の端子と
の間からそれぞれ変圧器を会し、その出力倒て△接続し
て三相負荷を取り出しているがY接続でも同様に良好な
結果が得られる。
In addition, the winding 13 wound around this saturation reactor magnetic core
(14, 15) and the other terminal except for the terminals connected to the saturation reactor, connect the transformers respectively, and connect the outputs by △ to load the three-phase load. , but good results can be obtained with a Y connection as well.

ここで飽和リアクトルSRとコンデンサCとの並列鉄共
振回路は第3図の並列鉄共振特性をもつ。
Here, the parallel iron resonance circuit of the saturation reactor SR and the capacitor C has parallel iron resonance characteristics as shown in FIG.

第3図の点線で示した特性はたとえば本装置における飽
和リアクトル巻線のタップ位置を中点とし、負荷を抵抗
負荷とした場合の三相入力側子が平衡するときの並列共
振特性Z、の理論値であり、並列鉄共振特性に近い特性
になっている。
The characteristic shown by the dotted line in Fig. 3 is, for example, the parallel resonance characteristic Z when the three-phase input side elements are balanced when the tap position of the saturation reactor winding in this device is the midpoint and the load is a resistive load. This is a theoretical value, and the characteristics are close to parallel iron resonance characteristics.

したがって、本装置ではこの点線で示した並列共振特性
の理論値をタップ位置で容易に調整できるため、回路も
簡単で信頼性も高く三相入力電力平衡装置として適して
いる。
Therefore, in this device, the theoretical value of the parallel resonance characteristic shown by the dotted line can be easily adjusted by the tap position, so the circuit is simple and highly reliable, making it suitable as a three-phase input power balancing device.

[発明の効果コ 以上詳述したように本発明のタップ付鉄共振形三相電力
平′#装置によれば次のような効果ないし利点が得られ
る。
[Effects of the Invention] As detailed above, the tapped iron-resonant three-phase power flattening device of the present invention provides the following effects and advantages.

(1)無負荷も含む不平衡三相負荷およびその負荷変化
に対し、三相入力側子が平衡する。
(1) The three-phase input side is balanced against unbalanced three-phase loads, including no-load, and their load changes.

(2)回路構成が簡単で人力力率、効率、入力電流波形
が良好である。
(2) The circuit configuration is simple, and the human power factor, efficiency, and input current waveform are good.

(3)上記(1)、(2)項により、工場や高層ビルな
どに使用される三相電力平衡電源として高い実用性を発
揮する。
(3) Due to items (1) and (2) above, it exhibits high practicality as a three-phase power balanced power source used in factories, high-rise buildings, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の一実施例としてのタップ付鉄共振
形三相電力平衡装置を示すもので、第1図は全体構成図
、第2図はその電気回路図、第3図はそれぞれの作用を
説明するためのグラフであり、第4〜5図はそれぞれ従
来の三相電力平衡装置の電気回路図である。 1.2.3・・ギャップ付磁心、4,5,6・・飽和リ
アクトル磁心、?、8.9・・変圧器磁心、10,11
.12・・−次側巻線、13゜14.15・・飽和リア
クトル巻線、13a。 14a、15a・・タップ、16,17.18−・出力
変圧器の一次巻線、19,20.21・・出力変圧器の
二次巻線、22〜24・・入力側子、25〜27・・出
力網端子、28〜30・・出力端子、 C・・コンデン
サ、L・・線形リアクトル、SR・・飽和リアクトル、
Z・・並列鉄共振特性、■o・・共振電圧、Xo・・容
量性リアクタンス、Zt・・並列共振特性の理論値、T
U+ TutT、・・出力用変圧器
Figures 1 to 3 show a tapped iron-resonant three-phase power balance device as an embodiment of the present invention, in which Figure 1 is an overall configuration diagram, Figure 2 is its electrical circuit diagram, and Figure 3 is an electrical circuit diagram. These are graphs for explaining the respective effects, and FIGS. 4 and 5 are electrical circuit diagrams of conventional three-phase power balancing devices, respectively. 1.2.3...Gap core, 4,5,6...Saturation reactor core, ? , 8.9...Transformer magnetic core, 10, 11
.. 12...Next winding, 13°14.15...Saturation reactor winding, 13a. 14a, 15a...Tap, 16, 17. 18--Primary winding of output transformer, 19, 20.21...Secondary winding of output transformer, 22-24...Input side child, 25-27 ...Output network terminal, 28-30...Output terminal, C...Capacitor, L...Linear reactor, SR...Saturation reactor,
Z: Parallel iron resonance characteristics, o: Resonant voltage, Xo: Capacitive reactance, Zt: Theoretical value of parallel resonance characteristics, T
U+ TutT, output transformer

Claims (1)

【特許請求の範囲】[Claims] 三相入力側各線に線形リアクトルを有し、その出力側三
相各線間にコンデンサと飽和リアクトルをそれぞれ並列
に接続して並列鉄共振回路を構成し、その△結線されて
いる各並列鉄共振回路の各飽和リアクトルの巻線の中間
に設けたタップとその飽和リアクトルの接続されている
両端子を除くもう一つの出力側端子との間からそれぞれ
変圧器を会して負荷を得ることを特徴とするタップ付鉄
共振形三相電力平衡装置
Each wire on the three-phase input side has a linear reactor, and a capacitor and a saturation reactor are connected in parallel between each three-phase line on the output side to form a parallel iron-resonant circuit, and each of the parallel iron-resonance circuits is △ connected. The load is obtained by connecting a transformer between a tap provided in the middle of the winding of each saturation reactor and another output terminal other than the connected terminals of the saturation reactor. Ferro-resonant three-phase power balance device with tap
JP2050166A 1990-03-01 1990-03-01 Tapped ferroresonance three-phase power balancer Pending JPH03253228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050166A JPH03253228A (en) 1990-03-01 1990-03-01 Tapped ferroresonance three-phase power balancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050166A JPH03253228A (en) 1990-03-01 1990-03-01 Tapped ferroresonance three-phase power balancer

Publications (1)

Publication Number Publication Date
JPH03253228A true JPH03253228A (en) 1991-11-12

Family

ID=12851621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050166A Pending JPH03253228A (en) 1990-03-01 1990-03-01 Tapped ferroresonance three-phase power balancer

Country Status (1)

Country Link
JP (1) JPH03253228A (en)

Similar Documents

Publication Publication Date Title
US6335872B1 (en) Nine-phase transformer
US6101113A (en) Transformers for multipulse AC/DC converters
US6198647B1 (en) Twelve-phase transformer configuration
US7049921B2 (en) Auto-transformer for use with multiple pulse rectifiers
US7474188B2 (en) 40° phase-shifting autotransformer
RU2591040C1 (en) Device for uniform distribution of single-phase load by phases of three-phase network
US7750782B1 (en) Nine-phase autotransformer
JPH04229077A (en) Optimized 18 pulse type ac/dc or dc/ac converter
CN109637792B (en) Test transformer
US2359768A (en) Phase converter
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JPH03253228A (en) Tapped ferroresonance three-phase power balancer
US717488A (en) Method of transforming alternating currents.
JP2794405B2 (en) Shunt type transformer unit and single-phase three-wire power supply system
RU2656612C1 (en) Three-phase and single-phase transformer
RU2731209C1 (en) Device for uniform distribution of single-phase load by phases of three-phase network
US4638177A (en) Rotating flux transformer
US3407347A (en) Asymmetrical three-phase ferroresonance device
JP2773096B2 (en) Power distribution equipment
US3392320A (en) Static frequency multiplier
JP3047691U (en) Distribution transformer in three-phase four-wire low-voltage distribution circuit
JPH0453160Y2 (en)
JPH08335520A (en) Scott connected transformer
RU2149495C1 (en) Three-phase ac-to-dc voltage converter
RU2487456C1 (en) Four-phase converter