JPH03252940A - Structure of magneto-optical recording medium - Google Patents

Structure of magneto-optical recording medium

Info

Publication number
JPH03252940A
JPH03252940A JP4937790A JP4937790A JPH03252940A JP H03252940 A JPH03252940 A JP H03252940A JP 4937790 A JP4937790 A JP 4937790A JP 4937790 A JP4937790 A JP 4937790A JP H03252940 A JPH03252940 A JP H03252940A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
film
optical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4937790A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Kirino
文良 桐野
Yoshinori Miyamura
宮村 芳徳
Junko Nakamura
純子 中村
Norio Ota
憲雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP4937790A priority Critical patent/JPH03252940A/en
Publication of JPH03252940A publication Critical patent/JPH03252940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain enough reproducing output by providing a magneto-optical recording film of specified multilayer structure. CONSTITUTION:The recording film is formed by alternately depositing a FeCo, CoNi, or FeNi binary alloy to which at least one element selected from Au, Ag, Pt, Rh, and Pd is added by 1-20 atm.%. and one element selected from Pt, Pd, and Rh, to <=50 Angstrom film thickness. Thereby, perpendicular magnetic anisotropic energy can be increased and the effect of perpendicular magnetic anisotropy is increased by alternate deposition of platinum group elements and iron group elements. Thus, reproducing output can be greatly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー光を用いて記録、再生或いは消去を
行なう光磁気記録に係り、特に記録膜の垂直磁気異方性
エネルギーを増大させ、記録した情報の安定保持に有効
な光磁気記録膜の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magneto-optical recording in which recording, reproduction or erasing is performed using laser light, and in particular to a method for increasing the perpendicular magnetic anisotropy energy of a recording film, This invention relates to the structure of a magneto-optical recording film that is effective in stably retaining recorded information.

〔従来の技術〕[Conventional technology]

近年の高度情報化社会の進展に伴ない、高密度でしかも
大容量のファイルメモリーに対する二ズが高まっている
。これに応える1つのメモリーとして、光メモリーが注
目されている。近年多くの企業から書換え可能な光磁気
記録装置が製品化された。さらに現在では、次期成いは
次々期の光磁気ディスクを四指してその高性能化の研究
が盛んに行なわれている。その1つに記録密度の向上が
あり、短波長の光を用いて、記録や再生を行うのが有効
であることが知られている。その場合問題となるのが、
光の波長が短くなるにつれて記録膜の磁気光学効果が小
さくなってしまうという点である。これを解決するため
の光磁気記録材料として、軽希土類元素と鉄族元素との
合金を用いることが有効であることが知られている。そ
の公知な例として、U S P −46955]4 を
あげることができる。
With the recent development of an advanced information society, concerns about high-density and large-capacity file memories are increasing. Optical memory is attracting attention as one type of memory that can meet this demand. In recent years, many companies have commercialized rewritable magneto-optical recording devices. Furthermore, research is currently being actively conducted to improve the performance of the next generation of magneto-optical disks. One of these is the improvement of recording density, and it is known that recording and reproducing using short wavelength light is effective. In that case, the problem is
The point is that as the wavelength of light becomes shorter, the magneto-optic effect of the recording film becomes smaller. It is known that it is effective to use an alloy of light rare earth elements and iron group elements as a magneto-optical recording material to solve this problem. A known example thereof is USP-46955]4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術における光磁気記録材料は、大気中の水
や酸素と容易に反応し、酸化物となるので信頼性の低下
をきたしていた。そのため、成膜のために高真空を必要
とするといった問題があつた。これに代る材料として、
ptやPdといった白金族元素とFeやCOといった鉄
族元素とを交互に積層した多層構造の記録膜を用いるこ
とが有効であったが、垂直磁気異方性エネルギーが10
5J / mと低く、安定に垂直磁化膜として存在しう
る下限であるため、記録した情報を保存できない場合も
あった。
The magneto-optical recording materials in the prior art described above easily react with water and oxygen in the atmosphere to form oxides, resulting in a decrease in reliability. Therefore, there was a problem in that a high vacuum was required for film formation. As an alternative material,
It has been effective to use a recording film with a multilayer structure in which platinum group elements such as pt and Pd and iron group elements such as Fe and CO are alternately laminated, but the perpendicular magnetic anisotropy energy is 10
Since it is as low as 5 J/m, which is the lower limit at which it can stably exist as a perpendicularly magnetized film, there were cases in which recorded information could not be saved.

本発明では、白金族元素と鉄族元素との交互積層膜にお
いて、十分に大きな垂直磁気異方性エネルギーを有する
光磁気記録膜の構造を得ることを目的としており、さら
に高信頼性を有する光磁気ディスクを提供することを目
的としている。
The present invention aims to obtain a structure of a magneto-optical recording film having sufficiently large perpendicular magnetic anisotropy energy in an alternately laminated film of platinum group elements and iron group elements. The purpose is to provide magnetic disks.

〔課題を解決するための手段〕[Means to solve the problem]

光磁気ディスクの記録・再生に用いる光の波長が短かく
なるのにつれて磁気光学効果、とりわけカー(Kerr
)回転角が小さくなり、十分な再生出が得られず、エラ
ーの原因となる場合があった。
As the wavelength of light used for recording and reproducing on magneto-optical disks becomes shorter, magneto-optic effects, especially Kerr (Kerr)
) The rotation angle becomes small, and sufficient reproduction cannot be obtained, which may cause errors.

この問題を解決するために、短波長の光に対しても十分
大きな磁気光学効果を示す光磁気材料について検討した
。その結果、Pt、RhやPd等の白金族元素とFe、
CoやNi等の鉄族元素とを交互に積層した膜を記録膜
として用いると、波長の短かい光に対し大きな磁気光学
効果を示した。
To solve this problem, we investigated magneto-optical materials that exhibit a sufficiently large magneto-optic effect even for short-wavelength light. As a result, platinum group elements such as Pt, Rh and Pd and Fe,
When a film in which iron group elements such as Co and Ni were alternately laminated was used as a recording film, a large magneto-optical effect was exhibited for light with a short wavelength.

しかしながら、この記録膜の垂直磁気異方性エネルギー
は105J/m であり、垂直磁化膜として安定に存在
する下限値で、記録した情報が保存できない場合があっ
た。
However, the perpendicular magnetic anisotropy energy of this recording film is 105 J/m 2 , which is the lower limit value that exists stably as a perpendicularly magnetized film, and there have been cases where recorded information cannot be stored.

この問題に対し、光磁気記録膜としてAu。To solve this problem, Au is used as a magneto-optical recording film.

Ag、Pt、PdやRhの内の少なくとも1元素を添加
したFe、Co或いはNiの少なくとも1元素との合金
と、Pt、Pd或いはRhの内から選ばれる少なくとも
1種の元素とを交互に積層することにより垂直磁気異方
性エネルギーを4×10SJ/rri 以上とすること
ができた。さらに鉄族元素としてF e Co 、 C
o N i 、 F e N iの二元素糸にAu、A
g、Pt、Rh或いはPdの内の1種の元素1〜20a
 t%を添加した合金とPt、Pd或いはRhの内から
選ばれる少なくとも1種類の元素とを交互に積層し、特
にCo濃度もしくはFe濃度を適宜に選択すると、より
磁気光学効果、特にKerr回転角を増大する最適濃度
が存在した。ここで、20at%を超える貴金属元素の
添加は、逆に垂直磁気異方性エネルギーが小さくなるの
で、効果が少なく、8〜15%付近が中でも最適である
An alloy with at least one element of Fe, Co, or Ni added with at least one element of Ag, Pt, Pd, or Rh, and at least one element selected from Pt, Pd, or Rh are alternately laminated. By doing so, it was possible to increase the perpendicular magnetic anisotropy energy to 4×10 SJ/rri or more. Furthermore, Fe Co, C as iron group elements
Au and A are added to the two-element yarn of oN i and FeNi.
1 to 20a of one of the following elements: g, Pt, Rh, or Pd
By alternately stacking an alloy to which Pt% is added and at least one element selected from Pt, Pd, or Rh, and selecting an appropriate Co concentration or Fe concentration, the magneto-optical effect, especially the Kerr rotation angle, can be improved. There was an optimal concentration that increased the Here, adding more than 20 at % of the noble metal element conversely decreases the perpendicular magnetic anisotropy energy and has little effect, and the optimum value is around 8 to 15%.

また、貴金属元素と鉄族元素合金層はその膜厚が薄くな
るほど、垂直磁気異方性エネルギーが増大し、特に50
Å以下では顕著で、これと白金属層とを組合せることに
より、さらに異方性を増すことができる。
In addition, the thinner the noble metal element and iron group element alloy layer is, the more the perpendicular magnetic anisotropy energy increases.
This is noticeable below Å, and by combining this with a white metal layer, the anisotropy can be further increased.

この材料を光磁気記録膜として用いた場合のディスク構
造としては、次に述べる構造が最適であった。凹凸の案
内溝を有するガラスまたはプラスチックのディスク基板
上に窒化シリコン、窒化アルミニウム、或いは酸化シリ
コンの第1誘電体膜層を形成した後に、先に述べた光磁
気記録膜を形成した。次に第1誘電体膜と同一の材料で
第2誘電体膜を形成した後に、光の反射と光磁気記録膜
の温度分布を制御するためにA Q + A u v 
A g +Pt、Pd、Cu、Cr、Pbの内の1種の
元素を主体とする金属層を設けた4層よりなる構造であ
る。
When this material was used as a magneto-optical recording film, the optimal disk structure was the one described below. After forming a first dielectric film layer of silicon nitride, aluminum nitride, or silicon oxide on a glass or plastic disk substrate having uneven guide grooves, the above-mentioned magneto-optical recording film was formed. Next, after forming a second dielectric film using the same material as the first dielectric film, A Q + A u v is applied to control the reflection of light and the temperature distribution of the magneto-optical recording film.
It has a four-layer structure including a metal layer mainly containing one of A g +Pt, Pd, Cu, Cr, and Pb.

ここで、上記4層目の金属層に熱伝導率制御のためにN
b、Ti、Ta、W、Mo或いは先の金属材料の内母材
以外の元素を添加しても良い。
Here, N was added to the fourth metal layer to control thermal conductivity.
b, Ti, Ta, W, Mo, or an element other than the base material of the metal material mentioned above may be added.

一方、Kerr回転角増大のために光の多重干渉を用い
るのが有効で、第1誘電体膜もしくは第2誘電体膜のい
ずれか一方或いは両方に上記干渉効果をもたせる。
On the other hand, it is effective to use multiple interference of light in order to increase the Kerr rotation angle, and to provide the above-mentioned interference effect to either or both of the first dielectric film and the second dielectric film.

また、ディスク構造としては、先に示した4層構造以外
に、少なくとも光磁気記録膜と金属層とを有していれば
良く、第1誘電体層或いは第2誘電体層のいずれか一方
或いは両方を省いても良い。
In addition to the four-layer structure shown above, the disk structure only needs to have at least a magneto-optical recording film and a metal layer, and either one of the first dielectric layer or the second dielectric layer or You can omit both.

このようにディスク構造を簡素化すると、価格も安価と
なるので、用途も広がり、民生用としても用いることも
容易となる。
When the disk structure is simplified in this way, the price becomes low, the range of applications is expanded, and it becomes easy to use it for consumer use.

第1誘電体膜もしくは第2誘電体膜のいずれか一方に多
重干渉効果をもたせる場合、多重干渉効果を有していな
い方の誘電体層の膜厚を増し、光磁気記録膜の保護効果
を増大させ、信頼性を向上させる効果がある。この他、
光磁気記録膜の磁気的特性(例えばキュリー温度、補償
温度或いは保磁力)の異なる二種類の部分より構成され
る記録膜を用い、外部補助磁界を用いると、いわゆるオ
ーバーライドが可能になり、記録密度の向上に加えてさ
らにディスクの高性能化をはかることができる。
When providing a multiple interference effect to either the first dielectric film or the second dielectric film, the thickness of the dielectric layer that does not have the multiple interference effect is increased to improve the protective effect of the magneto-optical recording film. This has the effect of increasing reliability. In addition,
By using a recording film composed of two types of parts with different magnetic properties (for example, Curie temperature, compensation temperature, or coercive force) of the magneto-optical recording film and using an external auxiliary magnetic field, so-called override is possible, and the recording density can be increased. In addition to improving the performance of the disk, it is possible to further improve the performance of the disk.

〔作用〕[Effect]

貴金属元素と鉄族元素との合金薄膜を数百人〜数大と薄
くしてゆくと膜厚に反比例して垂直磁気異方性エネルギ
ーは増大する。或いは白金族元素と鉄族元素とを交互に
積層した場合も各層の膜厚を制御することにより垂直磁
気異方性エネルギーは任意に選択できる。しかし、いず
れの場合も105J / triであり、この値は、垂
直磁化膜として安定に存在できる下限である。両者のこ
の性質を利用して、垂直磁気異方性エネルギーを増大さ
せることを考えた。すなわち、白金族元素と貴金属元素
を含む鉄族元素との合金とを交互に積層したところ4X
105J/m 以上の大きな垂直磁気異方性エネルギー
を有する光磁気記録膜を得た。
When a thin alloy film of a noble metal element and an iron group element is made thinner, from several hundred to several large, the perpendicular magnetic anisotropy energy increases in inverse proportion to the film thickness. Alternatively, even when platinum group elements and iron group elements are alternately laminated, the perpendicular magnetic anisotropy energy can be arbitrarily selected by controlling the film thickness of each layer. However, in either case, it is 105 J/tri, and this value is the lower limit that can stably exist as a perpendicularly magnetized film. We considered using these properties of both to increase the perpendicular magnetic anisotropy energy. In other words, when platinum group elements and alloys of iron group elements containing noble metal elements are alternately laminated, 4X
A magneto-optical recording film having a large perpendicular magnetic anisotropy energy of 105 J/m or more was obtained.

これは、貴金属元素と鉄族元素との合金膜を薄膜とする
ことで垂直磁気異方性エネルギーの増大がはかれ、さら
に白金族元素と鉄族元素との交互積層により、垂直磁気
異方性の発現効果が増大したことに基づいている。
This is achieved by increasing the perpendicular magnetic anisotropy energy by forming a thin alloy film of noble metal elements and iron group elements, and by alternately stacking platinum group elements and iron group elements. This is based on the fact that the expression effect of

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

[実施例1] まず、本実施例で作製した光磁気記録膜の断面構造の模
式図を第1図に示す。洗浄したガラス基板1上に第1の
記録層2としてPt、Co、3を8大、第2の記録層3
としてptを12人ずつ交互に積層した。成膜はスパッ
タ法にて行ない、全膜厚は400大である。その時のス
パッタ条件は、Arを放電ガスに用い、ターゲットには
pt及びPtCo合金をそれぞれ使用し、放電ガス圧力
=5 X 10−3Torr、投入RF電力密度: 6
.3W/dにてスパッタした。スパッタ中は基板を12
゜rpmで回転させ、形成は二元同時スパッタにて行な
った。そして最後に、金属層4としてA[、。Ti1゜
合金膜を500人の膜厚に、スパッタ法にて形成した。
[Example 1] First, FIG. 1 shows a schematic diagram of the cross-sectional structure of the magneto-optical recording film produced in this example. On the cleaned glass substrate 1, 8 large amounts of Pt, Co, 3 were formed as the first recording layer 2, and a second recording layer 3 was formed.
12 pts were stacked alternately. The film is formed by sputtering, and the total film thickness is 400 mm. The sputtering conditions at that time were: Ar was used as the discharge gas, pt and PtCo alloys were used as targets, discharge gas pressure = 5 x 10-3 Torr, input RF power density: 6
.. Sputtering was performed at 3 W/d. During sputtering, hold the substrate at 12
It was rotated at .degree. rpm, and formation was performed by two-dimensional simultaneous sputtering. Finally, as the metal layer 4, A[,. A Ti1° alloy film was formed to a thickness of 500 mm by sputtering.

このとき、放電ガスにはAr、ターゲットにはAQTi
含Tiそれぞれ使用し、放電ガス圧力I X 10−2
Torr、投入RF電力密座3.2W/−にてスパッタ
した。
At this time, Ar is used for the discharge gas, and AQTi is used for the target.
Ti-containing gases were used, and the discharge gas pressure was I x 10-2.
Sputtering was performed at Torr and input RF power of 3.2 W/-.

このようにして作製した金属層付近の光磁気記録膜の垂
直磁気異方性エネルギーは、振動試料型磁力計(VSM
)と磁気トルク計を用いて求めたところ、8X105J
/rri  と、ptとCoの垂直磁化膜或いはptl
。Co、。合金薄膜とS iN Xを交互に積層した膜
のそれがlX105J/m であるのと比べると8倍に
増大し、垂直磁化膜としての安定性が増した。
The perpendicular magnetic anisotropy energy of the magneto-optical recording film near the metal layer prepared in this way was measured using a vibrating sample magnetometer (VSM).
) and a magnetic torque meter, it was found to be 8X105J.
/rri and perpendicular magnetization film of pt and Co or ptl
. Co. Compared to that of a film in which alloy thin films and SiN X are alternately laminated, the strength is 8 times higher than that of 1×105 J/m 2 , and the stability as a perpendicularly magnetized film is increased.

次に、この膜のKerr回転角の光の波長依存性を調べ
た結果を第2図に示す。このように、用いる光の波長を
短かくしてゆくと、得られるKerr回転角は増大して
ゆく。特に波長λ”550nmより短波長領域では急激
にKerr回転角の増大が観測されλ”400nmで、
θに=0.56°であった。
Next, FIG. 2 shows the results of investigating the dependence of the Kerr rotation angle of this film on the wavelength of light. In this way, as the wavelength of the light used is shortened, the Kerr rotation angle obtained increases. In particular, a sharp increase in the Kerr rotation angle was observed in the wavelength region shorter than the wavelength λ" of 550 nm, and at λ" of 400 nm,
θ = 0.56°.

これは、従来のP t / Co交互積層膜やPtC。This is a conventional Pt/Co alternate laminated film or PtC.

合金薄膜より大きなθにの値であった。The value of θ was larger than that of the alloy thin film.

この光磁気記録膜を用いたディスクを作製した。A disk using this magneto-optical recording film was manufactured.

断面構造を示す模式図を第3図に示す。凹凸の案内溝を
有するガラスもしくはプラスチックの基板1上に、窒化
シリコン膜を50OAの膜厚にスパッタ法により形成し
た。その時の条件は、Arを放電ガスに用い、Si3N
4をターゲットに用い、放電ガス圧カニ I X 10
−2Torr、投入RF@力4.2W/a& にてスパ
ッタした。次に、光磁気記録膜6を、前項に示す手法2
条件にて多層形成した。全膜厚は400Aである。次に
、第2誘電体膜7を100Aの膜厚に形成した。その時
の手法及び条件は第1誘電体膜5と同一とした。そして
最後に、金属層4としてAQ、5Ta1.膜を形成した
。手法及び条件は、前項のA Q、T i膜形成におい
て、ターゲットとしてAQTa合金を用いた他は同しと
した。
A schematic diagram showing the cross-sectional structure is shown in FIG. A silicon nitride film was formed to a thickness of 50 OA by sputtering on a glass or plastic substrate 1 having uneven guide grooves. The conditions at that time were: Ar was used as the discharge gas, and Si3N
4 as a target, discharge gas pressure crab I
Sputtering was performed at −2 Torr and input RF @ power of 4.2 W/a&. Next, the magneto-optical recording film 6 is coated with the method 2 described in the previous section.
A multilayer structure was formed under certain conditions. The total film thickness is 400A. Next, a second dielectric film 7 was formed to a thickness of 100A. The method and conditions at that time were the same as those for the first dielectric film 5. Finally, as the metal layer 4, AQ, 5Ta1. A film was formed. The method and conditions were the same as in the previous section for forming the AQ, Ti film, except that an AQTa alloy was used as the target.

このようにして作製したディスクに、λ=470nmの
レーザー光を用いて記録、再生及び消去を行なった。デ
ィスク回転数2400rpm記録周波数18MHz、レ
ーザー出力6mW、周期1.5Tで記録した。その時の
再生信号出力を測定したところ48dBであり、コード
データ記録が可能であった。また、記録/再生/消去を
繰返したところ10’ 回以上の繰返しが可能であった
。本実施例において作製したディスクは第1及び第2誘
電体膜の両方でKerrエンハンスをとっているが第2
誘電体膜の屈折率を本実施例の2.0  より大きくし
、この膜のみでエンハンスをとり、第1誘電体膜の膜厚
を倍増すれば、基板側から侵入してくる水や酸素をこの
膜でプロテクトできるので、ディスクの信頼性は向上す
る。
Recording, reproduction, and erasing were performed on the disk thus produced using a laser beam of λ=470 nm. Recording was performed at a disk rotation speed of 2400 rpm, a recording frequency of 18 MHz, a laser output of 6 mW, and a period of 1.5 T. When the reproduced signal output at that time was measured, it was 48 dB, and code data recording was possible. Furthermore, when recording/reproducing/erasing was repeated, it was possible to repeat it 10' times or more. The disk manufactured in this example has Kerr enhancement in both the first and second dielectric films, but the second dielectric film has Kerr enhancement.
If the refractive index of the dielectric film is made larger than 2.0 in this example, enhancement is achieved with only this film, and the thickness of the first dielectric film is doubled, water and oxygen that enter from the substrate side can be prevented. The reliability of the disc is improved because it can be protected by this film.

本実施例は、添加貴金属材料にptを用いているが、こ
れに限らず、Ag、Au、Pd、Rh等を用いても同様
の効果が得られる。また母材の鉄族元素としてCO以外
にNiやFeを用いても同様の効果が得られる。さらに
この合金材料と交互に積層する白金族元素としてpt以
外にRhやPdを用いても同様の効果が得られる。
In this embodiment, PT is used as the additive noble metal material, but the material is not limited to this, and similar effects can be obtained by using Ag, Au, Pd, Rh, or the like. Further, similar effects can be obtained by using Ni or Fe in addition to CO as the iron group element of the base material. Furthermore, similar effects can be obtained by using Rh or Pd in addition to pt as the platinum group element which is alternately laminated with this alloy material.

また、ディスクにおいて、第1及び第2誘電体材料とし
て窒素シリコン以外に酸化珪素や窒化アルミニウムを用
いても同様の効果がある。この場合注意しなければなら
ないのは、膜の屈折率と熱伝導率で、ディスク設計にあ
たり、特に光学設計及び熱設計にあたってはこの点を考
慮に入れて行えば良い。
Furthermore, similar effects can be obtained by using silicon oxide or aluminum nitride in place of nitrogen silicon as the first and second dielectric materials in the disk. In this case, what must be taken into consideration is the refractive index and thermal conductivity of the film, and these points should be taken into consideration when designing the disk, especially when designing the optical design and thermal design.

また、それに合わせて、金属層4の熱伝導率を考慮して
、全体の膜厚や添加元素濃度(例えばAQ−Ti系にお
いてはTi濃度)により調節しても良い。この他、金属
層材料にPt、Rh。
Further, in accordance with this, the thermal conductivity of the metal layer 4 may be considered and adjusted by adjusting the overall film thickness and additive element concentration (for example, Ti concentration in the case of AQ-Ti system). In addition, Pt and Rh are used as metal layer materials.

Pd、Cr、Cu、Au、Pbを用いても良く、これら
に母元素以外の元素もしくはNb、Tユ。
Pd, Cr, Cu, Au, and Pb may be used, and in addition to these, an element other than the parent element or Nb or T may be used.

Ta、Cr、W、Mo等の元素を添加して熱伝導率を調
整しても良い。特にAu、Cu、Rh。
Thermal conductivity may be adjusted by adding elements such as Ta, Cr, W, and Mo. Especially Au, Cu, Rh.

Pd、Pt系は反射率が高いので再生出力の一層の向上
がはかれた。
Since the Pd and Pt systems have high reflectance, further improvement in reproduction output has been achieved.

[実施例2コ 本実施例で作製した光磁気記録膜の断面構造は実施例1
と同様で、その構造を示す模式図は第1図に示すとおり
である。第1の記録層2としてP t 1o(F e 
l−X CO”)s。を7Aの膜厚に、そして、第2の
記録層3としてptを12大それぞれ交互積層した。こ
こで、第1の記録層2の形成に用いたターゲットは、P
tFe合金にチップ状のC。
[Example 2 The cross-sectional structure of the magneto-optical recording film produced in this example is as in Example 1.
The schematic diagram showing the structure is as shown in FIG. As the first recording layer 2, P t 1o (F e
l-X CO'')s to a film thickness of 7A, and 12 PT layers were alternately laminated as the second recording layer 3.Here, the target used for forming the first recording layer 2 was: P
Chip-shaped C on tFe alloy.

を均一に配置した複合体ターゲットである。そして配置
するCOチップの枚数を変えてCo濃度を変化させた。
It is a composite target with uniformly arranged. Then, the Co concentration was varied by changing the number of CO chips placed.

この意思外は実施例1と同一条件である。Except for this purpose, the conditions are the same as in the first embodiment.

第4図にCo濃度と得られたKerr回転角(λ=40
0nm)の関係を示す。このように第1の記録N2のP
t−Fe−Co系においてCo濃度を増大させてゆくと
Kerr回転角は増大し、x=0.4〜0.6 で最大
0.65° となった。この時の垂直磁気異方性エネル
ギーも増大し、lX106J/rn’であった。この効
果はこの材料系に限らすPd、Rh、Au、Ag等の貴
金属材料を用いても同様で、鉄族元素としてFe−Co
以外にFeNi系でFeを、Co−Ni系でCoをそれ
ぞれ変化させても同様の結果が得られた。また第2の記
録層3としてptの代りにPdやRhを用いても、その
磁気特性の差は認められなかった。
Figure 4 shows the Co concentration and the obtained Kerr rotation angle (λ=40
0 nm). In this way, P of the first record N2
As the Co concentration increases in the t-Fe-Co system, the Kerr rotation angle increases, reaching a maximum of 0.65° at x=0.4 to 0.6. The perpendicular magnetic anisotropy energy at this time also increased and was 1 x 106 J/rn'. This effect is the same even when noble metal materials such as Pd, Rh, Au, and Ag are used, and Fe-Co is the iron group element.
Similar results were also obtained by changing Fe in the FeNi system and Co in the Co--Ni system. Further, even when Pd or Rh was used instead of PT for the second recording layer 3, no difference in magnetic properties was observed.

この光磁気記録膜を用いたディスクを作製した。A disk using this magneto-optical recording film was manufactured.

その構造は実施例1において作製したものと同一構造で
、断面構造の模式図は第3図に示すとおりである。ここ
で第1の記録層2の組成はP tl、(F e、、、C
oo、、)、。とじた。それ以外は実施例1と同一の条
件にてディスクを作製し、その特性の測定を行なった。
Its structure is the same as that produced in Example 1, and the schematic diagram of the cross-sectional structure is as shown in FIG. Here, the composition of the first recording layer 2 is P tl, (F e, , C
oo,,),. Closed. A disk was manufactured under the same conditions as in Example 1 except for the above, and its characteristics were measured.

その結果、最内周最密パターンにて記録した時のC/N
は49.5 d B であった。書換え回数も107回
の記録、再生及び消去を繰返しても再生出力に何ら変化
は認められなかった。この効果は、この系に限らず他の
貴金属元素或いは白金族元素を用いても良く、また第1
の記録層2において添加する貴金属元素と、第2の記録
層3に用いる白金族元素とは同一である必要はなく、い
ずれの材料であっても良い。また、鉄族元素についても
同様で、Fe−Ni、Co−Niでも同様の効果がみら
れ、この変化はスレータ=ポーリング則に従ったもので
ある。
As a result, the C/N when recording with the closest pattern on the innermost circumference
was 49.5 dB. Even after repeating recording, reproducing, and erasing 107 times, no change was observed in the reproduction output. This effect is not limited to this system, but other noble metal elements or platinum group elements may be used, and the first
The noble metal element added in the recording layer 2 and the platinum group element used in the second recording layer 3 do not need to be the same, and may be any material. Further, the same is true for iron group elements, and a similar effect is observed for Fe--Ni and Co--Ni, and this change follows the Slater-Pauling law.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、白金族元素/鉄族元素系多層膜光磁気
材料において、鉄族元素に資金族元素を添加した合金材
料と白金族元素とを交互に積層した多層構造薄膜は、垂
直磁気異方性エネルギーを4〜8X10J/rn’と貴
金属元素を添加していない系のそれの10SJ/rn”
 と比べて大きく増大できた。これにより、この膜は垂
直磁化膜として安定に存在でき、記録した情報を安定に
存在させることができる。さらに、これら材料は、貴金
属元素を多量に含んでいるため、耐食性は高く信頼性の
向上に有効である。さらに、FeCo、CoNi。
According to the present invention, in a platinum group element/iron group element multilayer magneto-optical material, a multilayer structure thin film in which an alloy material in which a metal group element is added to an iron group element and a platinum group element are alternately laminated has a perpendicular magnetic field. The anisotropy energy is 4~8X10J/rn', which is 10SJ/rn' compared to that of the system without added noble metal elements.
It was able to increase significantly compared to . Thereby, this film can exist stably as a perpendicular magnetization film, and recorded information can be stably stored. Furthermore, since these materials contain a large amount of noble metal elements, they have high corrosion resistance and are effective in improving reliability. Furthermore, FeCo, CoNi.

FeNi系においてスレータポーリング則に従うので磁
気特性及び反射率を低下させずにKerr回転角を増大
できる。その結果、再生出力を大幅に向上できるので高
密度光記録が実現できた。
Since the FeNi system follows the Slater-Pauling law, the Kerr rotation angle can be increased without deteriorating the magnetic properties and reflectance. As a result, high-density optical recording was realized because the reproduction output could be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光磁気記録膜の断面構造を
示す模式図、第2図は本発明の実施例の記録膜における
Kerr回転角の波長依存特性図、第3図は本発明の一
実施例の光磁気ディスクの断面構造を示す模式図、第4
図は(Pt/ Pjxo(Fel+、Co、)、。)系多層膜のKer
r回転角のCO濃度依存性図である。 1・・・基板、2・・・第1の記録層、3・・・第2の
記録層、4・・金属層、5・・・第1誘電体膜、6・・
・光磁気記録膜、7・・第2誘電体膜。 X−ノ 囁 図 囁 め (2) 凶 C,濃度、ズ(β)
FIG. 1 is a schematic diagram showing the cross-sectional structure of a magneto-optical recording film according to an embodiment of the present invention, FIG. 2 is a wavelength dependence characteristic diagram of the Kerr rotation angle in the recording film according to an embodiment of the present invention, and FIG. FIG. 4 is a schematic diagram showing the cross-sectional structure of a magneto-optical disk according to an embodiment of the invention.
The figure shows Ker of a (Pt/Pjxo(Fel+, Co,),.) system multilayer film.
It is a CO concentration dependence diagram of r rotation angle. DESCRIPTION OF SYMBOLS 1... Substrate, 2... First recording layer, 3... Second recording layer, 4... Metal layer, 5... First dielectric film, 6...
- Magneto-optical recording film, 7... second dielectric film. X-no whisper map whisper (2) evil C, concentration, zu (β)

Claims (1)

【特許請求の範囲】 1、レーザー光を用いて記録、再生或いは消去を行う光
磁気記録において、その記録材料として、Pt、Pd、
Rhの内から選ばれる少なくとも1種類の元素層と、P
t、Pd、Rh、Au、Agの内から選ばれる少なくと
も1種類の元素を1〜20at%含みFe、Co、Ni
の内から選ばれる少なくとも1種類の元素との合金層と
を交互に積層し、かつ一層当りの膜厚が50Å以下であ
る多層構造の光磁気記録膜を用いたことを特徴とする光
磁気記録媒体の構造。 2、レーザー光を用いて記録、再生或いは消去を行う光
磁気記録において、その光磁気ディスクの構造として、
凹凸の案内溝をその表面に有するガラスもしくはプラス
チックの基板上に、少なくとも、特許請求の範囲第1項
記載の光磁気記録材料層と、光磁気記録材料層の温度分
布を制御するためのPt、Al、Au、Ag、Cu、R
h、Pd、Cr、Pbの内から選ばれる少なくとも1種
の元素を主体とする金属層を有し、さらに優位には光学
効果を増大するための多重干渉層を有することを特徴と
する光磁気記録媒体の構造。 3、特許請求の範囲第2項記載の金属層において、光磁
気記録材料層の温度分布を制御するのに、Nb、Cr、
Ti、Ta、W、Mo、或いは主体となる元素以外の特
許請求の範囲第2項記載の金属層を構成する元素を添加
した金属層を用いたことを特徴とする光磁気記録媒体の
構造。 4、特許請求の範囲第1項記載の多層構造の光磁気記録
媒体において、記録膜の途中に無機化合物よりなる誘電
体層を設け、その膜厚を選択することにより、磁気−光
学効果の増大とその磁気−光学効果が最大となる光の波
長を制御したことを特徴とする光磁気記録媒体の構造。 5、特許請求の範囲第4項記載の無機化合物よりなる誘
電体層に用いる材料として、窒化シリコン、窒化アルミ
ニウム、或いは酸化シリコンの内から選ばれる少なくと
も1種類の化合物もしくはその複合体を用いたことを特
徴とする光磁気記録媒体の構造。 6、特許請求の範囲第1項記載の多層構造の光磁気記録
材料の形成において、その膜厚方向に磁気特性の分布、
さらに優位にはキュリー温度、保磁力或いは補償温度の
分布を持たせた光磁気記録膜を用いたことを特徴とする
光磁気記録媒体の構造。
[Claims] 1. In magneto-optical recording in which recording, reproduction, or erasing is performed using laser light, the recording materials include Pt, Pd,
At least one element layer selected from Rh, and P
Contains 1 to 20 at% of at least one element selected from t, Pd, Rh, Au, Ag, Fe, Co, Ni
Magneto-optical recording characterized by using a magneto-optical recording film with a multilayer structure in which alloy layers with at least one element selected from the following are laminated alternately and each layer has a film thickness of 50 Å or less. Structure of the medium. 2. In magneto-optical recording in which recording, reproduction, or erasing is performed using laser light, the structure of the magneto-optical disk is as follows:
On a glass or plastic substrate having uneven guide grooves on its surface, at least the magneto-optical recording material layer according to claim 1, Pt for controlling the temperature distribution of the magneto-optical recording material layer, Al, Au, Ag, Cu, R
A magneto-optical device characterized by having a metal layer mainly composed of at least one element selected from h, Pd, Cr, and Pb, and further preferably having a multiple interference layer for increasing the optical effect. Structure of recording medium. 3. In the metal layer according to claim 2, for controlling the temperature distribution of the magneto-optical recording material layer, Nb, Cr,
A structure of a magneto-optical recording medium characterized by using a metal layer to which Ti, Ta, W, Mo, or an element constituting the metal layer according to claim 2 other than the main element is added. 4. In the magneto-optical recording medium with a multilayer structure according to claim 1, the magneto-optic effect is increased by providing a dielectric layer made of an inorganic compound in the middle of the recording film and selecting the film thickness. A structure of a magneto-optical recording medium characterized by controlling the wavelength of light at which the magneto-optic effect is maximized. 5. At least one compound selected from silicon nitride, aluminum nitride, or silicon oxide or a composite thereof is used as the material for the dielectric layer made of an inorganic compound as described in claim 4. A structure of a magneto-optical recording medium characterized by: 6. In the formation of a magneto-optical recording material with a multilayer structure according to claim 1, distribution of magnetic properties in the film thickness direction,
Furthermore, the structure of the magneto-optical recording medium is characterized by using a magneto-optical recording film having a distribution of Curie temperature, coercive force or compensation temperature.
JP4937790A 1990-03-02 1990-03-02 Structure of magneto-optical recording medium Pending JPH03252940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4937790A JPH03252940A (en) 1990-03-02 1990-03-02 Structure of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4937790A JPH03252940A (en) 1990-03-02 1990-03-02 Structure of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03252940A true JPH03252940A (en) 1991-11-12

Family

ID=12829335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4937790A Pending JPH03252940A (en) 1990-03-02 1990-03-02 Structure of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03252940A (en)

Similar Documents

Publication Publication Date Title
EP0479474A2 (en) Magneto-optical recording medium
US5958575A (en) Magneto-optical recording medium
JP2701337B2 (en) Magneto-optical recording medium
JPH03252940A (en) Structure of magneto-optical recording medium
US4980875A (en) Magneto-optical disk with perpendicular magnetic anisotropy film and high corrosion-resistant film
JPH0256752A (en) Magneto-optical recording medium
JP3414823B2 (en) Magneto-optical recording medium
JPH03152739A (en) Optical recording medium
JPH0660449A (en) Magneto-optical recording medium and its production
JPH04186545A (en) Structure of optomagnetic recording film
JP2528184B2 (en) Magneto-optical recording medium
JP3109926B2 (en) Method for manufacturing magneto-optical recording medium
JP3237977B2 (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium
KR100225108B1 (en) Optic-magneto recording medium
JPH03252941A (en) Magneto-optical recording medium
JPH0423245A (en) Magneto-optical recording medium
JPH04186707A (en) Structure of magnetooptic recording film
JPH03154241A (en) Magnet-optical recording medium
JPH03134833A (en) Structure of data recording medium
JPH0453044A (en) Magneto-optical recording medium
JPS6358641A (en) Magneto-optical recording medium
JPH0594647A (en) Production of magneto-optical recording medium
JPH03152741A (en) Optical recording medium