JPH03252382A - Aluminum nitride substrate and production thereof - Google Patents

Aluminum nitride substrate and production thereof

Info

Publication number
JPH03252382A
JPH03252382A JP4661890A JP4661890A JPH03252382A JP H03252382 A JPH03252382 A JP H03252382A JP 4661890 A JP4661890 A JP 4661890A JP 4661890 A JP4661890 A JP 4661890A JP H03252382 A JPH03252382 A JP H03252382A
Authority
JP
Japan
Prior art keywords
aluminum nitride
thin film
layer
film
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4661890A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
亮 菊地
Hisao Hara
久雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4661890A priority Critical patent/JPH03252382A/en
Publication of JPH03252382A publication Critical patent/JPH03252382A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a strong metallized layer without forming Al2O3 by laminating a Ti-Ni reaction layer comprising Ni3Ti and a Ni layer to the surface of sintered material of AlN. CONSTITUTION:A Ti thin film having 2,500-6,000Angstrom thickness and a Ni thin film having 10,00-30,000Angstrom thickness are formed on the surface of a sintered material of AlN by ion plating method or sputtering method in a ratio of thickness of Ni/Ti of >=4, heat-treated under <=1X10<-5>Torr at 450-800 deg.C for 30-120 minutes and the Ti thin film is reacted with the Ni thin film to form a Ti-Ni reaction layer comprising Ni3Ti and a Ni layer on the surface of the sintered material of AlN.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高熱伝導性を有する半導体基板、ヒートシン
ク等に使用される窒化アルミニウム基板およびその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum nitride substrate having high thermal conductivity and used for semiconductor substrates, heat sinks, etc., and a method for manufacturing the same.

[従来の技術] 近年LSIの高密度、高集積化に伴い熱伝導性の高い絶
縁性基板材料が要求されている。従来、絶縁性基板材料
としては、酸化アルミニウム焼結体が最も多く使用され
ている。しかし、酸化アルミニウムは熱伝導率が、約2
0W/m4と低く、熱膨張率がLSI等を形成するシリ
コンに比べ大きいため接合がうまくできない等の問題が
あった。そこで、熱伝導性に優れ、熱膨張率がシリコン
に近い窒化アルミニウム(A I N)焼結体が注目さ
れてきている。窒化アルミニウム焼結体は、機械的強度
も比較的高く、かつ誘電率も小さいなどの電気特性にも
優れている。しかしながら、窒化アルミニウムは共有結
合性が強いため焼結性が悪く、高温での焼結が必要であ
った。
[Prior Art] In recent years, as LSIs have become more dense and highly integrated, there has been a demand for insulating substrate materials with high thermal conductivity. Conventionally, aluminum oxide sintered bodies have been most commonly used as insulating substrate materials. However, aluminum oxide has a thermal conductivity of about 2
It has a low coefficient of thermal expansion of 0 W/m4 and is higher than that of silicon, which forms LSIs, etc., which causes problems such as poor bonding. Therefore, aluminum nitride (AIN) sintered bodies, which have excellent thermal conductivity and a coefficient of thermal expansion close to that of silicon, have been attracting attention. Aluminum nitride sintered bodies have relatively high mechanical strength and excellent electrical properties such as low dielectric constant. However, aluminum nitride has a strong covalent bond, so it has poor sinterability and requires sintering at high temperatures.

これに対し、近年になって種々の焼結助剤の添加により
、焼結性のよい粉末を用いた窒化アルミニウム焼結体が
得られるようになってきた。
In contrast, in recent years, it has become possible to obtain aluminum nitride sintered bodies using powders with good sinterability by adding various sintering aids.

また、窒化アルミニウム焼結体に半導体等を実装する場
合、窒化アルミニウムは金属との接合性が悪いため、予
め窒化アルミニウム焼結体表面に、イオンブレーティン
グやスパッタリングなどによる金属薄膜を生成する方法
がとられている。
In addition, when mounting semiconductors etc. on aluminum nitride sintered bodies, aluminum nitride has poor bonding properties with metals, so it is necessary to generate a thin metal film on the surface of aluminum nitride sintered bodies in advance by ion blasting, sputtering, etc. It is taken.

また、より接合強度を高めるため、特開昭62−182
183号公報等には窒化アルミニウムの表面に酸化アル
ミニウム層を形成し、その上にTi−Mo−Ni、Ti
−Mo−Au等のメタライズを行なうこと方法も開示さ
れている。
In addition, in order to further increase the bonding strength,
183, etc., an aluminum oxide layer is formed on the surface of aluminum nitride, and Ti-Mo-Ni, Ti
- A method of metallizing Mo-Au and the like is also disclosed.

[発明が解決しようとする課題] 従来のスパッタリングやイオンブレーティングにより生
成した薄膜は、そのままでは窒化アルミニウム焼結体へ
の接着強度が弱いという問題点がある。
[Problems to be Solved by the Invention] Thin films produced by conventional sputtering or ion blating have a problem in that the adhesive strength to the aluminum nitride sintered body is weak as is.

また、イオンブレーティングやスパッタリングにより生
成したTiおよびNi膜は、その結晶が、柱状に成長し
ており、結晶間に間隙が存在する。このためこの膜にメ
ツキ処理を施すと、メツキ液が浸透し膜が剥がれてしま
うという問題もあった。
Furthermore, in Ti and Ni films produced by ion blasting or sputtering, the crystals thereof grow in columnar shapes, and gaps exist between the crystals. Therefore, when this film is subjected to plating treatment, there is a problem in that the plating solution penetrates and the film peels off.

また、窒化アルミニウムの表面に酸化アルミニウム層を
形成することは、窒化アルミニウムと酸化アルミニウム
の熱膨張率の違いから、これらの界面の強度が弱く、メ
タライズ膜の剥離の原因になっていた。
Furthermore, when an aluminum oxide layer is formed on the surface of aluminum nitride, the strength of the interface between aluminum nitride and aluminum oxide is weak due to the difference in coefficient of thermal expansion between aluminum nitride and aluminum oxide, causing peeling of the metallized film.

本発明の目的は、酸化アルミニウム膜を特に形成しなく
ても、強固なメタライズ層を有する窒化アルミニウム基
板およびその製造方法を提供することである。
An object of the present invention is to provide an aluminum nitride substrate having a strong metallized layer without forming an aluminum oxide film, and a method for manufacturing the same.

[課題を解決するための手段] 本発明は、窒化アルミニウム焼結体表面上にN13Ti
からなるTi−Ni反応層およびNi層が積層されてな
る窒化アルミニウム基板である。
[Means for Solving the Problems] The present invention provides N13Ti on the surface of an aluminum nitride sintered body.
This is an aluminum nitride substrate formed by laminating a Ti-Ni reaction layer and a Ni layer.

本発明の窒化アルミニウム基板は窒化アルミニウム焼結
体表面にTi、 Niの順で薄膜を形成した後、減圧雰
囲気下で加熱する熱処理を行ない、Ti薄膜とNi薄膜
を反応させ、Ni3Ti層およびNi層を形成すること
により得ることができる。
The aluminum nitride substrate of the present invention is produced by forming thin films of Ti and Ni in this order on the surface of an aluminum nitride sintered body, and then performing heat treatment in a reduced pressure atmosphere to cause the Ti thin film and Ni thin film to react, forming a Ni3Ti layer and a Ni layer. It can be obtained by forming.

本発明において、減圧雰囲気での熱処理は、金属薄膜と
窒化アルミニウム焼結体の接着強度を向上させることに
寄与する。
In the present invention, heat treatment in a reduced pressure atmosphere contributes to improving the adhesive strength between the metal thin film and the aluminum nitride sintered body.

また、窒化アルミニウム焼結体の表面は、表面粗さが0
.5〜5μmが良く、特に2〜5μIが望ましい。
Furthermore, the surface of the aluminum nitride sintered body has a surface roughness of 0.
.. The thickness is preferably 5 to 5 μm, particularly preferably 2 to 5 μI.

表面粗さが0.5μmより小さいと金属薄膜の窒化アル
ミニウム焼結体へのアンカー効果が弱くなり。
When the surface roughness is less than 0.5 μm, the anchoring effect of the metal thin film to the aluminum nitride sintered body becomes weak.

5μmより大きくなると金属薄膜が均一に付かなくなる
If it is larger than 5 μm, the metal thin film will not be applied uniformly.

また、TiおよびNi薄膜は窒化アルミニウム焼結体表
面にイオンブレーティングまたはスパッタリングにより
Ti、 Niの順にそれぞれ2500〜6000Å,1
0000〜30000人の厚さで成膜することができる
In addition, Ti and Ni thin films were formed on the surface of the aluminum nitride sintered body by ion blasting or sputtering to form Ti and Ni thin films of 2500 to 6000 Å and 1
It is possible to form a film with a thickness of 0,000 to 30,000.

この時TiとNiの膜厚の比(Ni/Ti)は、4以上
が望ましい。(Ni/Ti)が4より小さいと熱処理後
メタライズ膜表面にNi膜がなくなり、この膜上へのメ
ツキ、ハンダ付けがうまく行かなくなる。
At this time, the ratio of the film thicknesses of Ti and Ni (Ni/Ti) is preferably 4 or more. If (Ni/Ti) is less than 4, there will be no Ni film on the surface of the metallized film after heat treatment, and plating and soldering on this film will not be successful.

TiおよびNiを製膜した窒化アルミニウム焼結体を真
空中において熱処理するが、金属薄膜を希望の形状にし
たいときは、熱処理の前にパターンニングしてもよい。
The aluminum nitride sintered body on which Ti and Ni have been formed is heat treated in a vacuum, but if it is desired to form the metal thin film into a desired shape, it may be patterned before the heat treatment.

熱処理雰囲気はl X 10−’ torr以下が望ま
し5s。
The heat treatment atmosphere is preferably 1 x 10-' torr or less for 5 seconds.

圧力がI X 10−’ torrより大きくなると金
属薄膜表面が酸化するため金属薄膜上へのハンダ付け、
メツキ等がうまく行かなくなる。
If the pressure is greater than I x 10-' torr, the surface of the metal thin film will oxidize, so soldering onto the metal thin film,
Metsuki etc. will not go well.

また熱処理温度は450〜800℃が良<500〜70
0℃が望ましい。450℃未満では、熱処理によりAl
Nと金F4薄膜の充分な接着強度が得られず、800℃
より高い温度では、金属薄膜表面が酸化する恐れがある
。更に、熱処理時間は、30〜120分が良く、45〜
75分が望ましい。熱処理時間が30分未満の場合、充
分な熱処理が行えず、120分より長い時間は意味が無
い。
Also, the heat treatment temperature is preferably 450 to 800℃<500 to 70℃.
0°C is desirable. At temperatures below 450°C, Al
Sufficient adhesive strength between N and gold F4 thin films could not be obtained, and the temperature was increased to 800°C.
At higher temperatures, the metal thin film surface may oxidize. Furthermore, the heat treatment time is preferably 30 to 120 minutes, and 45 to 120 minutes.
75 minutes is preferable. If the heat treatment time is less than 30 minutes, sufficient heat treatment cannot be performed, and a time longer than 120 minutes is meaningless.

生成したTiおよびNi膜は、その結晶が、柱状に成長
しており、結晶間に間隙が存在するが、TiとNiを反
応させることによってNi sTiの緻密な膜が生成し
、メツキ液の浸透を防止することができる。
In the produced Ti and Ni films, the crystals grow in a columnar shape, and there are gaps between the crystals, but by reacting Ti and Ni, a dense film of NisTi is produced, and the plating solution penetrates. can be prevented.

また、熱処理期間に窒化アルミニウムとTiが反応し、
窒化アルミニウムと金属膜の間にTiNが生成すること
により、窒化アルミニウムと金属薄膜の接着強度が上昇
する。
Additionally, aluminum nitride and Ti react during the heat treatment period,
The generation of TiN between the aluminum nitride and the metal film increases the adhesive strength between the aluminum nitride and the metal thin film.

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は以下の実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

表面粗さ3μmの窒化アルミニウム板に、Ti及びNi
膜を生成し、これを5×10−“torrの圧力で熱処
理を行い、窒化アルミニウムと金属簿膜の接着強度を測
定し、第1表に示す結果を得た。
Ti and Ni are placed on an aluminum nitride plate with a surface roughness of 3 μm.
A film was produced, heat treated at a pressure of 5 x 10-''torr, and the adhesive strength between the aluminum nitride and metal film was measured, and the results shown in Table 1 were obtained.

第1図は、TiおよびNiをスパッタリングにより生成
し、これを5 X 10”” torrの圧力下、60
0℃で60分熱処理した時の窒化アルミニウム基板断面
の結晶構造を示したものであり、第2図は第1図に対応
する元素濃度分布を示したものである。
Fig. 1 shows that Ti and Ni are produced by sputtering, and then sputtered at 60°C under a pressure of 5 x 10'' torr.
It shows the crystal structure of a cross section of an aluminum nitride substrate after heat treatment at 0° C. for 60 minutes, and FIG. 2 shows the element concentration distribution corresponding to FIG. 1.

第1図において、化合物組成については、x3回折によ
り測定した。
In FIG. 1, the compound composition was measured by x3 diffraction.

窒化アルミニウム焼結体表面に、Ni sTiが生成し
ており、金属薄膜内にアルミニウムおよび窒素が拡散し
ていることがわかる。
It can be seen that Ni sTi is generated on the surface of the aluminum nitride sintered body, and that aluminum and nitrogen are diffused within the metal thin film.

比較例として、窒化アルミニウム焼結体表面の粗さを、
0.2μmにした場合、およびTi、 Niをイオ−1
,Pはイオンブレーティング、 s、pはスパッタリン
グを示す。
As a comparative example, the roughness of the aluminum nitride sintered body surface was
When the thickness is 0.2 μm, and Ti and Ni are io-1
, P indicate ion blating, and s and p indicate sputtering.

ンブレーテイングあるいはスパッタリングしただけの場
合の膜の接着強度を示したが、本発明の場合より接着強
度が低いことがわかる。
The adhesive strength of the film obtained by just emblating or sputtering is shown, and it can be seen that the adhesive strength is lower than that of the present invention.

[発明の効果] 本発明によれば、窒化アルミニウム表面に強固な金属薄
膜を生成した窒化アルミニウム基板を得ることができる
ため、優れた半導体基板およびヒートシンクを得ること
ができる。
[Effects of the Invention] According to the present invention, it is possible to obtain an aluminum nitride substrate in which a strong metal thin film is formed on the aluminum nitride surface, and therefore, an excellent semiconductor substrate and heat sink can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の窒化アルミニウム基板断面
の結晶構造を示した図、第2図は第1図に対応する元素
濃度分布を示した図である。 1.5ηm +−刊
FIG. 1 is a diagram showing the crystal structure of a cross section of an aluminum nitride substrate according to an embodiment of the present invention, and FIG. 2 is a diagram showing the element concentration distribution corresponding to FIG. 1. 1.5ηm +- publication

Claims (4)

【特許請求の範囲】[Claims] (1)窒化アルミニウム焼結体表面上にNi_3Tiか
らなるTi−Ni反応層およびNi層が積層されてなる
窒化アルミニウム基板。
(1) An aluminum nitride substrate in which a Ti-Ni reaction layer made of Ni_3Ti and a Ni layer are laminated on the surface of an aluminum nitride sintered body.
(2)窒化アルミニウム焼結体表面にTi、Niの順で
薄膜を形成した後、減圧雰囲気下で加熱する熱処理を行
ない、Ti薄膜とNi薄膜を反応させ、Ni_3Ti層
およびNi層を形成することを特徴とする窒化アルミニ
ウムの製造方法。
(2) After forming a thin film of Ti and Ni in this order on the surface of the aluminum nitride sintered body, heat treatment is performed under a reduced pressure atmosphere to cause the Ti thin film and Ni thin film to react to form a Ni_3Ti layer and a Ni layer. A method for producing aluminum nitride, characterized by:
(3)TiおよびNiの薄膜をそれぞれ2500〜60
00Å,10000〜30000Åの厚さに形成するこ
とを特徴とする請求項2に記載の窒化アルミニウムの製
造方法。
(3) Ti and Ni thin films with 2500 to 600
3. The method of manufacturing aluminum nitride according to claim 2, wherein the aluminum nitride is formed to a thickness of 00 Å, 10,000 to 30,000 Å.
(4)熱処理は1×10^−^5torr以下の圧力下
で、450〜800℃で30〜120分の条件で行なう
ことを特徴とする窒化アルミニウム基板の製造方法。
(4) A method for manufacturing an aluminum nitride substrate, characterized in that the heat treatment is carried out at 450 to 800° C. for 30 to 120 minutes under a pressure of 1×10^-^5 torr or less.
JP4661890A 1990-02-27 1990-02-27 Aluminum nitride substrate and production thereof Pending JPH03252382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4661890A JPH03252382A (en) 1990-02-27 1990-02-27 Aluminum nitride substrate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4661890A JPH03252382A (en) 1990-02-27 1990-02-27 Aluminum nitride substrate and production thereof

Publications (1)

Publication Number Publication Date
JPH03252382A true JPH03252382A (en) 1991-11-11

Family

ID=12752285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4661890A Pending JPH03252382A (en) 1990-02-27 1990-02-27 Aluminum nitride substrate and production thereof

Country Status (1)

Country Link
JP (1) JPH03252382A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693297B1 (en) * 2004-07-05 2007-03-13 주식회사 플라티코리아 Methods for treating surface of metal
WO2012063638A1 (en) * 2010-11-08 2012-05-18 昭和電工株式会社 Cladding material for insulated substrates
JP2014087805A (en) * 2012-10-29 2014-05-15 Mmc Superalloy Corp COMPOSITE MEMBER COMPOSED OF ANTICORROSIVE Ni-BASED ALLOY AND ALUMINUM OR ALUMINUM ALLOY
JP2017168685A (en) * 2016-03-16 2017-09-21 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693297B1 (en) * 2004-07-05 2007-03-13 주식회사 플라티코리아 Methods for treating surface of metal
WO2012063638A1 (en) * 2010-11-08 2012-05-18 昭和電工株式会社 Cladding material for insulated substrates
JP2012104539A (en) * 2010-11-08 2012-05-31 Showa Denko Kk Cladding material for insulating substrate
CN103210488A (en) * 2010-11-08 2013-07-17 昭和电工株式会社 Cladding material for insulated substrates
US8987895B2 (en) 2010-11-08 2015-03-24 Showa Denko K.K. Clad material for insulating substrates
JP2014087805A (en) * 2012-10-29 2014-05-15 Mmc Superalloy Corp COMPOSITE MEMBER COMPOSED OF ANTICORROSIVE Ni-BASED ALLOY AND ALUMINUM OR ALUMINUM ALLOY
JP2017168685A (en) * 2016-03-16 2017-09-21 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
EP0516819B1 (en) Direct bonding of copper to aluminum nitride substrates
JPS5815241A (en) Substrate for semiconductor device
JPH03252382A (en) Aluminum nitride substrate and production thereof
JPS6022347A (en) Substrate for semiconductor element mounting
JPH0359036B2 (en)
US3791861A (en) Method for producing thin film circuits on high purity alumina substrates
JP2005104810A (en) Dissimilar material complex and its manufacturing method
EP4159354A1 (en) Method for atomic diffusion bonding and bonded structure
JPH0690083A (en) Manufacture of ceramic dbc substrate
JP3297571B2 (en) Electrostatic chuck
JP2763239B2 (en) Multi-layer ceramic crucible
JP3725686B2 (en) Method for manufacturing aluminum nitride whisker
JP2837049B2 (en) Method for producing multilayer ceramic crucible
JPH07121835B2 (en) Cubic boron nitride coating
JP2814503B2 (en) Method for producing single crystal diamond film composite
JP3449979B2 (en) Manufacturing method of aluminum nitride thin film using plasma treatment
RU90728U1 (en) HEAT DISCHARGE ELEMENT
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JP3119461B2 (en) Method for producing silicon carbide molded body
JPH02153883A (en) High thermal conductivity base and its production
JP2002180254A (en) CVD-SiC FILM-COATED MEMBER AND ITS PRODUCTION METHOD
JP2721258B2 (en) Manufacturing method of ceramic substrate
JPH0480873B2 (en)
JPH0725673A (en) Method for joining ceramics to silicon plate
EP0443277B1 (en) Metallized ceramic body and method to make the same