JPH03252340A - Hydraulic solidifying composition - Google Patents

Hydraulic solidifying composition

Info

Publication number
JPH03252340A
JPH03252340A JP2048669A JP4866990A JPH03252340A JP H03252340 A JPH03252340 A JP H03252340A JP 2048669 A JP2048669 A JP 2048669A JP 4866990 A JP4866990 A JP 4866990A JP H03252340 A JPH03252340 A JP H03252340A
Authority
JP
Japan
Prior art keywords
water
composition
hydraulic
added
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048669A
Other languages
Japanese (ja)
Other versions
JP2933969B2 (en
Inventor
Kiichi Kikegawa
亀卦川 毅一
Yukio Takeshima
武島 幸男
Masahito Sasaki
将人 佐々木
Hideki Yagi
英樹 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RINKAI KENSETSU KK
Murakashi Lime Industry Co Ltd
Original Assignee
RINKAI KENSETSU KK
Murakashi Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RINKAI KENSETSU KK, Murakashi Lime Industry Co Ltd filed Critical RINKAI KENSETSU KK
Priority to JP4866990A priority Critical patent/JP2933969B2/en
Publication of JPH03252340A publication Critical patent/JPH03252340A/en
Application granted granted Critical
Publication of JP2933969B2 publication Critical patent/JP2933969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PURPOSE:To prevent the diffusive separation of a hydraulic composition in water by adding and mixing a water repellent, a swellable clay mineral, a water-soluble polymeric adhesive, etc., to and with the hydraulic composition. CONSTITUTION:A water repellent, a swellable clay mineral and a water-soluble polymeric adhesive are added and mixed to and with a hydraulic composition to provide the hydraulic solidifying composition. The hydraulic composition comprises one kind or more of Portland cement, fast-curing cement slag, lime and gypsum, thereby preventing the diffusive separation of the composition when applied in water and further improving strength, durability, environmental effect, etc., of the composition.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ベントナイト等の膨潤性粘土鉱物と撲水剤と
を水硬化性組成物に均一に分散してなる組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a composition obtained by uniformly dispersing a swellable clay mineral such as bentonite and a dehydrator in a hydraulic composition.

特に水中における盛土造成に関して、周辺環境に悪影響
を与えずに連続施行でき、また水中内で容易な混練り方
法でも混煉り性、作業性よく施工可能であり、しかも得
られた造成物の強度低下も少ない組成物、すなわち、水
中ソイルコンクリートの場合の問題点となる水中分離が
全く無い水硬性固化組成物に関するものである。
In particular, regarding the construction of embankments underwater, it can be carried out continuously without adversely affecting the surrounding environment, and can be constructed with good kneading and workability using an easy mixing method underwater, and the strength of the resulting construction is reduced. The present invention relates to a hydraulically set composition that has less separation in water, which is a problem in the case of underwater soil concrete.

したがって、本発明の直接利用に供される産業分野は、
海洋土木部門における水中構築物の造成、底質改良、水
中盛土の造成等であり、本発明は港湾整備、沿岸漁業等
水産業界の発展に大きく寄与するものである。
Therefore, the industrial fields to which the present invention is directly applicable are:
The present invention is applicable to the construction of underwater structures, bottom sediment improvement, construction of underwater embankments, etc. in the marine civil engineering sector, and the present invention greatly contributes to the development of the fishery industry such as port development and coastal fishing.

〈従来の技術〉 従来、水中に盛土造成する材料としては、砕石等の骨材
と水硬化性組成物とを、水とともに混練したものを、水
中の打設面に打設して、地盤を造成している。しかしな
がら、打設時における水質汚濁による環境汚染、および
材料の分離による強度の低下がさけられなかった。
<Conventional technology> Conventionally, as a material for creating an embankment underwater, aggregate such as crushed stone and a hydraulic composition are mixed together with water, and the mixture is poured onto an underwater pouring surface to form a foundation. It is being created. However, environmental pollution due to water pollution during pouring and a decrease in strength due to material separation were unavoidable.

特に、近年、海辺の有効利用の一環として従来から、周
辺のしゅんせつ及び土砂等の埋め立てによる造成利用に
おいて、海辺の生態系の破壊による自然破壊、及び公害
問題の解決が望まれており、海辺における自然保護と近
代構築物の調和のとれた利用方法の研究が進められてい
るのが現状である。
In particular, in recent years, as part of the effective use of seaside areas, it has been desired to solve the problem of natural destruction and pollution caused by the destruction of seaside ecosystems through dredging and land reclamation of surrounding areas. Currently, research is underway on how to use modern structures in harmony with nature conservation.

特にこれらの利用方法の最大の問題点は、水中における
底質の改良及び盛土による造成時の汚濁の発生、拡散に
よる汚染である。しかしてこの問題点は固化材料の流出
によるフィルコンクリート、造成盛土の強度不足等固化
組成物に関する解明がなければ解決されないものであっ
た。
In particular, the biggest problem with these methods of use is the generation of pollution during the improvement of the bottom sediment in the water and the creation of embankments, as well as the pollution caused by diffusion. However, this problem could not be solved without elucidation of the solidification composition, such as lack of strength of fill concrete and constructed embankment due to outflow of solidified material.

本発明者等は、上記固化材料に関する各種問題点を軽減
または解消するため、鋭意研究を行い本発明に到達した
。すなわち水中施工時における分離・強度・耐久性、環
境等に効果のある新規な水中盛土の造成用固化組成物を
得た。
The present inventors conducted extensive research and arrived at the present invention in order to reduce or eliminate the various problems related to the above-mentioned solidified materials. In other words, a novel solidified composition for constructing underwater embankments that is effective for separation, strength, durability, environment, etc. during underwater construction was obtained.

く問題を解決するための手段〉 本発明者等は、水硬化性組成物に、その表面改質剤とし
てta水剤を添加、混合処理し、さらに膨潤性粘土鉱物
を添加、混合することにより、前記膨潤性粘土鉱物によ
る増粘効果と、前記治水剤によるta水性との相乗効果
により、水硬化性組成物粒子が、水中または海水中で拡
散分離することに対し著しく抵抗性を発揮することを知
見し、本発明に達した。
Means for Solving the Problems> The present inventors added and mixed a TA water agent as a surface modifier to a hydraulic composition, and further added and mixed a swellable clay mineral. , Due to the synergistic effect of the thickening effect of the swellable clay mineral and the TA aqueous property of the water control agent, the particles of the hydraulic composition exhibit remarkable resistance to diffusion separation in water or seawater. We discovered this and arrived at the present invention.

すなわち、本発明は水硬化性組成物に、膨潤性粘土鉱物
と治水剤とを添加、混合したことを特徴とする水硬性固
化組成物に関する。
That is, the present invention relates to a hydraulic solidifying composition characterized in that a swelling clay mineral and a water control agent are added and mixed with the hydraulic composition.

本発明で、使用する水硬化性組成物としては、普通セメ
ント、超早強セメント、早強セメント、中庸熱セメント
、の各種ポルトランドセメント、高炉セメント、シリカ
セメント等の各種混合セメント及びジエ・ノドセメント
で示される超速硬性セメントまたは石膏、及び各種スラ
グ等の水硬性組成物が挙げられる。
In the present invention, the hydraulic composition used includes ordinary cement, ultra-early strength cement, early-strength cement, medium-heat cement, various mixed cements such as portland cement, blast furnace cement, silica cement, and die-nod cement. Hydraulic compositions such as ultra-rapid hardening cement or gypsum, and various types of slag can be mentioned.

本発明で使用する膨潤性粘土鉱物としては、ベントナイ
ト、ハーミュキュライト、カオリナイト、マイカ等が挙
げられる。その添加量は、水硬化性組成物に対し、重量
比で5〜100%が効果的である。
Swellable clay minerals used in the present invention include bentonite, hermiculite, kaolinite, mica, and the like. An effective amount of the additive is 5 to 100% by weight based on the hydraulic composition.

一方、水硬性組成物の表面改質を行って水硬化性組成物
粒子の水中への拡散を防止するための治水剤としては、
塩素化パラフィン、流動パラフィン、ステアリン酸等の
高級脂肪酸及びその塩類、金属石鹸、ポリテトラフルオ
ロエチレン、特にフィブリル化したポリテトラフルオロ
エチレン、シリコーン等の少なくとも一つが使用される
。これらの治水剤は微粉末でも良いが、予め、界面活性
剤などを用いエマルジョン状にしたものを該水硬化性組
成物に混合したほうが便利である。
On the other hand, as a water control agent for surface-modifying the hydraulic composition to prevent the particles of the hydraulic composition from dispersing into water,
At least one of chlorinated paraffin, liquid paraffin, higher fatty acids such as stearic acid and their salts, metal soaps, polytetrafluoroethylene, especially fibrillated polytetrafluoroethylene, and silicone is used. Although these water control agents may be in the form of fine powder, it is more convenient to form an emulsion using a surfactant or the like and mix it into the hydraulic composition in advance.

ここでさらに、撥水剤の作用について説明すると、水硬
性セメントaに、ベントナイト等の膨潤性粘土鉱物を加
え、混練すると、該粘土鉱物が膨潤し、生成したモルタ
ル組成物の水中不分離性が向上することは、公知であっ
た。しがして、本発明の如く更に撥水剤を添加すると、
水中不分離性を一層増すことが可能になったものである
Here, to further explain the action of the water repellent, when a swellable clay mineral such as bentonite is added to hydraulic cement a and kneaded, the clay mineral swells and the resulting mortar composition becomes inseparable in water. It was known to improve. However, if a water repellent is further added as in the present invention,
This makes it possible to further increase the inseparability in water.

この理由は、水硬化性組成物表面に撥水剤が付着し、該
粒子と水との濡れを阻害し、水中への水硬化性組成物の
分散流出を防止するためと考えられる。この効果は、塩
素化パラフィン、流動パラフィン、ステアリン酸等の高
級脂肪酸およびその塩類では、水硬化性組成物に対し、
重量比で0.5〜20%の添加量が適当であるが、さら
に優れた方法として、撥水剤として、ポリテトラフルオ
ロエチレン、シリコーンを使用すると、水硬化性組成物
に対して重量比で0.005〜0.5%の微量の添加量
でも同様な効果がある。
The reason for this is thought to be that the water repellent adheres to the surface of the water-curable composition, inhibits wetting of the particles with water, and prevents the water-curable composition from dispersing and flowing out into water. This effect is due to the fact that chlorinated paraffin, liquid paraffin, higher fatty acids such as stearic acid, and their salts have a negative effect on water-curable compositions.
It is appropriate to add an amount of 0.5 to 20% by weight, but an even better method is to use polytetrafluoroethylene or silicone as a water repellent. A similar effect can be obtained even if the addition amount is as small as 0.005 to 0.5%.

また、本発明の水硬性固化組成物を、使用するに際して
、水溶性高分子等の粘着剤を、重量比で0、5〜5%程
度混入し、モルタル組成物の粘度を調製し、ブリージン
グ現象の発生を防止するとともに水中不分離性をさらに
高めることもできる。
In addition, when using the hydraulic solidification composition of the present invention, an adhesive such as a water-soluble polymer is mixed in at a weight ratio of about 0.5 to 5%, the viscosity of the mortar composition is adjusted, and breathing phenomenon is caused. In addition to preventing the occurrence of , it is also possible to further improve the inseparability in water.

さらに、この水硬性固化組成物に対して、シリカヒュー
ム、フライアッシュ等を、5−50%添加することによ
り、流動性マイクロフィラー効果と、キャリアー効果に
より特に水中におけるフィルコンクリートの性状を向上
させることもできる。
Furthermore, by adding 5-50% of silica fume, fly ash, etc. to this hydraulic solidified composition, the properties of fill concrete, especially in water, can be improved due to the fluidity microfiller effect and carrier effect. You can also do it.

以下、実施例に従って本発明の水硬性固化組成物の製法
、使用方法について説明する。
Hereinafter, the method for producing and using the hydraulic solidifying composition of the present invention will be explained according to Examples.

実施例1 普通ポルトランドセメント150gをモルタルミキサー
に入れ、これに塩素化パラフィン(味の素■製商品名エ
ンパラ40)10gと分散剤として界面活性剤(ライオ
ン■商品名ママレモン)3gとを加え、10分間混合し
普通セメントの表面処理を行った。さらにベントナイト
150gと珪砂4号700gを加え混合した後、清水2
40gを加え2分間混練しモルタル組成物を試作した。
Example 1 150 g of ordinary Portland cement was placed in a mortar mixer, 10 g of chlorinated paraffin (trade name: Empara 40, manufactured by Ajinomoto Corporation) and 3 g of a surfactant (Lion Corporation, trade name of Mama Lemon) were added as a dispersant, and mixed for 10 minutes. Then, the surface of ordinary cement was treated. Furthermore, after adding and mixing 150 g of bentonite and 700 g of silica sand No. 4, Shimizu 2
40 g was added and kneaded for 2 minutes to prepare a mortar composition.

このモルタル組成物について水中落下試験及び圧縮強度
の測定を行った。
This mortar composition was subjected to an underwater drop test and measured for compressive strength.

水中落下試験は、800ccの水を入れた外形11.0
cm、高さ15cmのビーカー(容積11)に練り上が
った組成物500gを10等分に分割して、水面から1
0〜20秒の間に落下させた後、直ちにビーカー内の水
を200cc分取し、この水の透過率と懸濁物質量を測
定した。透過率の測定は、分光光度計により波長660
mμの波長の透過率を蒸留水を対照液として測定した。
In the underwater drop test, the external size was 11.0 filled with 800cc of water.
Divide 500 g of the kneaded composition into a beaker (volume 11) with a height of 15 cm and a height of 15 cm, and divide it into 10 equal parts.
Immediately after dropping for 0 to 20 seconds, 200 cc of water in the beaker was collected, and the permeability and amount of suspended solids of this water were measured. The transmittance was measured using a spectrophotometer at a wavelength of 660.
The transmittance at a wavelength of mμ was measured using distilled water as a control solution.

懸濁物質の測定は、JIS  KO102r工場排水試
験方法J14.1に従って行った。
The suspended solids were measured according to JIS KO102r factory wastewater test method J14.1.

圧縮強度は、深さ50cmの水槽内に直径5 cm、高
さ10cmの円筒型型枠を設置し練り上がったモルタル
組成物を、水面から静かに水中に落下させてこの型枠内
にモルタル組成物が溢れるまで投入し、10分間静置し
た後、水槽より取り出し1日後に脱型し水温20°Cの
水中で養生し、材令7日および28日の強度を測定した
。結果は、表−1に示すとおりであった。
Compressive strength was measured by placing a cylindrical formwork with a diameter of 5cm and a height of 10cm in a water tank with a depth of 50cm, and then gently dropping the kneaded mortar composition into water from the water surface. The material was poured into the material until it overflowed, and left to stand for 10 minutes, then taken out from the water tank, removed from the mold after one day, cured in water at a water temperature of 20° C., and measured for strength on days 7 and 28. The results were as shown in Table-1.

尚、比較例1として普通ポルトランドセメント300g
と珪砂4号700gの組成のモルタル組成物、及び比較
例2として普通ポルトランドセメント150g、ベント
ナイト150g、珪砂4号700gの組成のモルタル組
成物を作成した。さらに、比較例3では、普通ポルトラ
ンドセメント300gに前記の塩素化パラフィン20g
と界面活性剤6gを添加、混合した後さらに珪砂4号7
00gと清水を所定量加えたモルタルを作成した。また
比較例4では普通ポルトランドセメント300gにポリ
テトラフルオロエチレン樹脂の水性エマルジョン(三井
・デュポンフロロケミカル■製部品名テフロンに−20
−J:固形分濃度30%)0.5gを添加し100℃に
加熱し、乳鉢にて混合しフィブリル化処理を行った。こ
れに珪砂4号700gと清水を所定量加えてモルタル組
成物を作成した。これらの比較例についても実施例1と
同様水中落下試験及び圧縮強度試験を行った。
In addition, as Comparative Example 1, 300g of ordinary Portland cement
and 700 g of silica sand No. 4, and as Comparative Example 2, mortar compositions containing 150 g of ordinary Portland cement, 150 g of bentonite, and 700 g of silica sand No. 4 were prepared. Furthermore, in Comparative Example 3, 20 g of the above chlorinated paraffin was added to 300 g of ordinary Portland cement.
After adding and mixing 6 g of surfactant, add silica sand No. 4 and 7.
A mortar was prepared by adding a predetermined amount of 00g and fresh water. In addition, in Comparative Example 4, 300 g of ordinary Portland cement was mixed with an aqueous emulsion of polytetrafluoroethylene resin (manufactured by Mitsui DuPont Fluorochemical Co., Ltd. Part name: Teflon -20
-J: Solid content concentration 30%) 0.5g was added, heated to 100°C, mixed in a mortar, and fibrillation treatment was performed. A mortar composition was prepared by adding 700 g of silica sand No. 4 and a predetermined amount of fresh water to this. These comparative examples were also subjected to an underwater drop test and a compressive strength test in the same manner as in Example 1.

結果は、表−1に示した通りであった。The results were as shown in Table-1.

表−1 実施例2 乳鉢にて普通ポルトランドセメント1000gにポリテ
トラフルオロエチレン樹脂の水性エマルジョンを1.7
g(固形分換算で0.05%)添加して比較例4同様十
分混合を行いポリテトラフルオロエチレンで表面処理し
た水硬化性組成物を得た。
Table 1 Example 2 In a mortar, add 1.7 g of an aqueous emulsion of polytetrafluoroethylene resin to 1000 g of ordinary Portland cement.
g (0.05% in terms of solid content) was added and thoroughly mixed in the same manner as in Comparative Example 4 to obtain a water-curable composition whose surface was treated with polytetrafluoroethylene.

この水硬化性組成物150gとベントナイト150g及
び珪砂700gとをモルタルミキサーに入れ1分間混合
した後、清水240gを加え2分間混練しモルタル組成
物を作製した。このモルタル組成物について実施例1と
同様に水中落下試験、圧縮強度測定を行った。
150 g of this water-curable composition, 150 g of bentonite, and 700 g of silica sand were placed in a mortar mixer and mixed for 1 minute, and then 240 g of clean water was added and kneaded for 2 minutes to prepare a mortar composition. This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1.

実施例3 普通ポルトランドセメント100gと石膏50gをモル
タルミキサーにいれ、これに流動パラフィン(中央化成
■製)10gと分散剤として界面活性剤(ママレモン)
3gを加え、10分間混合し水硬製組成物の表面処理を
行った。これにベントナイト150gと珪砂4号700
gとを加え1分間混合した後、清水240gを加え2分
間混練しモルタル組成物を得た。
Example 3 100 g of ordinary Portland cement and 50 g of gypsum were placed in a mortar mixer, and 10 g of liquid paraffin (manufactured by Chuo Kasei ■) and a surfactant (Mama Lemon) were added as a dispersant.
3 g was added and mixed for 10 minutes to perform surface treatment of the hydraulic composition. Add to this 150g of bentonite and 700g of silica sand No. 4.
g and mixed for 1 minute, then 240 g of clean water was added and kneaded for 2 minutes to obtain a mortar composition.

このモルタル組成物の水中落下試験、圧縮強度測定を前
実施例1と同様に行った。
This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1 above.

実施例4 ジェットセメント150gに、ステアリン酸(特級試薬
)5gと分散剤として界面活性剤(ママレモン)3gを
添加し前記実施例3と同様の処理を行った。これに自由
膨張型のフッ素金雲母150gと珪砂700gを加え、
モルタルミキサーで1分間混合後、清水240gを加え
2分間混練してモルタル組成物を作製した。
Example 4 5 g of stearic acid (special grade reagent) and 3 g of a surfactant (Mama Lemon) as a dispersant were added to 150 g of jet cement, and the same treatment as in Example 3 was performed. Add 150g of free expansion type fluorine phlogopite and 700g of silica sand to this,
After mixing for 1 minute with a mortar mixer, 240 g of clean water was added and kneaded for 2 minutes to prepare a mortar composition.

このモルタル組成物の水中落下試験、圧縮強度測定を前
記実施例1と同様に行った。
This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1 above.

実施例5 乳鉢に普通ポルトランドセメント150gとシリカヒユ
ーム50gいさらにポリテトラフルオロエチレン樹脂水
性エマルジョン0.25gを入れ加熱混合後、これをモ
ルタルミキサーに移しさらに塩素化パラフィン10gを
加え5分間混合し水硬性組成物の表面処理を行った。こ
れにベントナイト100gと珪砂4号700gとを加え
1分間混合後、清水240gを加え2分間混練してモル
タル組成物を作成した。
Example 5 150 g of ordinary Portland cement, 50 g of silica hume, and 0.25 g of polytetrafluoroethylene resin aqueous emulsion were placed in a mortar and heated and mixed, then transferred to a mortar mixer, further 10 g of chlorinated paraffin was added, and mixed for 5 minutes to obtain a hydraulic composition. Performed surface treatment on objects. To this, 100 g of bentonite and 700 g of silica sand No. 4 were added and mixed for 1 minute, and then 240 g of fresh water was added and kneaded for 2 minutes to prepare a mortar composition.

このモルタル組成物の水中落下試験、圧縮強度測定を前
実施例1と同様に行った。
This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1 above.

実施例6 モルタルミキサーに、高炉セメント150gとシリコー
ン(東芝シシリコン■TSL8802)1.5gを加え
、10分間混合し水硬性組成物の表面処理を行った。こ
れに、ヘントナイl−150gと、珪砂4号700gを
加え1分間混合した後、清水240gを加え2分間混練
しモルタル組成物を得た。
Example 6 150 g of blast furnace cement and 1.5 g of silicone (Toshiba SiSilicon TSL8802) were added to a mortar mixer and mixed for 10 minutes to perform surface treatment of the hydraulic composition. To this, 150 g of Hentonai I-1 and 700 g of silica sand No. 4 were added and mixed for 1 minute, and then 240 g of clean water was added and kneaded for 2 minutes to obtain a mortar composition.

このモルタル組成物の、水中落下試験、圧縮強度測定を
前実施例1と同様に行った。
This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1 above.

実施例7 モルタルミキサーに、普通ポルトランドセメント150
gとフライアッシュ30gを加え、混合後さらにステア
リン酸カルシウム(特級試薬)3gと界面活性剤3gを
添加し10分間混合して水硬化性組成物の表面処理を行
った。これに、ベントナイト150gと、珪砂4号67
0g、を加え1分間混合した後、清水240gを加え2
分間混練しモルタル組成物を得た。
Example 7 Ordinary Portland cement 150 in a mortar mixer
After mixing, 3 g of calcium stearate (special grade reagent) and 3 g of a surfactant were added and mixed for 10 minutes to perform surface treatment of the hydraulic composition. To this, 150g of bentonite and silica sand No. 4 67
Add 0g of water and mix for 1 minute, then add 240g of fresh water and mix 2
A mortar composition was obtained by kneading for a minute.

このモルタル組成物の、水中落下試験、圧縮強度測定を
前実施例1と同様に行った。
This mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in Example 1 above.

実施例8 実施例1と同一組成のモルタルで混練時にさらに水溶性
高分子系粘着剤メチルセルロース〔信越化学@hi−メ
トローズ90SH−15000)を、対セメント比で1
.0%添加したモルタル組成物を作成し、前記実施例同
様水中落下試験圧縮強度測定を行った。
Example 8 A water-soluble polymer adhesive methyl cellulose [Shin-Etsu Chemical @hi-Metrose 90SH-15000] was added at a ratio of 1 to cement during kneading with a mortar having the same composition as in Example 1.
.. A mortar composition containing 0% was prepared, and the compressive strength was measured by an underwater drop test in the same manner as in the above example.

実施例9 実施例8において、メチルセルロースの代わりに水溶性
高分子系粘着剤として、ポリアクリルアミド(オルガノ
■製オルフロックAP−1)を、対セメント比で1.0
%添加したモルタル組成物を作成し、実施例7と同様な
試験を行った。
Example 9 In Example 8, polyacrylamide (Orflock AP-1 manufactured by Organo ■) was used as a water-soluble polymer adhesive instead of methylcellulose at a cement ratio of 1.0.
A mortar composition was prepared in which % was added, and the same test as in Example 7 was conducted.

実施例2から実施例9までの結果を表−2に示した。The results from Example 2 to Example 9 are shown in Table-2.

表 2 実施例2と同様なモルタル組成物を作製し、このモルタ
ル組成物の、水中落下試験、圧縮強度測定を前実施例と
同様に行9た。
Table 2 A mortar composition similar to that in Example 2 was prepared, and this mortar composition was subjected to an underwater drop test and compressive strength measurement in the same manner as in the previous example.

結果を表−3に示す。ポリテトラフルオロエチレンの添
加量が0.005%以下では水硬化性組成物の表面処理
効果が殆ど認められず、添加量が0.5%を越えるとポ
リテトラフルオロエチレンのフィブリル化による繊維ど
うしの結合が強くなりすぎ、水硬性固化組成物として使
用する場合にヘントナイトや、珪砂との混合が容易でな
くなり均一なモルタル組成物を作製することが難しくな
つた。
The results are shown in Table-3. If the amount of polytetrafluoroethylene added is less than 0.005%, the surface treatment effect of the water-curable composition will hardly be observed, and if the amount added exceeds 0.5%, the fibers will not bond together due to fibrillation of polytetrafluoroethylene. The bond became too strong, and when used as a hydraulic solidification composition, it became difficult to mix with hentonite or silica sand, making it difficult to prepare a uniform mortar composition.

実施例10 実施例2においてポリテトラフルオロエチレンの添加量
を0.17 g (0,005%)、0.67g(0,
02%) 、1.67g (0,05%)、6.67g
(0,2%) 、16.67g (0,5%)の5段階
に変化させた5種類の水硬化性組成物を作製し、以下表
−3 果がなく、水中不分離性は殆ど1.められな力1ツjこ
Example 10 In Example 2, the amount of polytetrafluoroethylene added was 0.17 g (0,005%) and 0.67 g (0,005%).
0.02%), 1.67g (0.05%), 6.67g
(0.2%), 16.67g (0.5%), five types of hydraulic compositions were prepared in five stages. .. A rare force.

また、添加量が20%を越えるとモルタルとした場合粘
性が大きくなり過き゛方梃工上、障害力(生じた。
Furthermore, if the amount added exceeds 20%, the viscosity becomes too large when used as mortar, resulting in a hindrance to the structure.

表  −  4 実施例11 実施例1において、塩素化パラフィンの添加量を0.7
5g(0.5%) 、3.0 g (2.0%)、10
g(6.7%)、15g (10%)、30g (20
%)の5段階に変化させた5種類の水硬化性組成物を作
製し、各々について実施例1と同様なモルタル組成物に
し、水中落下試験、圧縮強度測定を行った。
Table 4 Example 11 In Example 1, the amount of chlorinated paraffin added was 0.7
5g (0.5%), 3.0g (2.0%), 10
g (6.7%), 15g (10%), 30g (20
%) were prepared, and each of them was made into the same mortar composition as in Example 1, and subjected to an underwater drop test and compressive strength measurement.

結果を表−4に示す。塩素化パラフィンの添加量が0.
5%以下では水硬化性組成物の表面処理効く評 価〉 比較例1で示した様に、通常のモルタル組成物を水中コ
ンクリートとして打設すると、モルタル組成物が水中を
落下する間、または落下後堆積して平に広がっていく時
に、水に接している部分の水硬化性組成物が水に洗われ
、水中でのでのモルタル組成物の強度は、極めて脆弱な
ものとなる。
The results are shown in Table 4. The amount of chlorinated paraffin added is 0.
Evaluation that the surface treatment of the hydraulic composition is effective at 5% or less As shown in Comparative Example 1, when a normal mortar composition is cast as underwater concrete, When the mortar composition is later deposited and spread out, water washes away the parts of the hydraulic composition that are in contact with water, and the strength of the mortar composition in water becomes extremely weak.

比較例2は、水硬化性組成物の半量を、膨潤性組成物で
あるベントナイトで置き換えたものである。ベントナイ
トの効果により、水中不分離性が良くなり、水中の透過
度は上昇し水硬化性組成物の量が比較例1より少ないに
もかかわらず水中打設時のモルタル強度はやや高くなっ
た。
In Comparative Example 2, half of the water-curable composition was replaced with bentonite, which is a swelling composition. Due to the effect of bentonite, the inseparability in water was improved, the permeability in water was increased, and the mortar strength when placed in water was slightly higher even though the amount of the water-curable composition was smaller than in Comparative Example 1.

また、比較例3.4に示した様に水硬化性組成物に、撥
水剤のみを添加した場合も僅かに水中不分離効果は認め
られるが十分ではない。
Further, as shown in Comparative Example 3.4, when only a water repellent is added to the water-curable composition, a slight effect of non-separation in water is observed, but it is not sufficient.

本発明による各実施例では、膨潤性組成物と撥水剤との
相乗効果によりモルタル組成物の水中打設時における不
分離効果はさらに高くなり、各比較例に比べて水の透過
率も高くなり、かつ水中打設モルタル組成物の強度も、
各比較例より、はるかに高いものが得られた。
In each example according to the present invention, the synergistic effect of the swelling composition and the water repellent agent further increases the non-separation effect when the mortar composition is cast in water, and the water permeability is also higher than in each comparative example. and the strength of the underwater cast mortar composition.
Much higher values were obtained than in each comparative example.

また、実施例7及び8に示した様に水溶性高分子系粘着
剤を添加したモルタル組成物では、粘着剤の効果により
、モルタルに粘性を付与させることにより、水中不分離
性が高まり水中打設時の強度も、 より高いものが得られた。
In addition, as shown in Examples 7 and 8, in the mortar compositions to which a water-soluble polymer adhesive is added, the effect of the adhesive imparts viscosity to the mortar, which increases the inseparability in water and improves underwater pourability. Higher strength was also achieved at the time of installation.

Claims (4)

【特許請求の範囲】[Claims] (1)ポルトランドセメント、速硬性セメントスラグ、
石灰、石膏の少なくとも一種よりなる水硬化性組成物に
、撥水剤を添加、混合し、さらに膨潤性粘土鉱物を添加
、混合してなることを特徴とする水硬性固化組成物。
(1) Portland cement, quick hardening cement slag,
1. A hydraulic solidifying composition comprising a hydraulic composition comprising at least one of lime and gypsum, a water repellent added and mixed therein, and a swellable clay mineral further added and mixed therein.
(2)さらに、水溶性高分子系粘着剤を添加、混合して
なる特許請求の範囲(1)記載の水硬性固化組成物。
(2) The hydraulic solidifying composition according to claim (1), further comprising the addition and mixing of a water-soluble polymer adhesive.
(3)さらに、シリカフューム、フライアッシュの少な
くとも一種を添加、混合してなる特許請求の範囲(2)
記載の水硬性固化組成物。
(3) Claim (2) further comprising adding and mixing at least one of silica fume and fly ash.
The hydraulic solidifying composition described.
(4)さらに細骨材、粗骨材を添加、混合してなる特許
請求の範囲(3)記載の水硬性固化組成物。
(4) The hydraulic solidified composition according to claim (3), further comprising the addition and mixing of fine aggregate and coarse aggregate.
JP4866990A 1990-02-28 1990-02-28 Hydraulic solidified composition Expired - Lifetime JP2933969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4866990A JP2933969B2 (en) 1990-02-28 1990-02-28 Hydraulic solidified composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4866990A JP2933969B2 (en) 1990-02-28 1990-02-28 Hydraulic solidified composition

Publications (2)

Publication Number Publication Date
JPH03252340A true JPH03252340A (en) 1991-11-11
JP2933969B2 JP2933969B2 (en) 1999-08-16

Family

ID=12809738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4866990A Expired - Lifetime JP2933969B2 (en) 1990-02-28 1990-02-28 Hydraulic solidified composition

Country Status (1)

Country Link
JP (1) JP2933969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890382B2 (en) * 2002-05-20 2005-05-10 Kappa 6 S.R.L. Self-leveling cement mix for filling up and sealing diggings of channels, trenches, sewages and the like and for building works in general
JP2009180020A (en) * 2008-01-31 2009-08-13 Utsunomiya Univ Method of constructing underwater column and cement hardening object for underwater application
JP2011236072A (en) * 2010-05-10 2011-11-24 Denki Kagaku Kogyo Kk Swellable self-healing cement admixture and cement composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890382B2 (en) * 2002-05-20 2005-05-10 Kappa 6 S.R.L. Self-leveling cement mix for filling up and sealing diggings of channels, trenches, sewages and the like and for building works in general
JP2009180020A (en) * 2008-01-31 2009-08-13 Utsunomiya Univ Method of constructing underwater column and cement hardening object for underwater application
JP2011236072A (en) * 2010-05-10 2011-11-24 Denki Kagaku Kogyo Kk Swellable self-healing cement admixture and cement composition

Also Published As

Publication number Publication date
JP2933969B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
Huang Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber
CA2774395C (en) Concrete mix having anti-efflorescence properties and method of making concrete using the same
EP1561733A1 (en) Construction material based upon a sludge or sludged waste material
JP5278265B2 (en) Self-healing concrete admixture, method for producing the same, and self-healing concrete material using the admixture
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
JP2800063B2 (en) Sludge solidification material
JP2003034562A (en) Hydraulic composition and hydrated hardened body
JPH01261250A (en) Admixture for cement concrete and mortar produced by using highly water-absorbing resin
JPH03252340A (en) Hydraulic solidifying composition
JP2005247627A (en) Method for manufacturing hardened body with pore, and block
JP2006111489A (en) Solidification method and solidifying agent used in the same
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP2004331459A (en) Cement composition and hardened cement having resistance to sulfuric acid
JP6027084B2 (en) Solidification material and solidification method of ultrafine powder-containing material
JP3751068B2 (en) Underwater block
JP2003012361A (en) Instant stripping porous concrete compact
JPS5992952A (en) Strength slow-effect mixed cement and hydraulic composition
JP5149489B2 (en) Acid resistant composition
JP2020033207A (en) Underwater inseparable mortar composition and mortar thereof
JP4070982B2 (en) Neutral solidification material and neutral solidification treatment method
JP2826373B2 (en) Highly filling, fluid concrete
KR20120055219A (en) Concrete composition for high-strength concrete using sludge
JPS6255325A (en) Charging of soil into water
KR20060112748A (en) High strength water concrete composition comprising silanes main material
JP6755828B2 (en) Ground improvement method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11