JPH0325233B2 - - Google Patents

Info

Publication number
JPH0325233B2
JPH0325233B2 JP57164081A JP16408182A JPH0325233B2 JP H0325233 B2 JPH0325233 B2 JP H0325233B2 JP 57164081 A JP57164081 A JP 57164081A JP 16408182 A JP16408182 A JP 16408182A JP H0325233 B2 JPH0325233 B2 JP H0325233B2
Authority
JP
Japan
Prior art keywords
particle size
pulverized coal
weight
coal
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57164081A
Other languages
Japanese (ja)
Other versions
JPS5955389A (en
Inventor
Tooru Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57164081A priority Critical patent/JPS5955389A/en
Publication of JPS5955389A publication Critical patent/JPS5955389A/en
Publication of JPH0325233B2 publication Critical patent/JPH0325233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の詳細な説明〕 本発明は、下水、屎尿、屠場廃水、家畜廃水、
水産加工廃水、澱粉廃水、酒精廃水、薬品製造廃
水、重金属含有廃水、製革廃水、染色廃水、鍍金
廃水、含油廃水、病院廃水、電気機械工場廃水、
塵芥処理廃水、食品加工廃水、家庭雑排水等のあ
らゆる環境汚染源汚水をそのままの濃度状態でも
極めて簡単且つ効果的に無臭化処理し浄化し得る
汚濁水の処理方法に関し、より詳細には、煽石を
使用し上記効果を達成し得る汚濁水の処理方法に
関する。 従来、各種の濃厚汚濁水や悪臭性汚泥の処理に
おいては、稀釈水を多量使用するために大型処理
容積設備を必要としそのための設備費の過大や管
理保持の熟練等の問題や、処理工程中における臭
気発生、終末処理(重油焼却、セメント固結、投
棄等)に要する膨大な経費等の問題がある。 例えば都市下水道規模20万人の場合、活性汚泥
法による処理を行えば、その発生汚泥量はSS(固
形分)250000ppmのもの日量約200m3となり、こ
れを脱水ケーキとして業者委託投棄を行えば、ト
ータルランニングコストは1m3当たり5000円を超
え、即ち1日当たり100万円以上の経費を要し、
しかも二次公害発生の悪影響は依然として残つて
いる。 本発明者は、さきに汚濁水及び汚泥に粒度調整
微粉炭、微粒状カーボン及び鉄アルミニウム系凝
集剤を組合わせて添加し処理するとき、短時間の
内に微粉炭粒子を核とする有機性無機性不純物質
の凝集体が形成されて沈降分離し、浄化水が容易
に上澄水として得られることを見出した(特公昭
54−36413号公報参照)。かかる場合には沈降分離
された含炭凝集体は別が極めて容易であり、し
かも連続脱水処理過程においては微粉炭粗粒子が
布にセルフプレコートされ、低負圧(200mmHg
以下の吸引によつても極めて大きい過速度(40
Kg/m2・h以上)が得られ(汎用脱水機の過速
度は2〜20Kg/m2・hである)、高い効率によつ
て脱水が可能となり、また得られた脱水ケーキは
含水率が少なく、自然乾燥により更に石炭の有す
る撥水性を利して二次脱水され直ちに無臭の燃料
または肥料として活用し得るという従来法ではな
かつた特長を有している。 本発明者はかかる技術的知見に基ずいて、更に
各種汚濁水及び汚泥を効果的に処理る方法につい
て研究を進めたところ、石炭が高温高圧下で地下
において自然コークス化した未利用の煽石を粉化
し、粒度調整したものを単独或いは上記公報に記
載された微粉炭と混合使用すれば、該微粉炭を単
独で使用する場合に比して同等またはそれ以上の
効果が得られることを見出した。 尚、煽石とは地下の炭層中或いは上下盤付近に
火山岩が貫入してその熱によつて乾留され変質し
た石炭をいうが、この煽石は普通の無煙炭やコー
クスに比して灰分が多く、また不均質なものが混
在しているために利用上の困難性があり、多くは
未利用のまま地下に放置されている。困みに我国
の埋蔵する石炭資源の中に夾在する煽石は数億ト
ンの量に達するといわれている。 即ち、本発明の目的は、未利用のまま地下に多
量に放置されている煽石を有効且つ経済的に利用
した汚濁水の処理方法を提供するにある。 本発明によれば、 (a) 煽石粉を10重量%以上の量で含有し且つ粒径
6乃至500メツシユのものを85重量%以上含有
する粒度調整微粉炭、 (b) 加水分解により水酸化アルミニウムまたは水
酸化アルミニウムと水酸化鉄を形成し得る凝集
剤、 及び必要により、 (c) PH中和調整剤、 とを組み合わせて汚濁水を処理する方法におい
て、 汚濁水への添加に先立つて上記粒度調整微粉炭
(a)を5乃至20重量%の濃度で含有せしめた水性懸
濁液を実質的に粒度をこわさない範囲で強力撹拌
を施し、次いでこの処理懸濁液を他の成分ととも
に汚濁水に添加することを特徴とする汚濁水の処
理方法が提供される。 本発明の方法で使用する成分(a)の粒度調整微粉
炭は、炭坑の選炭工程において副生する低品位の
沈澱微粉炭、低炭化度亜炭や褐炭及び泥炭等の石
炭類の粒炭を包含し、煽石粉を10重量%以上、特
に20〜50重量%の範囲で含有し、汚濁水の性状に
よつては100%煽石粉であつてもよく、通常篩に
よつて分級し、6〜500メツシユのものに粒度調
整される。 本発明においては煽石粉を単独で成分(a)として
使用する場合を除き、煽石粉と他の微粉炭とを混
合して使用するが、この煽石粉と混合使用する微
粉炭としては高品位炭を粒度調整したものでもよ
いが、工業的には上述した比較的低品位微粉炭が
有利に使用される。また販売対象の格外炭とされ
ている商品位置の低い低品位炭、例えば
3500Kcal/Kg〜5000Kcal/Kgの発熱量を有する
高灰分のものも粒度調整して有利に使用でき、本
発明においてはむしろ低品位炭が歓迎される。 本発明において成分(a)として使用する粒度調整
微粉炭は、6乃至500メツシユの範囲の粒径のも
のが85重量%以上であることが必要である。6メ
ツシユ篩を通らない粗大粒径のものは沈降現象が
必要以上に急速に行われてスラツジとの吸着凝集
が不充分となり、また500メツシユ篩を通過する
極めて微粉状のものは、凝集は行われても沈降時
間が著しく長くなるからである。 本発明の重要な特徴は、煽石粉を10重量%以上
含有する粒度調整微粉炭を使用することにある。 本発明において使用する煽石は、火山岩による
変質程度の差異または形態によつて、ハシリ、オ
コリ(無煙)、チクラの3種類に区別されるが、
何れも通常の微粉炭に比して多孔質であり、また
比重も大である。本発明においては、上記何れの
煽石も使用し得、例えばオコリは一般に固定炭素
分75〜85%、揮発分3〜6.5%、及び真比重は1.5
〜1.9の範囲にあり、従つて微粉状にしても汚濁
水の汚濁成分との凝集体は、比重が大であるため
に容易にまた煽石粉が多孔質であるところから的
確に分離沈降が行われ、汚濁成分の除去が有効に
行われる。 この成分(a)の粒度調整微粉炭は、汚濁水の性状
によつても異なるが汚濁水のBOD成分(乾量換
算)またはSS成分(固形分、乾量換算)に対し
て20乃至300重量%、特に50乃至100重量%の範囲
で使用することが好適である。 本発明においては上述した粒度調整微粉炭(a)を
他の成分の添加に先立つて、該成分(a)を5乃至20
重量%の濃度で含有せしめた水性懸濁液を、実質
的に粒度をこわさない条件下に強力撹拌を施した
後、汚濁水に添加処理するものである。 かかる撹拌処理を行うことによつて汚染物質の
吸着、凝集、沈降、分離等の浄化効果が一層改善
され、また処理剤使用量を顕著に少なくし得るの
である。 本発明における粒度調整微粉炭スラリーの撹拌
は5重量%よりも低い濃度では効果が得られ難
く、また濃度が20重量%よりも大であるとスラリ
ーが形成され難く、そのため撹拌処理によつて粒
子が容易に破壊されるという不都合を生ずること
となる。 更にスラリーの撹拌は多翼撹拌機により少なく
とも300rpmの回転速度で撹拌することが必要で
ある。300rpm未満でも全く効果がないことはな
いが、300rpm以上が好ましい。しかしあまりに
回転数を高くすると煽石粉及び微粉炭が細分され
るばかりでなく、操作も容易でなく、装置面でも
高い強度が要求されるので1000rpm程度までが有
利に採用される。 また本発明において使用する成分(a)に配合され
る煽石粉は、比重が大であるので撹拌機のみの撹
拌では懸濁槽の底部にこの煽石粉が沈降するので
槽の底部から圧縮ガス、例えば圧縮空気を吹き込
み撹拌を補助することが望ましい。かくして煽石
粉を均一に分散させた粒度調整微粉炭(a)が調製さ
れる。 本発明においては、成分(a)を汚濁水に添加する
に先立つて、水性懸濁液中で撹拌摩擦処理するこ
とによつて、固形分やCOD成分の吸着能や凝集
能を増大させ、これにより使用する粒度調整の煽
石粉及び微粉炭の使用量を約半分にも低減させ得
るのである。 一般に粒度調整の微粉炭(a)の粒子は、各種ガス
状物質を吸着しており、更にそのボイド(空隙)
には空気が包蔵されているが、使用に先立つて水
性懸濁液として撹拌すると、これらのガス状物質
や空気が水で排除され、その結果粒子表面が汚濁
水中の除去すべき成分と接触する効率が著しく向
上し、のみならず粒子表面に安定に一様な水膜が
形成され、粒子の周わりに所謂電気二重層が安定
に形成される、即ち粒子のジータ電位が高められ
るのであり、これにより汚濁水中の固形分等の電
気泳動的吸着も促進されることになる。 かくして汚濁水への添加に先立つて強力撹拌処
理を行なうことにより、吸着能や凝集能を著しく
高め得るのである。 また本発明においては、成分(b)として加水分解
により水酸化アルミニウム又は水酸化アルミニウ
ムと水酸化鉄を形成し得る凝集剤を使用する。 この成分(b)の凝集剤は、無機質凝集剤として知
られており、例えば硫酸アルミニウム、硫酸アル
ミニウム−硫酸鉄複合体、アルミン酸ナトリウ
ム、アルミ明バン或いは赤泥硫酸処理物等が包含
されるが、本発明においては、アルミ製錬から廃
出される赤泥を硫酸したもの(特公昭50−27946
号公報参照)が工業的に特に有利に使用できる。 本発明方法において使用する成分(b)は、通常成
分(a)及び成分(b)の合計重量に対し、約10乃至50重
量%、特に15乃至40重量%の範囲で使用される。
上記範囲よりも小量であるとフロツクが脆弱とな
り、そのために過時間が長くなる。また上記範
囲よりも多量に使用しても効果を高めることがで
きないので経済的に不利である。しかしながら、
この成分(b)の上記使用量も汚濁液の状態等によつ
て選択変更され得るものであり必ずしも臨界的で
ない。またこの(b)成分以外の公知の無機質凝集
剤、例えばシリカゾル、スズ酸ゾル、イオウのヒ
ドロゾル、硫酸鉄、塩素化緑バン等を併用するこ
とができる。 また本発明においては、必要によりPH調整の目
的で成分(c)を使用する。例えば汚濁液が酸性の場
合にはアルアリ剤で中和することにより本発明の
効果を一層高め得る場合が多い。かかる場合に成
分(c)として使用するアルカリ剤としては、アルカ
リ金属類及びアルカリ土類金属類の水酸化物、炭
酸塩、その他の無機弱酸や有機酸の塩が包含さ
れ、1種又は2種以上が併用される。 また本発明の処理方法においては、上記(a)乃至
(c)の各成分を組み合わせて汚濁水の処理を行う
が、通常有機高分子凝集剤乃至凝集助剤を更に併
用することにより一層効果を向上させることがで
きる。かかる凝集剤としては例えば、ポリアクリ
ル酸、ポリメタクリル酸、CMC、アルギン酸ソ
ーダ、澱粉、セツケン類、ゼラチン又はアルブミ
ン等の一般に知られたアニオン系、カチオン系或
いはノニオン系の高分子凝集剤、特にアニオン系
の有機高分子が包含され、これらは単独或いは2
種以上を組み合わせて使用できる。これらは処理
すべき汚濁水の状態によつて異なるが、通常0.1
重量%以下の使用量でよく、例えば0.01重量%
(100ppm)以下の極めて少量の添加で充分な場合
が多い。 また本発明においては、成分(a)とともに懸濁状
として或いは別個に、平均粒径約100mμ程度の
極めて微粒のカーボンを併用することができる。 この微粒状カーボンは汚濁液の不純成分(汚濁
成分)を吸着し、成分(a)の粒子と強固な再凝集体
を形成するものであり、かくして過吸引に際し
て汚濁成分が布を通過して液を汚染するとい
う不都合が防止されるとともに、この微粒状カー
ボンは汚濁液に対する脱色性能が極めて優れてい
るのである。かかるカーボンとしてはナフサカー
ボン又はオイルカーボンが適当であり、例えばナ
フサカーボンはナフサのクラツキング工程等にお
いて副生される余剰物であるから、これを好都合
に利用し得ることは極めて有利である。 このカーボンは、一般に成分(a)の粒度調整微粉
炭当り5乃至20重量%の範囲で使用することが望
ましいが、汚濁液の状態によつても異なり、必ず
しも臨界的でない。また最終的に捕捉される含炭
汚泥脱水ケーキを特に肥料として使用する場合に
は10重量%以下とすることが望ましい。 また本発明においては、前記成分(a)の水性懸濁
液を汚濁液に添加する際に次亜塩素酸カリウムや
酵素賦有の腐触土(特許第1061725号参照)等の
公知の酸化剤を併用して反応時間を短縮すること
も可能である。 本発明において使用する(b)及び(c)の成分は、乾
燥状態で使用してもよいし懸濁液または湿潤状態
で加えてもよく、別々に或は予め混合して汚濁水
に添加することができる。 本発明の処理方法は、上述した処理剤を添加混
合した後、極めて短時間に吸着、凝集、沈降が起
り、高度に浄化された上澄液が得られ、更には沈
降物の布等による分離も極めて容易で、連続処
理方式が有利に採用できる。通常大量に排出され
る各種排液や汚泥を連続的に処理し得、しかも比
較的少量の処理剤の使用で満足すべき効果が得ら
れる本発明は、工業的に極めて有意義且つ社会に
歓迎されるべき実用的発明である。 また各処理剤成分は余剰副産物乃至商品価置の
低い物質であつて、この点においても本発明の社
会的価置は大きい。 本発明の処理において連続処理を行う場合に
は、粒度調整された微粉炭成分(a)は水媒体中での
撹拌処理を連続的に行うことが好ましいが、バツ
チ方式でも充分である。連続処理は、例えば汚濁
液と添加処理剤が連続的に投入されて撹拌混合が
行われる混合槽、該混合槽から導管によつて連続
的に注入される固液分離槽及びその底部から連続
的に抜き取られて導管により導かれた凝集沈澱物
の液を別する連続過装置を組み合わせて行う
ことができる。 混合槽は汚濁液と処理剤とを充分に混合するた
めに撹拌器を備えることが望ましく、また分離槽
は上澄液をオーバーフローさせ、オーバーフロー
部と底部の凝集沈澱部とが乱れないように混合液
の導入が設計されることが望ましい。 また更に連続過装置としては、凝集物の別
が容易であるから、例えば布をエンドレスベル
トに用い、その進行方向を上向きに傾斜させて手
前の下側部に混合液を受ける液だめ部を形成する
ように側板を設け、プレコート層を形成して沈降
した凝集沈澱物を上方に移送させつつ、液だめ部
以降において通常背面から例えば100〜200mmHg
程度の負圧に減圧して脱水する様に設計したもの
が好都合である。 得られたケーキの水分は容易に50%以下とな
り、上記過装置においては上部のコンベアロー
ルで布が向きを変えたとき下方に落下するの
で、ケーキを好都合に捕集することができる。 本発明の処理法によつて得られた低含水ケーキ
は、2日〜4日の自然風乾によつて容易に30%以
下の含水率とすることができ、それらは通常
3500Kcal/Kg〜5000Kcal/Kgの発熱量を有する
ので、補助燃料を必要とすることなく、そのまま
焼却処理や高熱乾燥処理することができるので甚
だ好都合である。また処理する原液が無害の肥料
成分を含有している場合には、ケーキを土地改良
剤または肥料として利用することも可能である。 また本発明においては、汚濁水中の汚濁成分を
凝集沈降せしめた分離上澄水を、粒径16乃至3メ
ツシユの煽石細粒層に陽極又は陰極を有する電解
層において電解過することにより、処理水の水
質を更に純化することが可能となる。 従来、活性炭を過剤とする静電気誘導吸着
過槽が知られているが、周知の如く活性炭が高価
であるため工業的に使用することは、経済的不利
益を伴うのである。また使用済みの活性炭を再生
使用するとしてもその再生装置等に多大の経費を
要し、経済的不利益は免れ難い。 これに対して本発明の上記態様においては、
過槽として使用する煽石は、既に前述した通り、
特に我国においては未利用のまま数億トンが放置
されており、現在稼行中の諸炭坑においても既存
坑道中に莫大な量が残存しており、非常に安価な
コストで入手し得、経済的な面で顕著な利益がも
たらされるのである。 本発明の上記態様において使用する電解過槽
の態様を示す第1図において、この電解槽1に
は、外周壁2の内部に煽石細粒層3を有する内筒
4を備えている。この煽石細粒層3にはスライダ
ツクSの端子に接続されている陽極が設けら
れ、また外周壁2の内側に沿つて金網5が設けら
れ、この金網5はスライダツクSの端子に接続
され、陰極としての機能を有する。 煽石細粒層3は、煽石細粉を50重量%以上含有
する粒径16乃至3メツシユの細粉炭から成つてい
る。この細粉炭の粒径が上記範囲よりも大である
と、不純物の除去が充分でなく、また上記範囲よ
りも小であると過速度が小となり、過効率が
不満足なものとなる。また煽石細粉の含有量が上
記範囲よりも小であると、やはり過に際して不
純物の除去が充分でない。これは煽石がその天然
生成期において石炭よりも多孔空隙構造に変成さ
れているためと考えられる。 即ちこの態様においては、汚濁水中の汚濁成分
を凝集沈降せしめた分離上澄水を、内筒4の上方
開口より導入し、スライダツクSによりバイアス
電圧を付加された煽石細粒層3中を通過せしめ
る。 しかるにこの煽石細粒層3中の細粉炭粒子は
夫々正又は負に帯電しているために、この処理水
中の溶存不純物は電気化学的に分解され、各細粉
炭粒子に吸着される。 かくして過された処理水は出口開口6を通つ
て回収される。 またこの態様においては、細粉炭粒子が吸着飽
和状態となれば、電場を切り替えてバイアス電圧
を付加し、水等で洗浄すれば、吸着物質が容易に
脱離するので、再生使用が可能となるのである。 またこの煽石細粒層を過剤として単純過に
賦しても後述する実施例2に示す通り良好な結果
が得られる。 上述した様に本発明による汚濁液の処理法にお
いては、煽石粉を含有する粒度調整微粉炭をその
他の処理剤と組み合わせ使用することによつて、
極めて短時間の内に反応を完了せしめ、吸着、凝
集、沈降分離が行われ、更にまた必要があれば浄
化された上澄水を煽石細粉を含有する細粉炭粒子
を過剤として単純過乃至は電解過を施すこ
とにより高度の浄化水が得られる。また分離沈降
物は急速に圧密化されて固液分離槽の底部から排
出され、次いで連続過装置(特許第942147号、
808330号参照)に導入され、低負圧、高収率のも
とに低含水率(50%以下)の含炭汚泥脱水ケーキ
を得ることができる。この場合、煽石粉を使用し
たことにより撥水性が一層増加し、脱水ケーキの
布剥離も一段と良好となる。 本発明の更に特筆すべき利点として、上記含炭
脱水ケーキを燃料化する時には無臭無煙の高発熱
量燃料となることである。この場合に煽石の最大
の欠点とされる爆ぜ現象が全く発生しないのは、
微粉(6乃至500メツシユ)とすることによつて
包蔵されている水分が殆ど脱出すること及び汚濁
液との反応工程の中で変相分解するものと考えら
れる。 また燃料としての煽石の他の欠点として高い着
火温度(440〜600℃)を有することが挙げられる
が、これも微粉炭として煽石を含有していない通
常の微粉炭(特許第1000155号参照、着火温度320
〜400℃)と併用することにより、燃料ペレツト
または煉炭として利用する場合にも比較的低温で
着火する。 また過剤として使用した煽石含有細粉炭粒子
は、吸着飽和に達した場合には、粉砕機にかけて
所定粒度にして成分(a)の粒度調整微粉炭として再
利用することもできる。 本発明を次の例で説明する。 実施例 1 三菱高島炭鉱産の煽石粉をそれぞれ100%、50
%及び0%有する粒度調整微粉炭A、B、Cを調
整し、下記第1表に示す処方に従い、CODが
1900ppmの鍍金工場廃液を処理した。 その時のCOD除去率、及び沈澱率、処理水の
色調を併せて第1表に示す。 尚、粒度調整微粉炭A、B、Cは共に粒径16乃
至325メツシユのものを90%有する。 また沈澱率(SV)は、被処理液に処理剤を添
加攪拌後静置し、30分後の上澄液層の高さh1、及
び沈降層の高さh0から下記式により算出される。 SV=h0/h1+h0×100(%) 尚、粒度調整微粉炭は、約25%のサスペンジヨ
ンとし、これを多翼式混合機で300rpmの回転速
度で、A、Bについては底部から空気を送り込み
つつ、30分間撹拌したものを処理液に添加した。
[Detailed Description of the Invention] The present invention is applicable to sewage, human waste, slaughterhouse wastewater, livestock wastewater,
Fishery processing wastewater, starch wastewater, alcoholic wastewater, pharmaceutical manufacturing wastewater, heavy metal-containing wastewater, tannery wastewater, dyeing wastewater, plating wastewater, oil-containing wastewater, hospital wastewater, electrical machinery factory wastewater,
Regarding a method for treating polluted water that can extremely easily and effectively deodorize and purify wastewater that is a source of environmental pollution, such as garbage processing wastewater, food processing wastewater, and domestic gray water, even in its original concentration state, in more detail, The present invention relates to a method for treating polluted water that can achieve the above effects using Conventionally, in the treatment of various types of concentrated polluted water and malodorous sludge, large amounts of diluted water are used, requiring large processing capacity equipment, resulting in problems such as excessive equipment costs, poor management and maintenance, and problems during the treatment process. There are problems such as odor generation and the huge cost required for final treatment (heavy oil incineration, cement consolidation, dumping, etc.). For example, in the case of a city sewage system of 200,000 people, if treated using the activated sludge method, the amount of sludge generated would be approximately 200 m3 per day with SS (solid content) of 250,000 ppm. , the total running cost exceeds 5,000 yen per 1m3 , which means an expense of more than 1 million yen per day.
Moreover, the negative effects of secondary pollution still remain. The present inventor has discovered that when a combination of particle size-adjusted pulverized coal, granular carbon, and iron-aluminum flocculant is added to polluted water and sludge for treatment, the organic It was discovered that aggregates of inorganic impurities are formed and separated by sedimentation, and purified water can be easily obtained as supernatant water (Tokuko Sho
54-36413). In such cases, it is extremely easy to separate the sedimented and separated carbon-containing aggregates, and in the continuous dehydration process, the pulverized coal coarse particles are self-precoated on the cloth, and a low negative pressure (200 mmHg) is applied.
Extremely large overspeed (40
Kg/m 2 h) (the overspeed of a general-purpose dehydrator is 2 to 20 Kg/m 2 h), high efficiency makes dewatering possible, and the resulting dehydrated cake has a high water content. It has the advantage over conventional methods that it can be used as an odorless fuel or fertilizer immediately after being naturally dried and subjected to secondary dehydration by taking advantage of the water repellency of coal. Based on such technical knowledge, the present inventor further conducted research on methods for effectively treating various types of polluted water and sludge, and found that unused fueling stone, in which coal is naturally coked underground under high temperature and high pressure, It has been discovered that if the pulverized coal is pulverized and its particle size is adjusted and used alone or in combination with the pulverized coal described in the above publication, the same or greater effect can be obtained than when the pulverized coal is used alone. Ta. Incidentally, fanning stone refers to coal that has been carbonized and altered by the heat of volcanic rock that has penetrated into the underground coal seam or near the upper and lower beds, and this rock has a higher ash content than ordinary anthracite or coke. Also, the mixture of non-uniform materials makes it difficult to use, and many are left unused underground. Unfortunately, it is said that hundreds of millions of tons of fueling stones are found in Japan's coal reserves. That is, an object of the present invention is to provide a method for treating polluted water that effectively and economically utilizes a large amount of unused fanning stones left underground. According to the present invention, (a) particle size-adjusted pulverized coal containing 10% by weight or more of fanning stone powder and 85% by weight or more of particle size 6 to 500 mesh; (b) hydroxylated by hydrolysis; A method for treating polluted water by combining a flocculant capable of forming iron hydroxide with aluminum or aluminum hydroxide, and, if necessary, (c) a PH neutralization regulator, comprising: adding the above to the polluted water prior to adding the Particle size controlled pulverized coal
An aqueous suspension containing (a) at a concentration of 5 to 20% by weight is vigorously stirred without substantially destroying the particle size, and then this treated suspension is added to the polluted water along with other ingredients. A method for treating polluted water is provided. The particle size-adjusted pulverized coal of component (a) used in the method of the present invention includes low-grade precipitated pulverized coal produced as a by-product in the coal preparation process of coal mines, and granulated coal of coals such as low carbonization lignite, lignite, and peat. It contains 10% by weight or more of agitation powder, particularly in the range of 20 to 50% by weight, and may be 100% agitation powder depending on the properties of the polluted water. Particle size is adjusted to 500 mesh. In the present invention, unless the fanning stone powder is used alone as component (a), the fanning stone powder is used in combination with other pulverized coal. Although the particle size of pulverized coal may be adjusted, the relatively low-grade pulverized coal mentioned above is advantageously used industrially. In addition, low-grade coal with a low product position that is considered to be below grade coal for sale, e.g.
High ash content coal having a calorific value of 3500 Kcal/Kg to 5000 Kcal/Kg can also be used advantageously by adjusting the particle size, and low-rank coal is rather welcomed in the present invention. The size-adjusted pulverized coal used as component (a) in the present invention must have a particle size in the range of 6 to 500 meshes in an amount of 85% by weight or more. Coarse particles that cannot pass through a 6-mesh sieve undergo sedimentation more rapidly than necessary, resulting in insufficient adsorption and flocculation with the sludge, while extremely fine particles that pass through a 500-mesh sieve do not flocculate. This is because the settling time will be significantly longer even if the temperature is lowered. An important feature of the present invention is the use of particle size-adjusted pulverized coal containing 10% by weight or more of fanning stone powder. The fan stones used in the present invention are classified into three types: hashiri, okori (smokeless), and chikura, depending on the degree of alteration or form of volcanic rock.
Both are more porous than ordinary pulverized coal and have a higher specific gravity. In the present invention, any of the above-mentioned fan stones can be used; for example, Okoli generally has a fixed carbon content of 75-85%, a volatile content of 3-6.5%, and a true specific gravity of 1.5.
~1.9, and therefore, even if it is made into fine powder, aggregates of pollutant components in polluted water can be separated and settled easily because of their high specific gravity and because the fan stone powder is porous. Therefore, the removal of contaminant components is carried out effectively. This component (a), particle size-adjusted pulverized coal, has a weight of 20 to 300% relative to the BOD component (dry weight equivalent) or SS component (solid content, dry weight equivalent) of the polluted water, although this varies depending on the properties of the polluted water. %, particularly in the range of 50 to 100% by weight. In the present invention, the particle size-adjusted pulverized coal (a) described above is mixed with 5 to 20% of the component (a) before adding other components.
An aqueous suspension containing a concentration of % by weight is vigorously stirred under conditions that do not substantially destroy the particle size, and then added to polluted water. By carrying out such stirring treatment, the purification effects such as adsorption, coagulation, sedimentation, and separation of contaminants can be further improved, and the amount of treatment agent used can be significantly reduced. In the present invention, stirring of the particle size-adjusted pulverized coal slurry is difficult to obtain an effect at a concentration lower than 5% by weight, and when the concentration is higher than 20% by weight, it is difficult to form a slurry. This results in the inconvenience of being easily destroyed. Furthermore, it is necessary to stir the slurry using a multi-blade stirrer at a rotational speed of at least 300 rpm. A speed of less than 300 rpm is not completely ineffective, but a speed of 300 rpm or higher is preferable. However, if the rotation speed is too high, not only will the fan stone powder and pulverized coal be finely divided, but it will also not be easy to operate, and the equipment will require high strength, so a speed of up to about 1000 rpm is advantageously adopted. In addition, since the fanning stone powder mixed in component (a) used in the present invention has a high specific gravity, stirring with only a stirrer will cause the stirring stone powder to settle at the bottom of the suspension tank. For example, it is desirable to blow compressed air to assist the stirring. In this way, particle size-adjusted pulverized coal (a) in which the fanning stone powder is uniformly dispersed is prepared. In the present invention, prior to adding component (a) to polluted water, stirring and friction treatment is performed in the aqueous suspension to increase the adsorption ability and flocculation ability of solid content and COD components. This makes it possible to reduce the amount of agitating stone powder and pulverized coal used for particle size adjustment to about half. In general, the particles of pulverized coal (a) whose particle size is adjusted adsorb various gaseous substances, and the voids (pores)
contains air, but when the aqueous suspension is stirred prior to use, these gaseous substances and air are removed by the water, resulting in the particle surface coming into contact with the components to be removed in the polluted water. Not only is the efficiency significantly improved, but also a stable and uniform water film is formed on the particle surface, and a so-called electric double layer is stably formed around the particle, that is, the zeta potential of the particle is increased. This also promotes electrophoretic adsorption of solids in polluted water. Thus, by performing a strong stirring treatment prior to addition to polluted water, adsorption ability and flocculation ability can be significantly increased. Further, in the present invention, a flocculant capable of forming aluminum hydroxide or aluminum hydroxide and iron hydroxide by hydrolysis is used as component (b). The flocculant of component (b) is known as an inorganic flocculant, and includes, for example, aluminum sulfate, aluminum sulfate-iron sulfate complex, sodium aluminate, aluminum alum, or red mud treated with sulfuric acid. In the present invention, red mud waste from aluminum smelting is sulfurized (Special Publication No. 50-27946).
(see Japanese Patent Application Publication No. 2003-110001) can be used industrially with particular advantage. Component (b) used in the method of the present invention is usually used in an amount of about 10 to 50% by weight, particularly 15 to 40% by weight, based on the total weight of components (a) and (b).
If the amount is less than the above range, the floc will become brittle, thereby increasing the elapsed time. Moreover, even if it is used in an amount larger than the above range, the effect cannot be enhanced, which is economically disadvantageous. however,
The above-mentioned amount of component (b) to be used can be selected depending on the condition of the polluted liquid, etc., and is not necessarily critical. In addition, known inorganic flocculants other than component (b), such as silica sol, stannic acid sol, sulfur hydrosol, iron sulfate, and chlorinated green bean, can be used in combination. Furthermore, in the present invention, component (c) is used for the purpose of pH adjustment, if necessary. For example, if the polluted liquid is acidic, the effects of the present invention can often be further enhanced by neutralizing it with an alkali agent. In such a case, the alkaline agent used as component (c) includes hydroxides and carbonates of alkali metals and alkaline earth metals, and salts of other inorganic weak acids and organic acids, and one or two types thereof may be used. The above are used together. In addition, in the treatment method of the present invention, the above (a) to
Although each component (c) is combined to treat polluted water, the effect can be further improved by further combined use of an organic polymer flocculant or flocculation aid. Examples of such flocculants include commonly known anionic, cationic, or nonionic polymer flocculants such as polyacrylic acid, polymethacrylic acid, CMC, sodium alginate, starch, soaps, gelatin, or albumin, especially anionic polymer flocculants. These organic polymers may be used singly or in combination.
More than one species can be used in combination. These vary depending on the condition of the polluted water to be treated, but are usually 0.1
The amount used may be less than 0.01% by weight, for example, 0.01% by weight.
Addition of extremely small amounts (100 ppm or less) is often sufficient. Further, in the present invention, extremely fine carbon particles having an average particle diameter of about 100 mμ can be used in combination with component (a), either in a suspended form or separately. This fine particulate carbon adsorbs impurity components (pollutant components) of the polluted liquid and forms strong re-agglomerates with the particles of component (a).Thus, during excessive suction, the pollutant components pass through the cloth and become liquid. In addition to preventing the inconvenience of contaminating the liquid, this fine particulate carbon has extremely excellent decolorizing performance against polluted liquid. Such carbon is suitably naphtha carbon or oil carbon. For example, since naphtha carbon is a surplus by-produced in the cracking process of naphtha, it is extremely advantageous to be able to utilize it conveniently. It is generally desirable to use this carbon in a range of 5 to 20% by weight based on the size-adjusted pulverized coal of component (a), but this varies depending on the condition of the polluted liquid and is not necessarily critical. Furthermore, when the carbon-containing sludge dehydrated cake that is finally captured is used as fertilizer, it is desirable that the content be 10% by weight or less. In addition, in the present invention, when adding the aqueous suspension of component (a) to the polluted liquid, a known oxidizing agent such as potassium hypochlorite or enzyme-containing humus (see Patent No. 1061725) is added. It is also possible to shorten the reaction time by using them together. Components (b) and (c) used in the present invention may be used in a dry state, or may be added in a suspension or wet state, and may be added to polluted water separately or after being mixed in advance. be able to. In the treatment method of the present invention, after the above-mentioned treatment agent is added and mixed, adsorption, aggregation, and sedimentation occur in a very short period of time, and a highly purified supernatant liquid is obtained, and the sediment is further separated using a cloth or the like. It is also extremely easy to process, and a continuous processing method can be advantageously adopted. The present invention, which can continuously treat various types of wastewater and sludge that are normally discharged in large quantities, and can achieve satisfactory effects with the use of a relatively small amount of treatment agent, is extremely meaningful industrially and welcomed by society. This is a practical invention that should be done. In addition, each processing agent component is a surplus by-product or a substance with a low commercial value, and in this respect as well, the present invention has great social value. When continuous treatment is carried out in the treatment of the present invention, it is preferable that the particle size-adjusted pulverized coal component (a) is continuously stirred in an aqueous medium, but a batch method is also sufficient. Continuous treatment includes, for example, a mixing tank in which polluted liquid and additive processing agents are continuously charged and mixed by stirring, a solid-liquid separation tank into which the mixture is continuously injected from the mixing tank through a conduit, and a continuous process from the bottom of the tank. This can be carried out in combination with a continuous filtration device that separates the liquid of coagulated precipitate that is extracted and led through a conduit. It is desirable that the mixing tank is equipped with a stirrer to sufficiently mix the pollutant liquid and the treatment agent, and the separation tank should be equipped with a stirrer so that the supernatant liquid overflows and the overflow part and the coagulation sedimentation part at the bottom are not disturbed. It is desirable that the introduction of liquid be designed. Furthermore, as a continuous filtration device, it is easy to separate the aggregates, so for example, a cloth is used as an endless belt, the direction of movement of which is tilted upward, and a liquid reservoir is formed on the lower side of the front side to receive the mixed liquid. A side plate is provided so that a precoat layer is formed and the precipitated coagulated sediment is transferred upward, while the temperature is normally 100 to 200 mmHg from the back side after the liquid reservoir.
It is convenient to use one designed to dehydrate by reducing the pressure to a certain level of negative pressure. The moisture content of the resulting cake is easily less than 50%, and in the above-mentioned filtration device, when the cloth is turned by the upper conveyor roll, it falls downward, so that the cake can be conveniently collected. The low moisture content cake obtained by the treatment method of the present invention can easily have a moisture content of 30% or less by natural air drying for 2 to 4 days, and they usually have a moisture content of 30% or less.
Since it has a calorific value of 3500Kcal/Kg to 5000Kcal/Kg, it is extremely convenient because it can be directly incinerated or subjected to high-heat drying treatment without requiring auxiliary fuel. Furthermore, if the raw solution to be treated contains harmless fertilizer components, the cake can also be used as a land conditioner or fertilizer. In addition, in the present invention, the treated water is treated by electrolytically filtering the separated supernatant water in which the pollutant components in the polluted water have been coagulated and precipitated in an electrolytic layer having an anode or a cathode in a fine grain layer of fan stones with a particle size of 16 to 3 mesh. It becomes possible to further purify the water quality. Conventionally, electrostatic induction adsorption tanks using activated carbon as a superagent have been known, but as is well known, activated carbon is expensive and its industrial use is therefore economically disadvantageous. Furthermore, even if used activated carbon is reused, a large amount of expense is required for the regeneration equipment, etc., and economic disadvantages cannot be avoided. On the other hand, in the above aspect of the present invention,
As mentioned above, the fanning stone used as a tank is
In particular, in Japan, hundreds of millions of tons are left unused, and even in currently operating coal mines, a huge amount remains in the existing tunnels, and can be obtained at a very low cost, making it economically viable. It brings significant benefits in many ways. In FIG. 1 showing an embodiment of the electrolytic cell used in the above-mentioned embodiment of the present invention, the electrolytic cell 1 is equipped with an inner cylinder 4 having an outer circumferential wall 2 and a fine grain layer 3 therein. This fanning stone fine grain layer 3 is provided with an anode connected to the terminal of the slide rack S, and a wire mesh 5 is provided along the inside of the outer peripheral wall 2, and this wire mesh 5 is connected to the terminal of the slide rack S. It functions as a cathode. The fine-grained rock layer 3 is made of fine coal having a grain size of 16 to 3 mesh and containing 50% by weight or more of fine grained rock. If the particle size of the pulverized coal is larger than the above range, the removal of impurities will not be sufficient, and if it is smaller than the above range, the overspeed will be small and the overefficiency will be unsatisfactory. Furthermore, if the content of the fine powder is less than the above range, the removal of impurities during the process will not be sufficient. This is thought to be because fanstone was metamorphosed into a more porous pore structure than coal during its natural generation period. That is, in this embodiment, the separated supernatant water in which the pollutant components in the polluted water have been coagulated and settled is introduced from the upper opening of the inner cylinder 4, and is made to pass through the fan stone fine grain layer 3 to which a bias voltage is applied by the slider S. . However, since the fine coal particles in the fan stone fine grain layer 3 are each positively or negatively charged, the dissolved impurities in the treated water are electrochemically decomposed and adsorbed to each fine coal particle. The treated water thus filtered is recovered through the outlet opening 6. In addition, in this embodiment, when the pulverized coal particles reach adsorption saturation, the adsorbed substances can be easily desorbed by switching the electric field, applying a bias voltage, and washing with water, making it possible to reuse them. It is. Further, even if this fanning stone fine grain layer is simply applied as a superagent, good results can be obtained as shown in Example 2 described later. As mentioned above, in the method for treating polluted liquid according to the present invention, by using particle size-adjusted pulverized coal containing agitation stone powder in combination with other treatment agents,
The reaction is completed within a very short time, and adsorption, coagulation, and sedimentation separation are carried out, and if necessary, the purified supernatant water is purified using simple filtration or filtration using fine coal particles containing agitator fine powder as a filter. Highly purified water can be obtained by applying electrolysis. In addition, the separated sediment is rapidly consolidated and discharged from the bottom of the solid-liquid separation tank, and then the continuous filtration device (Patent No. 942147,
808330), it is possible to obtain a carbon-containing sludge dewatered cake with a low moisture content (50% or less) under low negative pressure and high yield. In this case, the water repellency is further increased by using the agitation powder, and the peeling of the dehydrated cake from the cloth becomes even better. A further noteworthy advantage of the present invention is that when the carbon-containing dehydrated cake is converted into fuel, it becomes an odorless, smokeless, and high calorific value fuel. In this case, the reason why the explosion phenomenon, which is considered to be the biggest drawback of the fan stone, does not occur at all is because
It is thought that by forming the powder into a fine powder (6 to 500 mesh), most of the contained water escapes and that it undergoes phase change and decomposition during the reaction process with the polluted liquid. Another disadvantage of fanning stones as a fuel is that they have a high ignition temperature (440 to 600°C), but this is also true of ordinary pulverized coal that does not contain fanning stones (see Patent No. 1000155). , ignition temperature 320
(~400°C), it ignites at a relatively low temperature even when used as fuel pellets or briquettes. Furthermore, when the pulverized coal particles containing fanning stones used as a surcharge agent reach adsorption saturation, they can be reused as particle size-adjusted pulverized coal of component (a) by being crushed to a predetermined particle size using a pulverizer. The invention is illustrated by the following example. Example 1 100% and 50% fanning stone powder from Mitsubishi Takashima Coal Mine, respectively.
% and 0% particle size adjusted pulverized coal A, B, and C, and according to the recipe shown in Table 1 below, the COD was
Treated plating factory waste liquid with a concentration of 1900ppm. Table 1 shows the COD removal rate, precipitation rate, and color tone of the treated water. Incidentally, 90% of particle size-adjusted pulverized coals A, B, and C all have particle sizes of 16 to 325 mesh. In addition, the sedimentation rate (SV) is calculated by the following formula from the height h 1 of the supernatant liquid layer and the height h 0 of the sedimentation layer after 30 minutes after adding the treatment agent to the liquid to be treated and stirring. Ru. SV = h 0 / h 1 + h 0 × 100 (%) The particle size-adjusted pulverized coal has a suspension of approximately 25%, and is mixed with a multi-blade mixer at a rotation speed of 300 rpm. The mixture was stirred for 30 minutes while blowing air through the tube, and then added to the treatment solution.

【表】 実施例 2 過剤として煽石粉単独(A)、煽石粉50%含有粒
度調整微粉炭(B)、煽石粉0%の天北炭加工粒度調
整微粉炭(C)及び粒状活性炭(D)を使用し、生活廃水
の活性汚泥法処理水(CODは78ppm)を単純
過及び第1図の過器を使用し電解過に賦し、
その結果を第2表に示した。 尚、単純過及び電解過の何れも過速度を
2.7m3/m2・hrで滞溜接触時間を約10分とした。
[Table] Example 2 Agitation stone powder alone (A), particle size-adjusted pulverized coal containing 50% agitation stone powder (B), Tenboku charcoal processed granule size-adjusted pulverized coal containing 0% agitation stone powder (C), and granular activated carbon (D) ), the activated sludge method-treated domestic wastewater (COD is 78 ppm) was subjected to simple filtration and electrolytic filtration using the filter device shown in Figure 1.
The results are shown in Table 2. In addition, both simple overspeed and electrolytic overspeed
2.7 m 3 /m 2 ·hr, and the residence contact time was about 10 minutes.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一の態様で使用する電解
過槽を示す図である。 1は過槽、2は外壁、3は煽石細粒層、4は
内筒、5は金網、6は出口開口、Sはスライダツ
クを夫々示す。
FIG. 1 is a diagram showing an electrolysis tank used in one embodiment of the present invention. 1 is an overtank, 2 is an outer wall, 3 is a rock fine grain layer, 4 is an inner cylinder, 5 is a wire mesh, 6 is an outlet opening, and S is a slider.

Claims (1)

【特許請求の範囲】 1 (a) 煽石粉を10重量%以上の量で含有し且つ
粒径6乃至500メツシユのものを85重量%以上
含有する粒度調整微粉炭、 (b) 加水分解により水酸化アルミニウムまたは水
酸化アルミニウムと水酸化鉄を形成し得る凝集
剤、 及び必要により、 (c) PH中和調整剤、 とを組み合わせて汚濁水を処理する方法におい
て、 汚濁水への添加に先立つて上記粒度調整微粉炭
(a)を5乃至20重量%の濃度で含有せしめた水性懸
濁液を実質的に粒度をこわさない範囲で強力撹拌
を施し、次いでこの処理懸濁液を他の成分ととも
に汚濁水に添加することを特徴とする汚濁水の処
理方法。
[Scope of Claims] 1 (a) Particle size-adjusted pulverized coal containing 10% by weight or more of fanning stone powder and 85% by weight or more of particle size 6 to 500 mesh; (b) Water produced by hydrolysis. a flocculant capable of forming iron hydroxide with aluminum oxide or aluminum hydroxide; and, if necessary, (c) a PH neutralizing agent. The above particle size adjusted pulverized coal
An aqueous suspension containing (a) at a concentration of 5 to 20% by weight is vigorously stirred without substantially destroying the particle size, and then this treated suspension is added to the polluted water along with other ingredients. A method for treating polluted water characterized by the following.
JP57164081A 1982-09-22 1982-09-22 Treatment of polluted water with nature coke Granted JPS5955389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164081A JPS5955389A (en) 1982-09-22 1982-09-22 Treatment of polluted water with nature coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164081A JPS5955389A (en) 1982-09-22 1982-09-22 Treatment of polluted water with nature coke

Publications (2)

Publication Number Publication Date
JPS5955389A JPS5955389A (en) 1984-03-30
JPH0325233B2 true JPH0325233B2 (en) 1991-04-05

Family

ID=15786414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164081A Granted JPS5955389A (en) 1982-09-22 1982-09-22 Treatment of polluted water with nature coke

Country Status (1)

Country Link
JP (1) JPS5955389A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647011B1 (en) 2005-11-01 2006-11-23 재단법인 포항산업과학연구원 A dyeing wasrewater processing method using a powered coke
CN103159369A (en) * 2011-12-08 2013-06-19 新奥科技发展有限公司 Method for denitrification treatment of coking wastewater

Also Published As

Publication number Publication date
JPS5955389A (en) 1984-03-30

Similar Documents

Publication Publication Date Title
US4417976A (en) Dewatering of petroleum-containing sludges with recovery of the oil component
JP5003786B2 (en) Method and apparatus for treating chlorine-containing waste as a raw material for cement
CN111943336B (en) Method for preparing polysilicate aluminum ferric flocculant, polysilicate aluminum ferric flocculant and application thereof
KR100491329B1 (en) Method for treatment of sewage sludge by means of sludge-coal-oil agglomeration
JPS6154756B2 (en)
WO2012025806A1 (en) Carbonaceous fines beneficiation using micro-algae and related processes
CN110420482B (en) Composite flocculant for treating oil sand mine tailings and method for treating mature fine tailings
US3226319A (en) Process of consolidating a voluminous, low solids content sludge
US4046683A (en) Process for separating suspended metal oxide and metal hydroxide solids from a mother liquor
CN104556483B (en) A kind of method of advanced treatment on coking wastewater biochemical tail water
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
CN111573984A (en) Coal washing wastewater treatment system
JPH0325233B2 (en)
US4212732A (en) Raw liquid waste treatment process
JPS58166914A (en) Treatment of waste water
US2158595A (en) Method for the disposal of sewage
JP2628535B2 (en) Purification treatment method for high BOD, COD waste liquid
CN114524558B (en) Coal mine wastewater treatment method and treatment system
JPS6117556B2 (en)
CN115536118B (en) Sewage treatment flocculant and preparation method and application thereof
JPH0217233B2 (en)
JPS6221596B2 (en)
JP4302786B2 (en) High SS waste liquid and sludge purification method
KR100761495B1 (en) Stock farm excrementitious matter purifying method using electrolysis and carbonization process
JP3267948B2 (en) Treatment method for oil-containing waste liquid