JPH0325194Y2 - - Google Patents

Info

Publication number
JPH0325194Y2
JPH0325194Y2 JP1984003677U JP367784U JPH0325194Y2 JP H0325194 Y2 JPH0325194 Y2 JP H0325194Y2 JP 1984003677 U JP1984003677 U JP 1984003677U JP 367784 U JP367784 U JP 367784U JP H0325194 Y2 JPH0325194 Y2 JP H0325194Y2
Authority
JP
Japan
Prior art keywords
temperature
interface
liquid sodium
temperature sensor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984003677U
Other languages
Japanese (ja)
Other versions
JPS60118996U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984003677U priority Critical patent/JPS60118996U/en
Publication of JPS60118996U publication Critical patent/JPS60118996U/en
Application granted granted Critical
Publication of JPH0325194Y2 publication Critical patent/JPH0325194Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 本考案は高低温の流体が成層している境界面の
動きを連続的かつ自動的に検出できる、原子炉に
おける冷却媒体の温度成層界面位置を検出する装
置に関するものである。
[Detailed description of the invention] The present invention relates to a device for detecting the temperature stratified interface position of a cooling medium in a nuclear reactor, which can continuously and automatically detect the movement of an interface where high and low temperature fluids are stratified. be.

原子炉においては核分裂に伴う熱エネルギを取
出すために冷却媒体が使用される。例えば軽水炉
の場合には、水、高速増殖炉の場合には液体ナト
リウムが使用される。ところでこの場合原子炉の
停止に当つて炉心温度が変化した場合、冷却媒体
の温度も変化するが、液体ナトリウムは金属であ
るため、熱伝導率の小さい水に比して炉心部での
冷却材の温度は急速に低下する。このため水の場
合のように原子炉容器内で十分に冷却材が混合さ
れることがなく、急速に温度の低下した液体ナト
リウムがその重みにより下方に沈み、その上方に
は温度の高い液体ナトリウムが層状に存在するよ
うになる。この場合第3図のように高温層17と
低温層16の境には極めて温度勾配の急な境界面
が形成される。しかも冷温流体の流れによつて高
温層17の流体塊が低温層16に巻込まれるた
め、この境界面15は時間の経過と共に揺動しな
がら徐々に容器内を上昇する。その結果原子炉容
器壁面には温度の高い液体ナトリウム層17と温
度の低い液体ナトリウム層16とが、急陵な温度
勾配を経て構造材に作用することになる。そして
このとき生ずる熱的な膨張収縮により容器や内部
構造物に大きな応力を与える。例えば境界面15
の上昇により高い温度に保たれてた容器壁を、低
温層16により急に冷却することにより、容器壁
に繰返し応力を与えることになる。その結果原子
炉使用期間内での多く繰返えされる原子炉の停止
により、熱疲労が加算されることになる。このた
め液体ナトリウムを冷却媒体とする炉の容器は、
水を冷却媒体として用いるものに比べて、特にこ
のような繰返し応力による熱疲労により機械的強
度の早期の劣化を招き易い。従つて安全性の確保
のためには容器内における前記の如き境界面15
即ち温度成層界面の推移など、液体ナトリウムの
流動特性を充分に把握して対策を建てることが必
要である。
A cooling medium is used in a nuclear reactor to extract the thermal energy associated with nuclear fission. For example, water is used in light water reactors, and liquid sodium is used in fast breeder reactors. By the way, in this case, if the core temperature changes when the reactor is shut down, the temperature of the cooling medium will also change, but since liquid sodium is a metal, it is less effective as a coolant in the core than water, which has a low thermal conductivity. temperature drops rapidly. For this reason, the coolant is not sufficiently mixed inside the reactor vessel like in the case of water, and the liquid sodium, which has rapidly decreased in temperature, sinks downward due to its weight. comes to exist in layers. In this case, as shown in FIG. 3, a boundary surface with an extremely steep temperature gradient is formed at the boundary between the high temperature layer 17 and the low temperature layer 16. Moreover, since the fluid mass in the high temperature layer 17 is drawn into the low temperature layer 16 by the flow of the cold and hot fluid, this boundary surface 15 gradually rises inside the container while shaking with the passage of time. As a result, the high-temperature liquid sodium layer 17 and the low-temperature liquid sodium layer 16 on the reactor vessel wall surface act on the structural material through a steep temperature gradient. The thermal expansion and contraction that occurs at this time gives large stress to the container and internal structures. For example, the boundary surface 15
By rapidly cooling the container wall, which has been kept at a high temperature due to the rise in temperature, by the low temperature layer 16, repeated stress is applied to the container wall. As a result, thermal fatigue is added due to the frequent shutdown of the reactor during its operating life. For this reason, the furnace vessel that uses liquid sodium as a cooling medium is
Compared to those that use water as a cooling medium, they are particularly prone to early deterioration of mechanical strength due to thermal fatigue caused by such repeated stress. Therefore, in order to ensure safety, the above-mentioned boundary surface 15 inside the container must be
In other words, it is necessary to fully understand the flow characteristics of liquid sodium, such as changes in the temperature stratified interface, and to develop countermeasures.

しかし従来においては、容器内や壁に複数本の
温度計を配置して目読により検出する方法がとら
れているため、検出が適確でないなどの難点があ
り、要求の満足は極めて不充分である。本考案は
上記の如き原子炉容器内における温度成層界面の
時々刻々の移動状態を適確に把握しうる温度成層
界面位計を提供し、原子炉容器の安全確保に寄与
できるようにしたものである。次に図面を用いて
その詳細を説明する。
However, in the past, multiple thermometers were placed inside the container or on the wall, and the detection was done by visual reading, which had drawbacks such as inaccurate detection, and was extremely insufficient to meet the requirements. It is. The present invention provides a temperature stratification interface position meter that can accurately grasp the moment-to-moment movement state of the temperature stratification interface in the reactor vessel, and contributes to ensuring the safety of the reactor vessel. be. Next, the details will be explained using the drawings.

液体ナトリウムを冷却媒体として用いた場合、
温度成層界面を形成する上部高温層の温度は、そ
の上昇移動にもかゝわらず時間的にほゞ一定に保
たれる。しかも第3図で前記したように炉運転停
止時高温層と低温層の間には、温度成層界面が形
成され、この温度成層界面は時間の経過と共に上
昇する。本考案はこのことから温度センサを炉容
器内にセツトし、これを設定温度を温度勾配をも
つ温度成層界面内の選定された温度、例えば第3
図のように高温層と低温層の中間の温度としたサ
ーボ機構により上下させ、常に高温層と低温層の
境界面に位置するようにすることにより、サーボ
モータの回転から適確にしかも簡単な装置で連続
的かつ容易に温度成層界面の変動を検出して、液
体ナトリウムの流動特性を把握できることを着想
してなされたものである。
When liquid sodium is used as a cooling medium,
The temperature of the upper high-temperature layer forming the temperature-stratified interface remains approximately constant over time despite its upward movement. Moreover, as described above with reference to FIG. 3, a temperature stratification interface is formed between the high temperature layer and the low temperature layer when the furnace operation is stopped, and this temperature stratification interface increases with the passage of time. Based on this, the present invention sets a temperature sensor inside the furnace vessel, and sets the set temperature at a selected temperature within the temperature stratification interface with a temperature gradient, for example, at the third temperature.
As shown in the figure, the servo mechanism is used to raise and lower the temperature between the high temperature layer and the low temperature layer, and by always positioning it at the boundary between the high temperature layer and the low temperature layer, it is possible to accurately and easily control the temperature from the rotation of the servo motor. The idea was that the flow characteristics of liquid sodium could be grasped by continuously and easily detecting fluctuations in the temperature stratification interface using a device.

第1図および第2図は本考案の一実施例を示す
回路図および熱電対の駆動機構例を示す。第1図
においてAは検出部を示し、このうち1は熱電対
であつて第2図のように構成される。第2図にお
いて2は保護管であつて、その先端部に位置する
ように熱電対1が収容される。3は保護管の保持
体であつて、原子炉容器内に固定される。そして
熱電対1が原子炉容器内の液体ナトリウム層の底
部から表面まで動きうるような長さに作られた保
護管2を上下動自在に支承する。4は保護管2に
設けられた被駆動用平歯車、5は後記するサーボ
モータ12の軸に結合された駆動用歯車であつ
て、被駆動用平歯車5に係合され、モータ12の
回転量に比例して保護管2を上下させる。なお図
では熱電対1の基準接点部の図示を省略してい
る。
FIGS. 1 and 2 show a circuit diagram and an example of a thermocouple drive mechanism showing an embodiment of the present invention. In FIG. 1, A indicates a detection section, one of which is a thermocouple and is constructed as shown in FIG. In FIG. 2, 2 is a protection tube, and the thermocouple 1 is housed at the tip thereof. Reference numeral 3 denotes a protective tube holder, which is fixed within the reactor vessel. The thermocouple 1 supports a protective tube 2, which is made to have a length such that it can move from the bottom to the surface of the liquid sodium layer in the reactor vessel, in a vertically movable manner. 4 is a driven spur gear provided on the protection tube 2; 5 is a driving gear coupled to the shaft of a servo motor 12 (to be described later); The protection tube 2 is moved up and down in proportion to the amount. Note that the reference junction portion of the thermocouple 1 is not shown in the figure.

第1図に戻つてBは制御部であつて、このうち
6は直流増幅器を示し、信号伝送線7を介して送
られて来た熱電対1の直流出力を増幅する。8は
直流−交流変換器であつて、熱電対1の出力を交
流出力に変換する。9は交流ブリツジ、10はそ
の交流電源であつて、例えば商用周波電源が使用
される。そして交流ブリツジ9は図示しない直流
−交流変換器8の絶縁された出力を一辺とするブ
リツジを形成し、また比例辺を調整することによ
り温度設定を行えるようにしたもので、その動作
は差動増幅器と直流基準電源による比較動作と同
様な動作を交流において行う。11は交流増幅
器、12はサーボモータであつて、モータ12は
11により増幅された交流ブリツジ9の出力によ
り駆動されて、図中に破線で示すように歯車4,
5、保護管2を介して熱電対1の位置を制御す
る。13は位置検出用ポテンシヨンメータであつ
て、モータ12にその回転軸を結合されて、モー
タ12の回転角を摺動片の位置または電圧値とし
て出力して熱電対1の位置を検出し、温度成層界
面位を表示する。なお14は直流増幅器6などの
直流電源である。
Returning to FIG. 1, reference numeral B designates a control section, of which 6 indicates a DC amplifier, which amplifies the DC output of the thermocouple 1 sent via the signal transmission line 7. 8 is a DC-AC converter, which converts the output of the thermocouple 1 into an AC output. 9 is an AC bridge, and 10 is its AC power source, for example a commercial frequency power source. The AC bridge 9 forms a bridge whose one side is the insulated output of the DC-AC converter 8 (not shown), and the temperature can be set by adjusting the proportional side, and its operation is differential. The same operation as the comparison operation using an amplifier and a DC reference power source is performed in AC. 11 is an AC amplifier; 12 is a servo motor; the motor 12 is driven by the output of the AC bridge 9 amplified by 11;
5. Control the position of the thermocouple 1 via the protection tube 2. Reference numeral 13 denotes a position detection potentiometer, whose rotation shaft is connected to the motor 12, outputs the rotation angle of the motor 12 as a position of a sliding piece or a voltage value, and detects the position of the thermocouple 1; Displays the temperature stratification interface position. Note that 14 is a DC power source such as a DC amplifier 6.

このようにすれば熱電対1などの検出部を原子
炉容器内にセツトし、交流ブリツジ9に検出温度
を設定して、原子炉の稼動停止と同時に装置を作
動させれば与えた温度の境界位置を測定できる。
即ち運転の停止により前記したように、低温の液
体ナトリウム16と高温の液体ナトリウム17と
により、第2図中に示すような界面15が形成さ
れるとすると、熱電対1は交流ブリツジ9から送
出される出力によつて作動されるサーボモータ1
2により、設定した温度を持つ境界面15まで動
く。そして時間の経過と共に第2図中の点線図示
のように界面15が上昇した場合熱電対1が低温
の液体ナトリウム層16内に、生きる再び交流ブ
リツジ9に出力が生じて、サーボモータ12を駆
動して熱電対1を冷たい液体ナトリウム層16内
から引上げて境界面15内に位置させ、熱電対1
の検出温度が設定温度になるとサーボモータ12
の駆動が停止される。そして以下炉の冷却よる温
度成層界面15の上昇に伴い、以上のような動作
が繰返えされて、熱電対1は界面15の変位に追
随して動き、モータ12に結合された変位検出部
であるポテンシヨメータ13は、モータ12の回
転角度に比例した電圧出力を送出する。従つてこ
れを例えば自記記録計18により記録紙上に記録
すれば、原子炉稼動停止時における高低温液体ナ
トリウムによる温度成層界面位の変位を、自動的
かつ連続的しかも簡単な装置で適確に把握でき
る。
In this way, by setting the detection part such as the thermocouple 1 in the reactor vessel, setting the detected temperature in the AC bridge 9, and operating the device at the same time as the reactor stops, the boundary of the given temperature can be detected. Can measure position.
That is, if the interface 15 shown in FIG. 2 is formed between the low-temperature liquid sodium 16 and the high-temperature liquid sodium 17 as described above due to the stoppage of operation, the thermocouple 1 is Servo motor 1 operated by the output
2, it moves to the boundary surface 15 having the set temperature. When the interface 15 rises as time passes, as shown by the dotted line in FIG. the thermocouple 1 is pulled up from within the cold liquid sodium layer 16 and positioned within the interface 15;
When the detected temperature reaches the set temperature, the servo motor 12
drive is stopped. Then, as the temperature stratified interface 15 rises due to cooling of the furnace, the above operation is repeated, the thermocouple 1 moves following the displacement of the interface 15, and the displacement detecting section connected to the motor 12 moves. The potentiometer 13 delivers a voltage output proportional to the rotation angle of the motor 12. Therefore, if this is recorded on recording paper using the self-recording recorder 18, for example, the displacement of the temperature stratification interface position caused by the high-temperature liquid sodium during the shutdown of the nuclear reactor can be accurately grasped automatically, continuously, and with a simple device. can.

以上本考案を交流サーボ機構を用いた例につい
て説明したが、検出の安定度の低下を許せる場合
には、周知の直流サーボ機構を用いることができ
る。また以上では冷却媒体を液体ナトリウムとし
た場合について説明したが、他の媒体(例えば
水)の場合にも適用できる。
Although the present invention has been described above with reference to an example using an AC servo mechanism, a well-known DC servo mechanism may be used if a decrease in detection stability can be tolerated. Further, although the case where liquid sodium is used as the cooling medium has been described above, the invention can also be applied to cases where other medium (for example, water) is used.

以上の説明から明らかなように、本考案によれ
ば特に高速増殖炉の冷却媒体である液体ナトリウ
ムの原子炉停止時に生ずる温度成層界面の動き
を、連続的かつ自動的に検出できるもので、温度
勾配にもとづく応力による原子炉容器の機械的強
度への影響の解明に大きな寄与をなすものであ
る。
As is clear from the above explanation, according to the present invention, it is possible to continuously and automatically detect the movement of the temperature stratified interface that occurs when the reactor is shut down, especially in liquid sodium, which is the cooling medium of fast breeder reactors. This will greatly contribute to the elucidation of the influence of slope-based stress on the mechanical strength of the reactor vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本考案の一実施例回路図およ
び検出部の機構の説明図、第3図は炉運転停止時
における炉容器内温度分布の説明図である。 A……検出部、1……熱電体、2……保護管、
3……保護管保持体、4,5……歯車、6……直
流増幅器、7……信号伝送線、8……直流−交流
変換器、9……交流ブリツジ、10……その交流
電流、11……交流増幅器、12……サーボモー
タ、13……界面位検出用ポテンシヨメータ、1
4……直流増幅器などの直流電源、15……温度
成層界面、16……温度の低い液体ナトリウム
層、17……温度の高い液体ナトリウム層、18
……記録計。
1 and 2 are a circuit diagram of an embodiment of the present invention and an explanatory diagram of the mechanism of the detection section, and FIG. 3 is an explanatory diagram of the temperature distribution inside the furnace vessel when the furnace operation is stopped. A...Detection part, 1...Thermoelectric body, 2...Protection tube,
3... Protection tube holder, 4, 5... Gear, 6... DC amplifier, 7... Signal transmission line, 8... DC-AC converter, 9... AC bridge, 10... The alternating current, 11... AC amplifier, 12... Servo motor, 13... Potentiometer for detecting interface position, 1
4... DC power supply such as a DC amplifier, 15... Temperature stratified interface, 16... Low temperature liquid sodium layer, 17... High temperature liquid sodium layer, 18
...Recorder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 温度センサ部と、その上下機構と、前記温度セ
ンサ部の出力電圧と設定温度である選定された温
度成層界面内温度に相当する電圧との差により動
作して、前記上下機構を制御して、前記温度セン
サ部を温度成層界面内に位置させるサーボモータ
と、このサーボモータの回転から前記温度センサ
部の位置を検出して温度成層界面位置を示す出力
を送出する検知器とを備えた原子炉における冷却
媒体の温度成層界面位置検出装置。
A temperature sensor unit, a vertical mechanism thereof, and a temperature sensor unit that operates based on a difference between an output voltage of the temperature sensor unit and a voltage corresponding to a temperature within a selected temperature stratification interface, which is a set temperature, to control the vertical mechanism; A nuclear reactor comprising: a servo motor that positions the temperature sensor section within a temperature stratification interface; and a detector that detects the position of the temperature sensor section from rotation of the servo motor and sends out an output indicating the position of the temperature stratification interface. A device for detecting the temperature stratified interface position of a cooling medium.
JP1984003677U 1984-01-13 1984-01-13 Temperature stratification interface position detection device for cooling medium in nuclear reactor Granted JPS60118996U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984003677U JPS60118996U (en) 1984-01-13 1984-01-13 Temperature stratification interface position detection device for cooling medium in nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984003677U JPS60118996U (en) 1984-01-13 1984-01-13 Temperature stratification interface position detection device for cooling medium in nuclear reactor

Publications (2)

Publication Number Publication Date
JPS60118996U JPS60118996U (en) 1985-08-12
JPH0325194Y2 true JPH0325194Y2 (en) 1991-05-31

Family

ID=30478529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984003677U Granted JPS60118996U (en) 1984-01-13 1984-01-13 Temperature stratification interface position detection device for cooling medium in nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60118996U (en)

Also Published As

Publication number Publication date
JPS60118996U (en) 1985-08-12

Similar Documents

Publication Publication Date Title
US3848466A (en) Magnetic temperature sensor
Cheung et al. Critical heat flux (CHF) phenomenon on a downward facing curved surface
Nagase et al. Oxidation kinetics of low-Sn Zircaloy-4 at the temperature range from 773 to 1,573 K
Solstad et al. Instrument capabilities and developments at the Halden reactor project
Fontana et al. Temperature distribution in the duct wall and at the exit of a 19-rod simulated LMFBR fuel assembly (FFM Bundle 2A)
Cottrell et al. Operation of the aircraft reactor experiment
Iida et al. Distributions of void fraction above a horizontal heating surface in pool boiling
Levy et al. Heat transfer to water in thin rectangular channels
JPH0325194Y2 (en)
WO2023226394A1 (en) Method for measuring isothermal temperature coefficient of high-temperature gas-cooled reactor core
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
MacDonald et al. Effect of pellet cracking on light water reactor fuel temperatures
Cheung et al. Boundary-layer-boiling and critical-heat-flux phenomena on a downward-facing hemispherical surface
CN108695005A (en) A kind of dynamic measurement device and method of fusant hard shell thickness and boundary temperature
CN207051225U (en) A kind of ceramic beaverboard heat conductivity measuring device
Dwyer et al. Incipient-boiling superheats for sodium in turbulent channel flow: Effect of rate of temperature rise
CN116798667B (en) Material identification type wetting front position measurement method
CN216349238U (en) Self-operated temperature control valve temperature sensing element testing device
Smaardyk et al. Design and Analysis of Instrumented Subassembly System for EBR-II
Bokova et al. Experimental Studies of the Float-Discrete Method for Measuring the Level of a Heavy Liquid-Metallic Coolant
CN106768170A (en) The fluid parameter measurement apparatus of high-temperature electric conduction liquid, method
Tsai et al. The effect of flow from below on dryout heat flux
Turnage et al. Advanced two-phase flow instrumentation program. Quarterly progress report, January-March 1980
CN117133489A (en) Ultra-high temperature melt temperature measuring device and method
Rosenthal Measurement of the thermal conductivity of molten lead