JPH03251813A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH03251813A
JPH03251813A JP5058690A JP5058690A JPH03251813A JP H03251813 A JPH03251813 A JP H03251813A JP 5058690 A JP5058690 A JP 5058690A JP 5058690 A JP5058690 A JP 5058690A JP H03251813 A JPH03251813 A JP H03251813A
Authority
JP
Japan
Prior art keywords
lens
scanning
inclination
eccentricity
scanning optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5058690A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5058690A priority Critical patent/JPH03251813A/en
Publication of JPH03251813A publication Critical patent/JPH03251813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To correct the inclination of an end surface at an end part without deteriorating the quantity of curvature of an image plane due to the manufacture error of a lens system by making a lens which is at least a part of an image formation optical system eccentric with the optical axis with a specific quantity. CONSTITUTION:A means which adjusts the eccentricity of a toric lens 1 consists of respective elements, i.e. a pressure spring 2, an adjusting screw 3, and a leaf spring 4. Thus, the toric lens 1 as a lens constituting part of an f-theta lens system 10 is made eccentric to adjust the inclination error of curvature of field on a scan surface. Namely, while the length direction of the lens 1 is set along an abutting surface 11a, the lens is made eccentric in parallel by the leaf spring 4, the quantity of eccentricity of the lens 1 itself with the abutting surface 11a is adjusted, and the deviation in the optical axis from other lenses constituting the lens system 10 is eliminated to make corrections so that the inclination of the image plane on the image formation plane reaches the specific quantity of curvature of field. Thus, the quantity of eccentricity is adjusted only by the lens as a part of the f-theta lens system 10 without adjusting the inclination due to the rotation of the whole scanning optical system to easily improve the optical performance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばレーザからの光束て感光ドラム面等の走
査面上を走査する走査光学装置に関し、特に走査光学系
の一部を構成するf−θレンズ等の結像光学系の製造誤
差等によって走査面を走査する際に発生する像面弯曲を
良好に補正する調整手段を有した例えばレーザービーム
プリンター等に好適な走査光学装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a scanning optical device that scans a scanning surface such as a photosensitive drum surface using a beam of light from a laser, and particularly relates to a scanning optical device that scans a scanning surface such as a photosensitive drum surface using a beam of light from a laser. This invention relates to a scanning optical device suitable for, for example, a laser beam printer, which has an adjustment means to satisfactorily correct field curvature that occurs when scanning a scanning plane due to manufacturing errors in an imaging optical system such as a θ lens. be.

(従来の技術) 従来よりレーザーど一ムプリンター等の走査光学装置に
おいては画像信号に応じてレーザ光源からのレーザ光束
を光変調している。モして該光変調されたレーザ光束を
回転多面鏡等の光偏向器により周期的に偏向させ、f−
θレンズ等の結像光学系によフて感光性の記録媒体面上
にスポット状に集束させ露光走査して画像J8録を行っ
ている。
(Prior Art) Conventionally, in a scanning optical device such as a laser beam printer, a laser beam from a laser light source is optically modulated according to an image signal. The optically modulated laser beam is then periodically deflected by an optical deflector such as a rotating polygon mirror, and f-
An image J8 is recorded by focusing the light into a spot on the surface of a photosensitive recording medium and scanning it with exposure using an imaging optical system such as a θ lens.

近年この棟な走査光学装置の特徴は走査光学系の小型化
とレーザ光束のスポットの高解像化(レーザ光束のスポ
ット径の微小化)にある。
In recent years, the features of this popular scanning optical device are the miniaturization of the scanning optical system and the high resolution of the laser beam spot (miniaturization of the laser beam spot diameter).

特に高解像化は出力画像の高画質化に大きく影響を与え
ている為、極めて重要なこととなっており、最近高解像
力化に関する技術が種々と提案されている。このレーザ
光束のスポットの高解像化は主に走査光学系の高NA(
開口数)化によってレーザ光束のスポット径の微小化を
図ることにより達成することかできる。
In particular, increasing resolution is extremely important because it has a great influence on increasing the quality of output images, and recently various techniques related to increasing resolution have been proposed. The high resolution of this laser beam spot is mainly due to the high NA of the scanning optical system (
This can be achieved by reducing the spot diameter of the laser beam by increasing the numerical aperture.

しかしながらレーザ光束のスポット径の微小化は画像の
高画質化及び高解像化を図ることかできるが、その反面
走査光学系の深度か浅くなってくる。この為種々の光学
的特性を良好にバランス良く得る為には走査光学系を構
成するf−θレンズの加工結反及び取り付は調整結反等
を非常に厳しくする必要かある。
However, while miniaturizing the spot diameter of the laser beam can improve image quality and resolution, it also reduces the depth of the scanning optical system. For this reason, in order to obtain various optical characteristics in a well-balanced manner, it is necessary to make the processing and mounting of the f-theta lens constituting the scanning optical system extremely strict.

般に走査光学系の深度が浅くなると例えば走査光学系を
構成するレンズ系の偏心等により結像面の傾き誤差(像
面湾曲)が発生し、所望の光学的特性を得るのか大変難
しくなってくる。
In general, when the depth of the scanning optical system becomes shallow, for example, an error in the tilt of the imaging plane (field curvature) occurs due to eccentricity of the lens system that makes up the scanning optical system, and it becomes very difficult to obtain the desired optical characteristics. come.

そこで従来の走査光学装置ではレンズ系の偏心等による
結像面の傾き誤差(像面湾曲)を補正する為に走査光学
装置内に該傾きを調整する為の調整手段を設けている。
Therefore, in the conventional scanning optical device, in order to correct the tilt error (field curvature) of the imaging plane due to eccentricity of the lens system, etc., an adjustment means for adjusting the tilt is provided in the scanning optical device.

第4図はこの様な像面湾曲の調整機構を備えた従来の走
査光学装置の要部概略図である。
FIG. 4 is a schematic diagram of a main part of a conventional scanning optical device equipped with such a field curvature adjustment mechanism.

同図において半導体レーザ及びコリメーターレンズ等を
有するレーザーユニット41から発光されたレーザ光束
は回転多面鏡から成る光偏向器48の反射面によって反
射される。そして該反射されたレーザ光束は走査用のf
−θレンズ系(結像光学系)43によって走査面である
結像面44に結像している。このときf−θレンズ系4
3の偏心等により生じた結像面の傾き誤差を走査光学装
置内に設けた像面調整機構により補正している。
In the figure, a laser beam emitted from a laser unit 41 having a semiconductor laser, a collimator lens, etc. is reflected by a reflecting surface of an optical deflector 48 consisting of a rotating polygon mirror. Then, the reflected laser beam is used for scanning f
An image is formed by a -θ lens system (imaging optical system) 43 on an imaging plane 44 which is a scanning plane. At this time, the f-θ lens system 4
An image plane adjustment mechanism provided within the scanning optical device corrects the tilt error of the image plane caused by the eccentricity of the image forming apparatus 3.

次にこのときの像面調整機構により結像面の傾き誤差を
補正する調整方法について説明する。
Next, an adjustment method for correcting the tilt error of the image plane using the image plane adjustment mechanism at this time will be described.

同図において走査光学系40の底面には結像面の傾き調
整時の際に回転中心となるどン45か植設されている。
In the figure, a dowel 45 is installed on the bottom surface of the scanning optical system 40 to serve as a center of rotation when adjusting the inclination of the imaging plane.

該どン45は不図示のプリンター本体の光学基台上にあ
けられた決め穴に差し込まれ、そして該ビン45を回転
中心として回転用長穴46に差し込まれた偏心用のビン
等を回転させることによって同図に示す矢印へ方向に回
転させ、即ち走査光学系全体を回転させて結像面の傾き
を補正している。
The don 45 is inserted into a predetermined hole drilled on the optical base of the printer main body (not shown), and an eccentric bottle or the like inserted into the rotation slot 46 is rotated with the bin 45 as the rotation center. As a result, the inclination of the imaging plane is corrected by rotating the scanning optical system in the direction indicated by the arrow shown in the figure, that is, by rotating the entire scanning optical system.

そして良好なスポット径の得られる範囲(最良像面)と
走査される被走査面(例えば感光ドラム面)が一致する
ように調整した後に走査光学系40に設けられた固定用
の穴47によって不図示のプリンター本体の光学基台上
に固定して取り付けている。
After adjusting the range where a good spot diameter can be obtained (best image plane) and the scanned surface (for example, the photosensitive drum surface) to match, the fixing hole 47 provided in the scanning optical system 40 It is fixedly mounted on the optical base of the illustrated printer body.

この様な像面の傾き調整を行うことによってプリンター
本体上の設計上の結像位置(実際には被走査される例え
ば感光ドラム面に相当する位置)と走査光学系による結
像面(最良像面)との傾きを許容深度内に収めて調整し
ている。
By adjusting the inclination of the image plane in this way, the designed image formation position on the printer body (actually, the position corresponding to the scanned surface of the photosensitive drum, for example) and the image formation plane by the scanning optical system (the best image formation position) can be adjusted. The inclination with the surface (surface) is adjusted to within the permissible depth.

(発明が解決しようとする問題点) 一方、走査光学系による走査面である結像面の走査形状
は一般に種々の誤差により被走査面内において光軸に対
して垂直な直線上にはならない。
(Problems to be Solved by the Invention) On the other hand, the scanning shape of the imaging plane, which is the scanning plane by the scanning optical system, generally does not lie on a straight line perpendicular to the optical axis within the scanned plane due to various errors.

これは例えば走査光学系を構成するf−θレンズ内で発
生する諸収差等から一般に第5図に示す様に光軸に対し
て左右対称なM型の分布形状となってくる。
This generally results in an M-shaped distribution shape that is bilaterally symmetrical with respect to the optical axis, as shown in FIG. 5, due to various aberrations occurring within the f-theta lens constituting the scanning optical system, for example.

第5図は被走査面内での走査光学系による結像面の走査
分布を示した説明図である。同図において51は不図示
の走査光学系の光軸、52は最良像面であり、被走査全
面に渡って像面か平均的に良好となる面(良好なスポッ
ト径か得られる面)を示している。
FIG. 5 is an explanatory diagram showing the scanning distribution of the imaging plane by the scanning optical system within the scanned plane. In the figure, 51 is the optical axis of a scanning optical system (not shown), and 52 is the best image plane, which is a surface that is good on average (a surface that can obtain a good spot diameter) over the entire surface to be scanned. It shows.

般に走査光学系においては、この最良像面の位置に例え
ば感光ドラム面(被走査面)が位置する様に配置されて
いる。
In general, a scanning optical system is arranged such that, for example, a photosensitive drum surface (scanned surface) is located at the position of this best image plane.

ここで例えば走査光学系を構成するレンズ系に偏心等に
よる結像面の傾き誤差がない場合には実用上の有効画像
領域は同図に示す範囲Aとなり、これは光軸51を中心
に左右にバランスのとれたM型の分布形状の良好な結像
面となっている。
For example, if the lens system constituting the scanning optical system has no tilt error of the imaging plane due to eccentricity, etc., the practical effective image area will be range A shown in the figure, which is The image forming surface has a well-balanced M-shaped distribution shape.

般にこの様な被走査面内での結像面の分布が得られるこ
とが像面湾曲量を小さく抑えることができ、かつ所望の
光学特性か得られるので望ましい。
In general, it is desirable to obtain such a distribution of the image forming plane within the scanned surface because the amount of field curvature can be kept small and desired optical characteristics can be obtained.

方、走査光学系を構成するレンズ系に例えば偏心等によ
る結像面の傾き誤差が生じた場合には実用上の有効画像
領域は同図に示す範囲Aから範囲Bに移動し、これは光
軸51に対し非対称な分布形状の結像面となりでしまい
良好なる光学性能か得られない。
On the other hand, if an error in the inclination of the imaging plane occurs in the lens system constituting the scanning optical system due to eccentricity, for example, the practical effective image area moves from range A to range B shown in the same figure, and this is due to the light This results in an image forming surface with an asymmetrical distribution shape with respect to the axis 51, making it impossible to obtain good optical performance.

ここで結像面における像面湾曲量をみてみるとレンズ系
に偏心等がない場合には第6図(A)に示す様に像面湾
曲量はCとなる。
Now, looking at the amount of curvature of field on the image plane, if there is no eccentricity in the lens system, the amount of curvature of field is C as shown in FIG. 6(A).

方、レンズ系に偏心等がある場合には同図(B)に示す
ように像面湾曲量はDとなる。
On the other hand, if the lens system has eccentricity or the like, the amount of curvature of field becomes D as shown in FIG.

この様に走査光学系を構成するレンズ系に偏心等による
結像面の傾き誤差がある場合には同図(B)に示す様に
被走査面での端部における像面に傾きが生じてしまう問
題点がある。
In this way, if the lens system that constitutes the scanning optical system has an error in the tilt of the image plane due to eccentricity, etc., the image plane at the end of the scanned surface will be tilted, as shown in Figure (B). There is a problem.

例えばこの像面の傾きを補正する為に前述した従来の像
面調整機構を備えた走査光学装置を用いて調整した場合
、調整後の結像面の分布は第6図(C)に示すようにな
る。
For example, if the scanning optical device equipped with the conventional image plane adjustment mechanism described above is used to correct the tilt of the image plane, the distribution of the image plane after adjustment will be as shown in Figure 6 (C). become.

これは同図(C)からも分かる様に被走査面に右ける端
部での像面の傾きは比較的補正されているが、その反面
像面湾曲量はEとなり、これはレンズ系に偏心がない場
合の像面湾曲tcに比べてより大きくなってしまうとい
う欠点かあフた。
As can be seen from the same figure (C), the tilt of the image plane at the right end of the scanned surface is relatively corrected, but the amount of curvature of field on the other hand is E, which is due to the lens system. The disadvantage is that the curvature of field tc becomes larger than that without eccentricity.

この様に従来の像面調整機構を用いた走査光学装置では
被走査面における端部での像面の傾きは比較的補正され
るが、その反面像面の湾曲量が大きくなってしまう傾向
にあり、第6図(A)に示した良好なる結像面を得るに
は至らず、その結果光学的性能を高めるのが大変難しか
った。
In this way, in a scanning optical device using a conventional image plane adjustment mechanism, the tilt of the image plane at the end of the scanned surface is relatively corrected, but on the other hand, the amount of curvature of the image plane tends to increase. Therefore, it was not possible to obtain the good image forming surface shown in FIG. 6(A), and as a result, it was very difficult to improve the optical performance.

本発明は結像光学系(f−θレンズ系)を構成する少な
くとも一部のレンズを偏心させる調整手段を結像光学系
の一部に設けることにより、走査面上における走査する
際の像面(結像面)の湾曲量を小さく抑え、かつ被走査
面における端部での像面の傾きを良好に補正することが
できる走査光学装置の提供を目的とする。
The present invention provides an adjusting means for decentering at least some of the lenses constituting the imaging optical system (f-theta lens system), so that the image plane when scanning on the scanning plane is provided in a part of the imaging optical system. An object of the present invention is to provide a scanning optical device that can suppress the amount of curvature of an image forming surface to a small value and can satisfactorily correct the inclination of the image surface at the end of the surface to be scanned.

(問題点を解決するための手段) 本発明の走査光学装置は、光源からの光束を光偏向器で
偏向させた後、結像光学系を介して走査面上に導光し、
該走査面上を走査する走査光学装置において、該結像光
学系を構成する少なくとも部のレンズを調整手段により
光軸に対して偏心させることにより、該光束で走査面を
走査する際の像面弯曲を補正したことを特徴としている
(Means for Solving the Problems) The scanning optical device of the present invention deflects a light beam from a light source with an optical deflector, and then guides the light onto a scanning surface via an imaging optical system.
In the scanning optical device that scans the scanning surface, at least one lens constituting the imaging optical system is decentered with respect to the optical axis by an adjustment means, so that the image surface when scanning the scanning surface with the light beam is decentered. It is characterized by corrected curvature.

(実施例) 第1図は本発明の第1実施例の走査光学装置の部を構成
する結像光学系としてのf−θレンズ系の概略図である
(Embodiment) FIG. 1 is a schematic diagram of an f-theta lens system as an imaging optical system constituting a part of a scanning optical device according to a first embodiment of the present invention.

同図において10はf−θレンズ系であり、走査光学装
置中では例えば第4図のf−θレンズ系43と同様の位
置に配置されている。1はトーリックレン・ズであり、
f−θレンズ系1oの一部を構成している。2は押えバ
ネであり、トーリックレンズ1の長手方向を該トーリッ
クレンズ1の図面上、下側の鏡811に設けた調整ネジ
3に押し当てている。4は板バネであり、鏡筒等の基材
11の一部に設けられており、トーリックレンズ1の短
手方向を基材11の突き当て面11aに押し当てて固定
している。
In the figure, reference numeral 10 denotes an f-theta lens system, which is arranged in the same position as the f-theta lens system 43 in FIG. 4, for example, in the scanning optical device. 1 is a toric lens,
It constitutes a part of the f-θ lens system 1o. Reference numeral 2 denotes a presser spring, which presses the longitudinal direction of the toric lens 1 against an adjustment screw 3 provided on a lower mirror 811 of the toric lens 1 in the drawing. Reference numeral 4 denotes a leaf spring, which is provided on a part of the base material 11 such as a lens barrel, and fixes the toric lens 1 by pressing the lateral direction of the toric lens 1 against the abutting surface 11a of the base material 11.

本実施例においては押えバネ2、調整ネジ3、そして板
バネ4の各要素でトーリックレンズ1の偏心を調整する
調整手段を構成している。
In this embodiment, the presser spring 2, the adjusting screw 3, and the plate spring 4 constitute an adjusting means for adjusting the eccentricity of the toric lens 1.

次に本実施例のf−θレンズ系10を構成する部のレン
ズであるトーリックレンズ1を偏心させることにより、
走査面における像面湾曲の傾き誤差を調整する方法につ
いて説明する。
Next, by decentering the toric lens 1, which is a lens constituting the f-θ lens system 10 of this embodiment,
A method of adjusting the tilt error of field curvature on the scanning plane will be described.

本実施例では上記に示した構成により前述のような原因
によフて生じる像面の傾き誤差(像面湾曲)を調整ネジ
3を所定量回転させてトーリックレンズ1を光軸アと直
交する方向に移動させ偏心させることによフて補正して
いる。
In this embodiment, with the configuration shown above, the toric lens 1 is made orthogonal to the optical axis A by rotating the adjusting screw 3 by a predetermined amount to correct the tilt error (field curvature) of the image plane caused by the above-mentioned causes. This is corrected by moving it in the direction and making it eccentric.

即ちトーリックレンズ1を光軸アに対して垂直な方向に
板バネ4によって押圧されたトーリックレンズ1の短手
方向を突き当て面11aに沿りながら移動させて、即ち
平行偏心させている。
That is, the toric lens 1 is moved in the direction perpendicular to the optical axis A with the short side of the toric lens 1 pressed by the leaf spring 4 along the abutment surface 11a, that is, parallel decentered.

この様な調整方法によって突き当て面11aに対するト
ーリックレンズ1自体の偏心量を調整し、かつf−θレ
ンズ系10を構成する他のレンズとの光軸ズレをなくす
ことにより結像面における像面の傾きを例えば第6図(
A)に示すような湾曲量となるように良好に補正してい
る。
By adjusting the eccentricity of the toric lens 1 itself with respect to the abutment surface 11a by such an adjustment method and eliminating optical axis misalignment with other lenses constituting the f-theta lens system 10, the image plane on the image forming plane can be adjusted. For example, the slope of is shown in Figure 6 (
The amount of curvature shown in A) is well corrected.

特に本実施例では結像面での像面湾曲量を悪化させるこ
となく被走査面での端部における像面の傾きを良好に補
正することを可能としている。
In particular, in this embodiment, it is possible to satisfactorily correct the inclination of the image plane at the end of the scanned surface without deteriorating the amount of field curvature on the imaging plane.

更に本実施例における像面の傾き調整方法は前述した従
来の走査光学系全体の回転による像面の傾き調整とは異
なりf−θレンズ系10を構成する一部のレンズ自体の
偏心量の調整を行う為に前記第6図(C)に示した様な
傾き調整後の像面湾曲量が初期状態(走査光学系を構成
するレンズ系に偏心がない場合)に対して大きくなるこ
とはないという特長を有している。
Furthermore, unlike the above-mentioned conventional method of adjusting the image plane inclination by rotating the entire scanning optical system, the method of adjusting the inclination of the image plane in this embodiment involves adjusting the eccentricity of some of the lenses themselves constituting the f-θ lens system 10. In order to do this, the amount of field curvature after the tilt adjustment as shown in FIG. 6(C) does not become larger than the initial state (when there is no eccentricity in the lens system constituting the scanning optical system). It has the following characteristics.

このことから本実施例では前記第6図(B)に示したレ
ンズ系に偏心がある場合の結像面の分布形状を本実施例
を実施することで同図(A)に示したレンズ系に偏心か
ない場合と同様な良好なる像面湾曲の分布形状を得るこ
とができる。
Therefore, in this example, the distribution shape of the imaging plane when the lens system shown in FIG. 6(B) has eccentricity can be obtained by implementing this example. It is possible to obtain a good distribution shape of field curvature similar to that in the case where there is no eccentricity.

第2図は本発明の第2実施例の走査光学装置の一部を構
成する結像光学系としてのf−〇レンズ系の概略図であ
る。同図において第1図に示した要素と同一要素には同
符番な付している。
FIG. 2 is a schematic diagram of an f-0 lens system as an imaging optical system forming a part of a scanning optical device according to a second embodiment of the present invention. In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals.

図中、21は調整用のスペーサーであり、同図に示す様
にトーリックレンズ1の短手方向の突き当て面22aと
該トーリックレンズ1を支持する鏡筒等の基材22との
間に介在させている。
In the figure, 21 is a spacer for adjustment, and as shown in the figure, it is interposed between the abutment surface 22a of the toric lens 1 in the short direction and the base material 22 such as a lens barrel that supports the toric lens 1. I'm letting you do it.

次に本実施例のレンズの偏心による像面の傾き誤差の調
整方法について説明する。
Next, a method of adjusting the tilt error of the image plane due to eccentricity of the lens of this embodiment will be explained.

本実施例においては同図に示す様にトーリックレンズ1
の図面上、下側の突き当て面22aを予め設計基準位置
よりも基準と成るスペーサー21の厚みたけ差し引いて
設定している。これに対して結像面での像面の傾き量を
測定し、そしてトーリックレンズ1の光軸に対しての垂
直方向の移動量と像面の傾き量との換算を行う。
In this example, a toric lens 1 is used as shown in the figure.
In the drawing, the lower abutment surface 22a is set in advance by subtracting the thickness of the spacer 21 from the design reference position. On the other hand, the amount of inclination of the image plane on the imaging plane is measured, and the amount of movement of the toric lens 1 in the direction perpendicular to the optical axis is converted to the amount of inclination of the image plane.

この換算結果によフてスペーサーの調整量な算出し適正
な厚さのスペーサーをトーリックレンズ1の短手方向の
突き当て面22aと基材22との間に挿入する。あるい
は基準となるスペーサーよりも厚みが薄い場合には適時
他のスペーサーと交換して適正なスペーサーを用いる。
Based on this conversion result, the adjustment amount of the spacer is calculated, and a spacer of an appropriate thickness is inserted between the abutment surface 22a of the toric lens 1 in the transverse direction and the base material 22. Alternatively, if the thickness is thinner than the standard spacer, replace it with another spacer as appropriate and use an appropriate spacer.

そして押えバ:2ニ、Jl:’)l’−リックレンズ1
の長手方向をスペーサー21側に押し当てて板バネ4に
より該トーリックレンズ1の短手方向な鏡筒22の突き
当て面22aに押し当てて固定している。
And presser bar: 2 d, Jl:')l'-rick lens 1
The longitudinal direction of the toric lens 1 is pressed against the spacer 21 side, and the toric lens 1 is fixed by being pressed against the abutment surface 22a of the lens barrel 22 in the short direction by the leaf spring 4.

この様に本実施例においては像面の傾きを補正する為に
調整手段の一要素を構成する適性なる厚さのスペーサー
を利用し該調整手段によりトーリックレンズ1を光軸ア
に対して垂直方向に所定量移動させ、即ちトーリックレ
ンズ1を偏心させることにより結像面での像面の傾き誤
差を良好に補正している。この様な調整方法によフて前
述の実施例と同様の効果を得ている。
As described above, in this embodiment, in order to correct the inclination of the image plane, a spacer of an appropriate thickness, which constitutes an element of the adjustment means, is used, and the toric lens 1 is moved perpendicularly to the optical axis A by the adjustment means. By moving the toric lens 1 by a predetermined amount, that is, by decentering the toric lens 1, the inclination error of the image plane on the image forming plane is favorably corrected. By using such an adjustment method, the same effects as those of the previous embodiment can be obtained.

第3図は本発明の第3実施例の走査光学装置の一部を構
成する結像光学系としてのf−θレンズ系の概略図であ
る。同図において第1図に示した要素と同一要素には同
符番を付している。
FIG. 3 is a schematic diagram of an f-theta lens system as an imaging optical system that constitutes a part of a scanning optical device according to a third embodiment of the present invention. In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals.

次に本実施例のレンズの偏心による像面の傾き誤差の調
整方法について説明する。
Next, a method of adjusting the tilt error of the image plane due to eccentricity of the lens of this embodiment will be explained.

本実施例においては結像面での像面の傾き量を予め測定
しトーリックレンズ1の長手方向の調整を該トーリック
レンズ1の短手方向の突き当て面31aに摺動させなが
らケージで測定した後、該トーリックレンズ1を接着剤
等を用いて鏡筒等の基材31に固定し、かつ板ハネ4に
より該トーリックレンズ1の短手方向を突き当て面31
aに押し当てて固定している。
In this example, the amount of inclination of the image plane on the image forming plane was measured in advance, and the adjustment in the longitudinal direction of the toric lens 1 was measured using a cage while sliding it on the abutment surface 31a of the toric lens 1 in the lateral direction. After that, the toric lens 1 is fixed to a base material 31 such as a lens barrel using an adhesive or the like, and the short direction of the toric lens 1 is fixed to the abutment surface 31 using a plate spring 4.
It is fixed by pressing it against a.

この様に本実施例では調整手段として前述の第1実施例
で用いた調整ネジや押えバネ等を使用することなくトー
リックレンズ1の長平方向の調整を該トーリックレンズ
1の短手方向の突き当て面31aに摺動させながら行い
、これにより像面の傾き調整を行っている。この様な調
整方法においても前述の実施例と同様の効果を得ること
かできる。
In this way, in this embodiment, adjustment in the longitudinal direction of the toric lens 1 can be performed by abutting the toric lens 1 in the lateral direction without using the adjustment screws, presser springs, etc. used in the first embodiment as adjustment means. This is done while sliding on the surface 31a, thereby adjusting the inclination of the image plane. Even with such an adjustment method, it is possible to obtain the same effects as in the above-mentioned embodiment.

尚、各実施例においてはf−θレンズ系を構成する1つ
のレンズの一部に該レンズの光軸と直交する方向の偏心
を調整する調整手段を設けた構成について説明してきた
が、該f−θレンズ系を構成する全てのレンズに前述し
た調整手段と同様の調整手段を設けて構成しても良い。
In each of the embodiments, a configuration has been described in which a part of one lens constituting the f-θ lens system is provided with an adjusting means for adjusting eccentricity in a direction perpendicular to the optical axis of the lens. The configuration may be such that all the lenses constituting the -θ lens system are provided with adjustment means similar to the adjustment means described above.

又、調整手段としてレンズを光軸と直交する方向に移動
させた平行偏心の他に光軸に対して傾けた傾き偏心を併
用して、又は独立に用いても本発明の目的を同様に達成
することができる。
Furthermore, the object of the present invention can be similarly achieved by using, as an adjusting means, a parallel eccentricity in which the lens is moved in a direction perpendicular to the optical axis, a tilt eccentricity in which the lens is tilted with respect to the optical axis, or used independently. can do.

(発明の効果) 本発明によれば走査光学装置を構成する結像光学系(f
−θレンズ系)の少なくとも一部のレンズを光軸に対し
て所定量偏心させる調整手段を結像光学系の一部に設け
ることにより、レンズ系の製造誤差等によって発生する
走査面上における像面(結像面)の湾曲量を悪化させる
ことなく容易に良好に補正することができる走査光学装
置を達成することができる。
(Effects of the Invention) According to the present invention, the imaging optical system (f
By providing a part of the imaging optical system with an adjusting means for decentering at least a part of the lenses (-θ lens system) by a predetermined amount with respect to the optical axis, the image on the scanning plane that occurs due to manufacturing errors in the lens system, etc. A scanning optical device that can easily and favorably correct the amount of curvature of the surface (imaging surface) without deteriorating it can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1.第2.第3図は各々順に本発明の第1゜第2.第
3実施例の走査光学装置の一部を構成する結像光学系と
してのf−θレンズ系の概略図、第4図は従来の像面湾
曲の調整機構を備えた走査光学装置の要部概略図、第5
図は被走査面内での結像面の分布状態を示した説明図、
第6図は傾き調整による結像面の分布状態を示した説明
図である。 図中、1はトーリックレンズ、2は押えバネ、3は調整
用ネジ、4は板バネ、10はf−θレンズ系、21はス
ペーサー、11,21.31は基材、lla、22a、
31aは突き当て面、アは光軸である。
1st. Second. FIG. 3 shows the first, second, and third embodiments of the present invention in order. A schematic diagram of an f-θ lens system as an imaging optical system constituting a part of the scanning optical device of the third embodiment, and FIG. 4 shows the main part of the conventional scanning optical device equipped with a field curvature adjustment mechanism. Schematic diagram, 5th
The figure is an explanatory diagram showing the distribution state of the imaging plane within the scanned surface.
FIG. 6 is an explanatory diagram showing the distribution state of the imaging plane due to tilt adjustment. In the figure, 1 is a toric lens, 2 is a presser spring, 3 is an adjustment screw, 4 is a leaf spring, 10 is an f-θ lens system, 21 is a spacer, 11, 21.31 are base materials, lla, 22a,
31a is an abutting surface, and 31a is an optical axis.

Claims (3)

【特許請求の範囲】[Claims] (1)光源からの光束を光偏向器で偏向させた後、結像
光学系を介して走査面上に導光し、該走査面上を走査す
る走査光学装置において、該結像光学系を構成する少な
くとも一部のレンズを調整手段により光軸に対して偏心
させることにより、該光束で走査面を走査する際の像面
弯曲を補正したことを特徴とする走査光学装置。
(1) In a scanning optical device that deflects a light beam from a light source with an optical deflector, guides the light onto a scanning surface via an imaging optical system, and scans the scanning surface. 1. A scanning optical device, characterized in that at least a part of the lenses constituting the device is decentered with respect to an optical axis by an adjustment means, thereby correcting field curvature when scanning a scanning surface with the light beam.
(2)前記少なくとも一部のレンズを光軸に対して垂直
方向に偏心させたこと又は/及び光軸に対して傾けて偏
心させたことを特徴とする請求項1記載の走査光学装置
(2) The scanning optical device according to claim 1, wherein at least some of the lenses are decentered in a direction perpendicular to the optical axis and/or tilted and decentered with respect to the optical axis.
(3)前記結像光学系をf−θレンズより構成したこと
を特徴とする請求項1記載の走査光学装置。
(3) The scanning optical device according to claim 1, wherein the imaging optical system is comprised of an f-theta lens.
JP5058690A 1990-03-01 1990-03-01 Scanning optical device Pending JPH03251813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5058690A JPH03251813A (en) 1990-03-01 1990-03-01 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5058690A JPH03251813A (en) 1990-03-01 1990-03-01 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH03251813A true JPH03251813A (en) 1991-11-11

Family

ID=12863078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058690A Pending JPH03251813A (en) 1990-03-01 1990-03-01 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH03251813A (en)

Similar Documents

Publication Publication Date Title
US5506719A (en) Optical scanning device
US6229638B1 (en) Optical scanning apparatus capable of reducing variations in shading and improving light usage
EP0853253B1 (en) Optical scanning apparatus
US5130840A (en) Light scanning system
US20010015747A1 (en) Multi-beam scanning optical system and image forming apparatus using the same
US5162938A (en) Light scanning system
JPH09318874A (en) Scanning optical device
EP0599542B1 (en) Two element optical system for focus error compensation in laser scanning systems
JP3267098B2 (en) Scanning optical device and lens holding unit thereof
US6108115A (en) Scanning optical system
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
US5327280A (en) Scanning optical system
JPH03251813A (en) Scanning optical device
JPH07128604A (en) Scanning optical device
JP2931181B2 (en) Optical scanning device
JPH04242215A (en) Optical scanner
JPH09288245A (en) Optical scanner
JP2553882B2 (en) Scanning optical system
JPH07318838A (en) Optical scanner
JP2557938B2 (en) Light beam scanning device with tilt correction function
JPH0743627A (en) Optical scanning device
JP3198685B2 (en) Light beam scanning device
JPH10213769A (en) Lens holding device and optical beam scanning optical device
JP2002169116A (en) Anamorphic imaging element and optical scanner
JPH1144854A (en) Optical scanning optical device