JPH03251227A - Mri device - Google Patents

Mri device

Info

Publication number
JPH03251227A
JPH03251227A JP2048373A JP4837390A JPH03251227A JP H03251227 A JPH03251227 A JP H03251227A JP 2048373 A JP2048373 A JP 2048373A JP 4837390 A JP4837390 A JP 4837390A JP H03251227 A JPH03251227 A JP H03251227A
Authority
JP
Japan
Prior art keywords
coil
conductive member
magnetic field
receiving
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2048373A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hamamura
良紀 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2048373A priority Critical patent/JPH03251227A/en
Publication of JPH03251227A publication Critical patent/JPH03251227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To stabilize the receiving sensitivity characteristic at the time of photographing by placing a receiving RF coil in a position being eccentrically from the center of a photographing hole by holding the RF coil in each position in which an electromagnetic interaction of the RF coil and a conductive member is equivalent to each other. CONSTITUTION:A conductive member 3 is provided with a shield member 3a for shielding an unnecessary RF wave placed in the periphery of a photographing hole 2, a whole body RF coil 3b which can excite an atomic nucleus of a photographing part of a body to be examined, a gradient magnetic field coil 3c for generating gradient magnetic field and giving coordinate information to an MR signal from the body to be examined, and a static magnetic field coil 3d for generating a static magnetic field. The shield member 3a, and the coils 3b to 3d are both formed cylindrically, and have a geometrical symmetric property in which symmetry axes exist infinitely in a cross section being orthogonal to the center axis direction Z of the photographing hole 2. By holding the RF coil by a coil moving mechanism 7 which can hold it in a position an electromagnetic interaction of a QD coil 6 and a conductive member 3 of an MR rack base 4 is equivalent to each other, the receiving sensitivity characteristic of the RF coil is stabilized.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、磁気共鳴イメージング装置(以下rMRr装
置」という)に関し、より詳しくはRFコイルの受信感
度特性の安定化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an "rMRr apparatus"), and more particularly to stabilization of reception sensitivity characteristics of an RF coil.

(従来の技術) MRI装置におけるMR架台は、被検体が配置される撮
影孔と、この撮影孔の周囲に静磁場を発生する静磁場コ
イル、傾斜磁場を発生する傾斜磁場コイル、RF波を送
受波し得る全身用RFコイル、不要RF波を遮蔽するシ
ールド部材等の撮影に必要な各導電部材とを備えている
ものである。
(Prior art) An MR mount in an MRI apparatus includes an imaging hole in which a subject is placed, a static magnetic field coil that generates a static magnetic field around the imaging hole, a gradient magnetic field coil that generates a gradient magnetic field, and transmits and receives RF waves. It is equipped with various conductive members necessary for imaging, such as a whole-body RF coil that can generate waves, and a shield member that blocks unnecessary RF waves.

また、人体の上肢及び下肢の四肢等の局所撮影を行うと
きは、被検体を載置した天板を撮影孔内に移動して被検
体を撮影孔内に配置する。そして筒状に形成された受信
用RFコイルをこの筒内に撮影対象とする肢を挿入する
Furthermore, when performing local imaging of the upper and lower limbs of a human body, the top plate on which the subject is placed is moved into the imaging hole, and the subject is placed within the imaging hole. Then, a receiving RF coil formed in a cylindrical shape is inserted into the cylinder, and the limb to be photographed is inserted into the cylinder.

次に全身用RFコイルより励起パルスを照射して受信用
RFコイルの筒内に挿入された肢の原子核を励起すると
、受信用RFコイルは、この励起された肢の原子核より
発生するMR倍信号検出する。この検出したMR倍信号
、データ処理部に取り込まれて、再構成処理されてCR
Tデイスプレィに撮影対象とした肢のMR像が表示され
る。
Next, when the whole body RF coil irradiates an excitation pulse to excite the atomic nucleus of the limb inserted into the cylinder of the receiving RF coil, the receiving RF coil receives the MR multiplied signal generated from the excited atomic nucleus of the limb. To detect. This detected MR multiplied signal is taken into the data processing unit, reconstructed and CR
An MR image of the limb to be photographed is displayed on the T-display.

受信用RFコイルは、撮影の際に撮影孔内に配置され、
MR架台の導電部材に接近した位置に置かれる。受信用
RFコイルが導電部材に接近すると、受信用RFコイル
と導電部材との電磁気的相互作用を受け、MR倍信号受
信系の受信感度特性が変化してしまう。このため、受信
用RFコイルは、撮影孔の中心に常に置かれることを前
提として、最良の受信感度特性となるよう調整される。
The receiving RF coil is placed inside the imaging hole during imaging,
It is placed close to the conductive member of the MR frame. When the receiving RF coil approaches the conductive member, the receiving RF coil receives electromagnetic interaction with the conductive member, and the receiving sensitivity characteristics of the MR multiplier signal receiving system change. Therefore, the receiving RF coil is adjusted to have the best receiving sensitivity characteristics on the premise that it is always placed at the center of the imaging hole.

しかしながら、四肢等の人体より偏心した部位の局所撮
影を行う場合は、受信用RFコイルは、撮影孔の中心よ
り外れた位置となる。このため、撮影孔の周囲にある導
電部材と受信用RFコイルとの位置関係が変化し、導電
部材と受信用RFコイルとの電磁気的相互作用か変化す
ることによって、受信用RFコイルの受信感度特性が劣
化する。
However, when performing local imaging of a part of the human body, such as a limb, which is eccentric from the human body, the receiving RF coil is positioned away from the center of the imaging hole. For this reason, the positional relationship between the conductive member around the imaging hole and the receiving RF coil changes, and the electromagnetic interaction between the conductive member and the receiving RF coil changes, causing the reception sensitivity of the receiving RF coil to change. Characteristics deteriorate.

このときの試験データを第10図に示す。第10図は、
横軸を周波数、縦軸を受信強度として90度位相偏移型
コイル(以下rQD(qlIadrafure)コイル
」という)の2チヤンネル(Ca、  Cb)について
測定したものである。QDコイルとしては、各チャンネ
ルCa、Cbが、受信感度方向(位相)が互いに90度
異なる方向に形成され、楕円状のコイルを互いに交差す
るようにして全体として直径20cm、長さ20cmの
筒状に形成されたもの(クロス楕円QDコイルと称せら
れている)を使用した。また同図中上側にはチャンネル
Caの受信強度Daを示し、同図中下側にはチャンネル
cbの受信強度Dbを示したものである。また、同図中
点線で示す曲線は、撮影孔の中心にQDコイルを配置し
、共振周波数21.3 MH2にQDコイルの同調回路
を調整して測定したときの受信強度測定結果を表わし、
実線で示す曲線は、QDコイルを撮影孔の中心から横方
向Xに12cm移動させたときの受信強度測定結果を表
わすものである。
The test data at this time is shown in FIG. Figure 10 shows
Measurements were taken for two channels (Ca, Cb) of a 90 degree phase shift coil (hereinafter referred to as rQD (qlIdrature) coil), with the horizontal axis representing frequency and the vertical axis representing received intensity. As a QD coil, each channel Ca and Cb is formed in a direction in which the reception sensitivity direction (phase) is different from each other by 90 degrees, and the elliptical coils are made to intersect with each other to form a cylindrical shape with a diameter of 20 cm and a length of 20 cm. (referred to as a cross-elliptic QD coil) was used. Further, the upper part of the figure shows the received strength Da of channel Ca, and the lower part of the figure shows the received strength Db of channel Cb. In addition, the curve shown by the dotted line in the same figure represents the reception strength measurement results when the QD coil was placed at the center of the imaging hole and the tuning circuit of the QD coil was adjusted to a resonance frequency of 21.3 MH2.
The curve shown by the solid line represents the reception strength measurement result when the QD coil was moved 12 cm in the lateral direction X from the center of the imaging hole.

また、受信強度の測定方法は、QDコイルの筒内に測定
用のループアンテナを配置して、一方のチャンネルCa
の受信感度方向と同方向に電波を送波して各チャンネル
Ca、Cbの受信強度を測定することによりチャンネル
の独位性、すなわち、チャンネルCaの受信感度とチャ
ンネルcbの受信感度との感度差の大小を測定するもの
であり、この感度差か大きい程、優れた独位性を有する
QDコイルということになる。その測定結果は、第10
図に示すように、チャンネルCaの共振周波数は21.
4 MH2と100 KH2変化し、チャンネルCaの
21.3MH2における受信強度は約7dB減少し、チ
ャンネルCa、Cb間の受信強度差が34dBから18
dBと低下して受信感度特性が劣化している。
In addition, the method of measuring the reception strength is to place a loop antenna for measurement inside the cylinder of the QD coil, and to
By transmitting radio waves in the same direction as the receiving sensitivity direction and measuring the receiving strength of each channel Ca and Cb, channel independence, that is, the sensitivity difference between the receiving sensitivity of channel Ca and the receiving sensitivity of channel cb is determined. The larger the difference in sensitivity, the more excellent the QD coil is. The measurement results are the 10th
As shown in the figure, the resonance frequency of channel Ca is 21.
4 MH2 and 100 KH2, the received strength of channel Ca at 21.3 MH2 decreased by about 7 dB, and the received strength difference between channels Ca and Cb decreased from 34 dB to 18 dB.
dB, and the receiving sensitivity characteristics have deteriorated.

このように受信感度特性が劣化したまま、MR倍信号収
集して再構成すると、S/N比が低下し、画質が劣化す
る。
If the MR multiplied signal is collected and reconstructed while the receiving sensitivity characteristics are degraded in this way, the S/N ratio will decrease and the image quality will deteriorate.

また、S/N比が低下しないように、再調整したとする
と、共振周波数のずれに対しては同調回路の自動調整に
より1分程度で終了するが、チャンネルCa、Cb間の
受信強度差を所定の値とする感度差調整においては、熟
練者でも1時間以上もかかるため撮影効率が悪くなる。
Also, if readjustment is performed to prevent the S/N ratio from decreasing, the automatic adjustment of the tuning circuit will correct the shift in the resonant frequency in about 1 minute, but the difference in reception strength between channels Ca and Cb will be corrected in about 1 minute. Adjusting the sensitivity difference to a predetermined value takes an hour or more even for an experienced person, resulting in poor imaging efficiency.

(発明が解決しようとする課題) このように、従来例装置においては、撮影孔の中心より
偏心した位置に受信用RFコイルを配置して撮影する場
合に、受信感度特性が劣化しS/N比が低下するという
問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional device, when the receiving RF coil is arranged at a position eccentric from the center of the imaging hole to perform imaging, the receiving sensitivity characteristics deteriorate and the S/N There was a problem that the ratio decreased.

そこで、本発明は上記事情に鑑みてなされたものであり
、撮影孔の中心より偏心した位置に受信用RFコイルを
配置して撮影する際に、受信感度特性の安定化が図れる
MRI装置を提供することを目的としている。
Therefore, the present invention has been made in view of the above-mentioned circumstances, and provides an MRI apparatus that can stabilize reception sensitivity characteristics when performing imaging with a receiving RF coil disposed at a position eccentric from the center of the imaging hole. It is intended to.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、被検体が配置され
る撮影孔とこの撮影孔の周囲に設けられた幾何学的対称
性を有する導電部材とを備えて構成されたMR架台と、
前記撮影孔内に配置され前記被検体に対しRF波を送受
波し得るRFコイルとを有するMRI装置において、前
記RFコイルを、RFコイルと前記導電部材との電磁気
的相互作用が互いに等価な各位置に保持し得る保持手段
を具備したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention has an imaging hole in which a subject is placed and a geometric symmetry provided around the imaging hole. an MR frame configured with a conductive member;
In an MRI apparatus having an RF coil disposed in the imaging hole and capable of transmitting and receiving RF waves to and from the subject, the RF coil is arranged in a manner that the electromagnetic interaction between the RF coil and the conductive member is equivalent to each other. It is characterized by comprising a holding means capable of holding it in position.

(作 用) 上記構成の装置の作用を第6図乃至第8図を参照して説
明する。
(Function) The function of the apparatus having the above configuration will be explained with reference to FIGS. 6 to 8.

この装置のMR架台における導電部材か、第6図乃至第
8図に示すように円形状に形成されている場合は、この
導電部材3の幾何学的対称軸は無限に存在することとな
る。従って導電部材3とRFコイルCとの電磁気的相互
作用が互いに等価な位置が無限に存在するようになる。
If the conductive member in the MR frame of this apparatus is formed into a circular shape as shown in FIGS. 6 to 8, the number of geometric symmetry axes of the conductive member 3 will be infinite. Therefore, there are infinitely many positions where the electromagnetic interaction between the conductive member 3 and the RF coil C is equivalent to each other.

この電磁気的相互作用か互いに等価な位置は、第6図に
示すように導電部材3の中心0を中心として等距離Sの
位置となる場合もあり、また第7図に示すように中心O
より上方にあり、かつ、中心Oを通る対称軸りより等距
離Sの位置となる場合もある。更に、第8図に示すよう
に、RFコイルCが中心Oを中心として互いに角度θ回
転した位置となる場合もある。
The positions where this electromagnetic interaction is mutually equivalent may be positions equidistant S from the center 0 of the conductive member 3 as shown in FIG.
In some cases, the position is higher and equidistant S from the axis of symmetry passing through the center O. Furthermore, as shown in FIG. 8, the RF coils C may be at positions rotated by an angle θ with respect to the center O.

導電部材3が円形以外の例えば矩形状等の場合において
も電磁気的相互作用が互いに等価な位置が同様に存在す
る。
Even when the conductive member 3 has a shape other than a circle, for example, a rectangular shape, there are positions where the electromagnetic interaction is equivalent to each other.

このように電磁気的相互作用が互いに等価な各位置に、
保持手段によりRFコイルCを保持すると、RFコイル
Cの受信感度特性は安定することになる。
In this way, at each position where the electromagnetic interactions are equivalent to each other,
When the RF coil C is held by the holding means, the receiving sensitivity characteristics of the RF coil C are stabilized.

(実施例) 以下に本発明の実施例装置1について図面を参照して説
明する。
(Example) An example device 1 of the present invention will be described below with reference to the drawings.

第1図は、本発明の第1の実施例装置1のブロック図を
示すものである。
FIG. 1 shows a block diagram of a device 1 according to a first embodiment of the present invention.

本装置1は、被検体が配置される円筒状の撮影孔2とこ
の撮影孔2の周囲に設けられた幾何学的対称性を有する
導電性部材3とを備えて構成されたMR架台4と、撮影
孔2の中心軸方向2に沿って被検体を載置して移動する
保持手段としての天板5と、撮影孔2内に配置される被
検体に対しRF波を送受波し得るRFコイルとしてのク
ロス楕円QDコイル6と、このQDコイル6を方向Xに
移動して、QDコイル6とMR架台4の導電部材3との
電磁気的相互作用が互いに等価な2つの位置に保持し得
る保持手段としてのコイル移動機構7とを有している。
The present device 1 includes an MR mount 4 that includes a cylindrical imaging hole 2 in which a subject is placed, and a conductive member 3 with geometric symmetry provided around the imaging hole 2. , a top plate 5 as a holding means on which a subject is placed and moved along the central axis direction 2 of the imaging hole 2; A cross-elliptic QD coil 6 as a coil and this QD coil 6 can be moved in the direction It has a coil moving mechanism 7 as a holding means.

前記導電部材3は、撮影孔2の周囲に配置された不要R
F波を遮蔽するシールド部材3aと、RF波を送受波し
て被検体撮影部位の原子核を励起し得る全身用RFコイ
ル3bと、傾斜磁場を発生して被検体からのMR倍信号
座標情報を与える傾斜磁場コイル3Cと、静磁場を発生
する静磁場コイル3dとを有している。上記シールド部
材3a。
The conductive member 3 is connected to an unnecessary R disposed around the imaging hole 2.
A shield member 3a that shields F waves, a whole-body RF coil 3b that can transmit and receive RF waves to excite the atomic nucleus in the imaging region of the object, and generate a gradient magnetic field to obtain MR multiplied signal coordinate information from the object. It has a gradient magnetic field coil 3C that generates a static magnetic field, and a static magnetic field coil 3d that generates a static magnetic field. The shield member 3a.

コイル3b乃至3dは、共に円筒状に形成されており、
このため撮影孔2の中心軸方向Zに直交する断面におい
ては、対称軸が無限に存在する幾何学的対称性を有する
ものである。
The coils 3b to 3d are both formed in a cylindrical shape,
Therefore, in a cross section perpendicular to the central axis direction Z of the imaging hole 2, it has geometric symmetry with an infinite number of symmetry axes.

またこの装置1は、天板5を方向Zに移動するための天
板移動部8と、全身用RFコイル3bにRF波を送信す
るためのパルス信号を出力するRF波送信部9と、傾斜
磁場コイル3c及び静磁場コイル3dに電源を供給する
ための磁場電源部10と、QDコイル6が検出したRF
波を受信するRF波受信部11と、この装置1各部を制
御するシステムコントローラ12とを有している。
This device 1 also includes a top plate moving unit 8 for moving the top plate 5 in the direction Z, an RF wave transmitting unit 9 for outputting a pulse signal for transmitting RF waves to the whole body RF coil 3b, and a tilt A magnetic field power supply section 10 for supplying power to the magnetic field coil 3c and the static magnetic field coil 3d, and the RF detected by the QD coil 6.
It has an RF wave receiving section 11 that receives waves, and a system controller 12 that controls each section of this device 1.

前記コイル移動機構7の構成を第2図乃至第4図を参照
して説明する。
The structure of the coil moving mechanism 7 will be explained with reference to FIGS. 2 to 4.

第2図はこのコイル移動機構7の斜視図、第3図はこの
機構7の底面図、第4図は第3図のA−A断面図を示す
ものである。
2 is a perspective view of this coil moving mechanism 7, FIG. 3 is a bottom view of this mechanism 7, and FIG. 4 is a sectional view taken along line AA in FIG. 3.

このコイル移動機構7は、第1図及び第2図に示す方向
XにQDコイル6を移動可能とするガイド穴7aと、Q
Dコイル6の底部6aに連結されたピン7bと、QDコ
イル6の可動範囲の両端でQDコイル6を保持するばね
部材7cとを有している。手動でQDコイル6を移動操
作することにより、方向Aの可動範囲の両端で容易にコ
イル6を第1図又は第2図に示すように保持し得るよう
にしている。
This coil moving mechanism 7 includes a guide hole 7a that allows the QD coil 6 to move in the direction X shown in FIGS.
It has a pin 7b connected to the bottom 6a of the D coil 6, and a spring member 7c that holds the QD coil 6 at both ends of the movable range of the QD coil 6. By manually moving the QD coil 6, the coil 6 can be easily held at both ends of the movable range in the direction A as shown in FIG. 1 or 2.

本装置1において、QDコイル6を第6図に示すように
移動させた場合の受信感度特性の測定結果を第9図に示
す。
FIG. 9 shows the measurement results of the receiving sensitivity characteristics when the QD coil 6 is moved as shown in FIG. 6 in this device 1.

この測定結果は、全身用RFコイル3bをRF波の送波
用として使用し、QDコイル6を受信用として使用した
場合のものである。また使用コイルは、従来例装置にお
ける測定と同様のクロス楕円QDコイルを用い、中心O
よりX方向の一方へ8an移動して共鳴周波数を21.
4 MH2に調整して受信感度特性を測定(同図中点線
の曲線で示す)後、このQDコイルをX方向の他方へ8
cm移動しで同じく受信感度特性を測定(同図中実線の
曲線で示す)したものである。その結果は、共振周波数
及びチャンネルCa、Cbの受信強度差30dBはほと
んど変化がなく、従来行われていた周波数調整、感度差
調整等が不要になるだけでなく、受信感度特性の変化し
ない位置へQDコイルを容易に配置することができる。
This measurement result is obtained when the whole body RF coil 3b is used for transmitting RF waves, and the QD coil 6 is used for receiving RF waves. In addition, the coil used is a cross elliptical QD coil similar to that used in the measurement with the conventional device, and the center O
Move the resonance frequency by 8 an to one side in the X direction to increase the resonance frequency by 21.
After adjusting to 4 MH2 and measuring the receiving sensitivity characteristics (shown by the dotted curve in the figure), move this QD coil to the other side in the X direction by 8
The reception sensitivity characteristics were similarly measured (indicated by the solid curve in the figure) after moving by cm. As a result, there is almost no change in the resonance frequency and the reception strength difference of 30 dB between channels Ca and Cb, which not only eliminates the need for conventional frequency adjustment and sensitivity difference adjustment, but also allows the reception sensitivity characteristics to remain unchanged. QD coils can be easily arranged.

これにより安定した受信感度特性を有するMRI装置を
提供することができる。
This makes it possible to provide an MRI apparatus having stable reception sensitivity characteristics.

特に人体の上肢及び下肢の四肢等の人体の中心より偏心
した位置の局所撮影を行う場合に、例えば右下肢の撮影
時と左下肢の撮影時とで受信感度特性の変化が少ないた
め、良好なMR像を得ることができる。
Particularly when performing local imaging of positions eccentric from the center of the human body, such as upper and lower extremities, there is little change in reception sensitivity characteristics between, for example, when imaging the right lower limb and when imaging the left lower limb. MR images can be obtained.

また、QDコイル等の複数チャンネルを有するコイルを
用いた場合は、S/N比の高い信号が得られると共に、
受信感度特性が安定し、しかも調整を不要とし得るMR
I装置を提供することができる。
In addition, when using a coil with multiple channels such as a QD coil, a signal with a high S/N ratio can be obtained, and
MR with stable receiving sensitivity characteristics and no adjustment required
I equipment can be provided.

第5図は、第1図乃至第4図に示すコイル移動機構7の
他の例17を示す斜視図である。
FIG. 5 is a perspective view showing another example 17 of the coil moving mechanism 7 shown in FIGS. 1 to 4.

このコイル移動機構17は、天板5の上に載置された弧
状レール17aと、この弧状レール17aに沿って移動
し、かつ、RFコイルとしての表面コイル16を法線方
向に移動可能に保持する保持具17bとを有しており、
表面コイル16を所望する位置に移動しツマミ17c、
17dにより固定できるようにしている。このコイル移
動機構17は、第8図に示すように、表面コイル16を
受信感度特性が一定となる位置に連続して移動し固定配
置できるものである。
This coil moving mechanism 17 moves along an arcuate rail 17a placed on the top plate 5, and this arcuate rail 17a, and holds a surface coil 16 as an RF coil so as to be movable in the normal direction. It has a holder 17b that
Move the surface coil 16 to the desired position and turn the knob 17c.
17d so that it can be fixed. As shown in FIG. 8, this coil moving mechanism 17 is capable of continuously moving and fixing the surface coil 16 to a position where the receiving sensitivity characteristics are constant.

このコイル移動機構17を用いたMRr装置1によれば
、表面コイル16を弧状レール17aに沿って移動して
も受信感度特性は安定したものとなる。
According to the MRr device 1 using this coil moving mechanism 17, the receiving sensitivity characteristics are stable even if the surface coil 16 is moved along the arcuate rail 17a.

以上各実施例について説明したが、本発明はこれに限定
されず種々に変更実施が可能である。
Although the embodiments have been described above, the present invention is not limited thereto and can be modified in various ways.

例えば、コイル移動機構を天板の上に配置したが、撮影
孔内に固定配置してもよい。また、電磁気的相互作用が
互いに等価な位置は、撮影孔の中心軸に沿った方向Zに
も存在し、この方向においても電磁気的相互作用が互い
に等価な位置にRFコイルを配置して保持するようにし
てもよい。
For example, although the coil moving mechanism is disposed on the top plate, it may be fixedly disposed within the imaging hole. Further, the position where the electromagnetic interaction is mutually equivalent exists also in the direction Z along the central axis of the imaging hole, and the RF coil is placed and maintained at the position where the electromagnetic interaction is mutually equivalent in this direction as well. You can do it like this.

[発明の効果] 以上詳述した本発明によれば、撮影孔の中心より偏心し
た位置にRFコイルを配置して撮影する際に、保持手段
によりRFコイルを、RFコイルと導電部材との電磁気
的相互作用が互いに等価な各位置に保持し得るので、受
信感度特性の安定化が図れるMRI装置を提供すること
ができる。
[Effects of the Invention] According to the present invention described in detail above, when the RF coil is arranged at a position eccentric from the center of the imaging hole and the RF coil is taken, the RF coil is held by the holding means, and the electromagnetic force between the RF coil and the conductive member is Since the mutual interaction can be maintained at each position equivalent to each other, it is possible to provide an MRI apparatus in which receiving sensitivity characteristics can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置のブロック図、第2図乃至
第4図はこの装置のコイル移動機構を示す図、第5図は
第2図乃至第4図に示すコイル移動機構の他の例を示す
斜視図、第6図乃至第8図は本発明の原理を示す説明図
、第9図はこの装置におけるQDコイルの受信強度の測
定結果図、第10図は従来例装置におけるQDコイルの
受信強度の測定結果図である。 1・・・MRr装置、2・・・撮影孔、3・・・導電性
部材、3a・・・シールド部材(導電性部材)、3b・
・・全身用RFコイル(導電性部材)、3c・・・傾斜
磁場コイル(導電性部材)、3d・・・静磁場コイル(
導電性部材)、4・・・MR架台、5・・・天板(保持
手段)、6・・・クロス楕円QDコイル(RFコイル)
、7.17・・・コイル移動機構(保持手段)、16・
・・表面コイル(RFコイル)、第 3 図 第 図
FIG. 1 is a block diagram of a device according to an embodiment of the present invention, FIGS. 2 to 4 are diagrams showing a coil moving mechanism of this device, and FIG. 5 is a diagram showing a coil moving mechanism other than those shown in FIGS. 2 to 4. 6 to 8 are explanatory diagrams illustrating the principle of the present invention, FIG. 9 is a diagram showing the measurement results of the reception strength of the QD coil in this device, and FIG. 10 is a diagram showing the QD in the conventional device. FIG. 3 is a diagram showing the measurement results of the received strength of the coil. DESCRIPTION OF SYMBOLS 1... MRr apparatus, 2... Photographing hole, 3... Conductive member, 3a... Shield member (conductive member), 3b.
... RF coil for whole body (conductive member), 3c... gradient magnetic field coil (conductive member), 3d... static magnetic field coil (
conductive member), 4...MR mount, 5...top plate (holding means), 6...cross elliptical QD coil (RF coil)
, 7.17... Coil moving mechanism (holding means), 16.
...Surface coil (RF coil), Fig. 3 Fig.

Claims (4)

【特許請求の範囲】[Claims] (1)被検体が配置される撮影孔とこの撮影孔の周囲に
設けられた幾何学的対称性を有する導電部材とを備えて
構成されたMR架台と、前記撮影孔内に配置され前記被
検体に対しRF波を送受波し得るRFコイルとを有する
MRI装置において、前記RFコイルを、RFコイルと
前記導電部材との電磁気的相互作用が互いに等価な各位
置に保持し得る保持手段を具備したことを特徴とするM
RI装置。
(1) An MR mount configured with an imaging hole in which a subject is placed and a conductive member having geometric symmetry provided around the imaging hole, and An MRI apparatus having an RF coil capable of transmitting and receiving RF waves to and from a specimen, comprising a holding means capable of holding the RF coil at each position where electromagnetic interaction between the RF coil and the conductive member is equivalent to each other. M characterized by having done
RI device.
(2)前記保持手段は、前記被検体を載置して前記撮影
孔内を移動する天板と、この天板に配置され前記RFコ
イルを移動し得るコイル移動機構とを有する請求項1記
載のMRI装置。
(2) The holding means includes a top plate on which the subject is placed and moves within the imaging hole, and a coil moving mechanism arranged on the top plate and capable of moving the RF coil. MRI machine.
(3)前記保持手段は、前記撮影孔内に固定配置された
請求項1記載のMRI装置。
(3) The MRI apparatus according to claim 1, wherein the holding means is fixedly arranged within the imaging hole.
(4)前記RFコイルは複数チャンネルを有する請求項
1、2又は3記載のMRI装置。
(4) The MRI apparatus according to claim 1, 2 or 3, wherein the RF coil has a plurality of channels.
JP2048373A 1990-02-28 1990-02-28 Mri device Pending JPH03251227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048373A JPH03251227A (en) 1990-02-28 1990-02-28 Mri device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048373A JPH03251227A (en) 1990-02-28 1990-02-28 Mri device

Publications (1)

Publication Number Publication Date
JPH03251227A true JPH03251227A (en) 1991-11-08

Family

ID=12801529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048373A Pending JPH03251227A (en) 1990-02-28 1990-02-28 Mri device

Country Status (1)

Country Link
JP (1) JPH03251227A (en)

Similar Documents

Publication Publication Date Title
US5196796A (en) Anatomically conformal quadrature mri surface coil
US8089280B2 (en) RF coil and MRI system
EP0404461B1 (en) Gradient coil assemblies for generating magnetic field gradients across a region
US4752738A (en) Three dimensional localized coil for magnetic resonance imaging
EP0759560A1 (en) A magnetic resonance imaging method and apparatus
JPH0420619B2 (en)
US7123014B2 (en) Magnetic gradient field projection
US6700376B2 (en) Method and apparatus for correcting static magnetic field using a pair of magnetic fields which are the same or different from each other in intensity and direction
JPH11285482A (en) Rf coil device for magnetic resonance imaging
JPH08173400A (en) Shape variance mri coil
US11169233B2 (en) Hybrid MPI and MRI/CT imaging apparatus and method
EP1454155A1 (en) Planar radio frequency coil for open magnetic resonance imaging systems
JPH05285120A (en) Circular polarization type local antenna for nuclear spin resonance equipment
US5977771A (en) Single gradient coil configuration for MRI systems with orthogonal directed magnetic fields
US6728570B2 (en) Radio frequency coil for magnetic resonance image
JP3705996B2 (en) Magnetic resonance imaging device
JPH03251227A (en) Mri device
CN108474829B (en) Radio frequency coil array for magnetic resonance examination system
JP3492040B2 (en) RF probe for magnetic resonance equipment
EP4361660A1 (en) High-frequency coil device and magnetic resonance imaging apparatus using the same
JPH04180733A (en) Surface coil for nuclear magnetic resonance device
JPH0217036A (en) Antenna for imaging apparatus by nuclear magnetic resonance
JP3115028B2 (en) RF probe
US10816620B2 (en) Method for controlling the distribution of the RF magnetic field in a magnetic resonance imaging system
JPH10262947A (en) Magnetic resonance examination system