JPH03251185A - Production of heat-resistant beta-amylase - Google Patents

Production of heat-resistant beta-amylase

Info

Publication number
JPH03251185A
JPH03251185A JP4847790A JP4847790A JPH03251185A JP H03251185 A JPH03251185 A JP H03251185A JP 4847790 A JP4847790 A JP 4847790A JP 4847790 A JP4847790 A JP 4847790A JP H03251185 A JPH03251185 A JP H03251185A
Authority
JP
Japan
Prior art keywords
plasmid
amylase
gene
thermostable
cell wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4847790A
Other languages
Japanese (ja)
Inventor
Juzo Udaka
重三 鵜高
Kenji Sakaguchi
健二 坂口
Makoto Mizukami
誠 水上
Hideo Yamagata
山形 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP4847790A priority Critical patent/JPH03251185A/en
Publication of JPH03251185A publication Critical patent/JPH03251185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a heat-resistant amylase in high efficiency by transducing a plasmid growable in Bacillus subtilis or Bacillus brevis (B. brevis) into B. brevis and culturing the obtained transformant. CONSTITUTION:A heat-resistant beta-amylase is introduced into a plasmid growable in Bacillus subtilis or B. brevis. The plasmid is e.g. pHB110 or pC194. The plasmid is transduced into B. brevis by conventional method to obtain a transformant. The transformant is cultured preferably in a culture liquid containing e.g. trypton or yeast extract at 30-37 deg.C for 5-6 days and the objective heat-resistant beta-amylase is separated from the cultured product. A large amount of heat-resistant beta-amylase can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性β−アミラーゼ遺伝子を導入したプラ
スミド、このプラスミドをバチルス プレビスに導入し
た形質転換体及びこの形質転換体を用いた耐熱性β−ア
ミラーゼの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a plasmid into which a heat-stable β-amylase gene is introduced, a transformant into which this plasmid is introduced into Bacillus plebis, and a heat-stable product using this transformant. The present invention relates to a method for producing β-amylase.

〔従来の技術〕[Conventional technology]

β−アミラーゼは、デンプンに作用してその非還元末端
からマルトース単位にα−1,4−グルコシド結合を切
断し、β−マルトースを生成する酵素である。
β-Amylase is an enzyme that acts on starch to cleave α-1,4-glucoside bonds from its non-reducing end to maltose units, producing β-maltose.

現在、工業的には、約60°Cで使用可能な大豆由来の
β−アミラーゼが主に使用されている。
Currently, soybean-derived β-amylase, which can be used at about 60°C, is mainly used industrially.

それに対して、本発明者らは、より高い温度で安定な耐
熱性β−アミラーゼについて研究し、耐熱性β−アミラ
ーゼの遺伝子の塩基配列を解明した〔特開平1−218
589号〕。
In contrast, the present inventors conducted research on thermostable β-amylase that is stable at higher temperatures, and elucidated the base sequence of the gene for thermostable β-amylase [JP-A-1-218
No. 589].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記耐熱性β−アミラーゼの遺伝子を
用いて、耐熱性β〜アミラーゼを効率良く生産すること
である。
An object of the present invention is to efficiently produce thermostable β-amylase using the above gene for thermostable β-amylase.

本発明の目的は、より具体的には、耐熱性β−アミラー
ゼを効率良く生産することができる、耐熱性β−アミラ
ーゼの遺伝子を含むプラスミド、このプラスミドを導入
した微生物及びこの微生物を用いた耐熱性β−アミラー
ゼの製造方法を提供することにある。
More specifically, the purpose of the present invention is to provide a plasmid containing a gene for heat-stable β-amylase that can efficiently produce heat-stable β-amylase, a microorganism into which this plasmid is introduced, and a heat-stable microorganism using this microorganism. An object of the present invention is to provide a method for producing a β-amylase.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、(a)枯草菌に生育し得るプラスミドに耐熱
性β−アミラーゼを導入したプラスミド、(blこのプ
ラスミドをバチルス プレビス(Bacillus b
revis) (以下、B、プレビスと略記することが
ある)に導入した形質転換体、及び(C)この形質転換
体を培養し、培養物から耐熱性β−アミラーゼを採取す
る耐熱性β−アミラーゼの製造方法に関する。
The present invention provides (a) a plasmid in which heat-stable β-amylase has been introduced into a plasmid that can grow in Bacillus subtilis, (bl) this plasmid, and
revis) (hereinafter sometimes abbreviated as B, previs), and (C) the transformant is cultured and the thermostable β-amylase is collected from the culture. Relating to a manufacturing method.

以下本発明をさらに説明する。The present invention will be further explained below.

(a)プラスミド 本発明のプラスミドは、枯草菌又はB、プレビスに生育
し得るプラスミドに耐熱性β−アミラーゼを導入したプ
ラスミドである。枯草菌に生育し得るプラスミドとして
は、pUBllo、pc194、pE194等を例示で
きる。
(a) Plasmid The plasmid of the present invention is a plasmid in which thermostable β-amylase is introduced into a plasmid that can grow in Bacillus subtilis or B. plebis. Examples of plasmids that can grow in Bacillus subtilis include pUBllo, pc194, and pE194.

本発明のプラスミドは、上記枯草菌に生育し得るプラス
ミドに耐熱性β−アミラーゼを導入したプラスミドに、
B、プレビスの細胞壁タンパク質遺伝子の一部または全
部をさらに導入したプラスミドも包含する。B、プレビ
スの細胞壁タンパク質遺伝子の一部または全部を導入し
た枯草菌に生育し得るプラスミドとしては、プラスミド
pNU200を例示できる。
The plasmid of the present invention is a plasmid in which heat-stable β-amylase is introduced into the plasmid capable of growing in Bacillus subtilis.
It also includes a plasmid into which part or all of the B. plebis cell wall protein gene has been further introduced. Plasmid pNU200 is an example of a plasmid that can grow in Bacillus subtilis into which part or all of the B. plebis cell wall protein gene has been introduced.

プラスミドpNU200は、枯草菌のプラスミドである
pUB 110とB、プレビスの細胞壁タンパク質遺伝
子の5°位制御領域を含む多コピープラスミドであり、
鵜高重三、日本農芸化学会誌61669 (1987)
及びT、カワズ(Kawazu)ら、J、Bacter
iol、、  169. 1564(1987)に記載
の方法により得ることができる。
Plasmid pNU200 is a multicopy plasmid containing the Bacillus subtilis plasmids pUB 110 and B, and the 5° regulatory region of the cell wall protein gene of Bacillus plebis.
Shigezo Udaka, Journal of the Japanese Society of Agricultural Chemistry 61669 (1987)
and T., Kawazu et al., J., Bacter.
iol,, 169. 1564 (1987).

一方、耐熱性β−アミラーゼ遺伝子は、クロストリジラ
ム サーモサルフロゲネス(Clostridiumゲ
ネスと略記することがある)ATCC33733から得
られ、例えばプラスミドpNK1に含まれている。pN
Klを例えば制限酵素MflIで切断することにより、
耐熱性β−アミラーゼ遺伝子を含むDNA断片を得るこ
とができる。尚、プラスミドpNK1は、特開平1−2
18589号に記載の方法により得ることができる。
On the other hand, the thermostable β-amylase gene is obtained from Clostridium thermosulfologenes (sometimes abbreviated as Clostridium) ATCC33733, and is contained in, for example, plasmid pNK1. pN
For example, by cleaving Kl with the restriction enzyme MflI,
A DNA fragment containing the thermostable β-amylase gene can be obtained. In addition, plasmid pNK1 is disclosed in Japanese Patent Application Laid-open No. 1-2
It can be obtained by the method described in No. 18589.

本発明のプラスミドの1例として、上記プラスミドpN
KlのMflI−MflI約3.6Kb断片の一部また
は全部を切出し、プラスミドpNU200(7)Bam
HI部位を連結することにより得られるプラスミドを挙
げられる。このようなプラスミドの内、pNKlのMf
lI−MflI約3.6Kb断片の全部を含むプラスミ
ドを、以下pMM1と呼ぶ。
As an example of the plasmid of the present invention, the above plasmid pN
Part or all of the MflI-MflI approximately 3.6 Kb fragment of Kl was excised, and plasmid pNU200(7) Bam
Examples include plasmids obtained by ligating HI sites. Among these plasmids, Mf of pNKl
The plasmid containing the entire lI-MflI approximately 3.6 Kb fragment is hereinafter referred to as pMM1.

さらに本発明は、細胞壁タンパク質遺伝子の内、586
塩基以降の塩基を欠く細胞壁タンパク質遺伝子を含むプ
ラスミドpNU200の細胞壁タンパク質遺伝子の直後
に耐熱性β−アミラーゼ構造遺伝子を連結したプラスミ
ドも包含する。このプラスミドを、以下pMM2と呼ぶ
Furthermore, the present invention provides that among cell wall protein genes, 586
It also includes a plasmid in which a thermostable β-amylase structural gene is linked immediately after the cell wall protein gene of plasmid pNU200, which contains the cell wall protein gene lacking the bases after the base. This plasmid is hereinafter referred to as pMM2.

さらに本発明は、細胞壁タンパク質遺伝子の内、516
塩基以降の塩基を欠く細胞壁タンパク質遺伝子を含むプ
ラスミドpNU200の細胞壁タンパク質遺伝子の直後
に耐熱性β−アミラーゼのシグナル遺伝子及び構造遺伝
子を連結したプラスミドも包含する。このプラスミドを
、以下pMM3と呼ぶ。
Furthermore, the present invention provides that 516 of the cell wall protein genes
Also included is a plasmid in which the signal gene and structural gene of thermostable β-amylase are linked immediately after the cell wall protein gene of plasmid pNU200, which contains the cell wall protein gene lacking the bases after the base. This plasmid is hereinafter referred to as pMM3.

9MM2及びp M M 3は、以下のようにして調製
できる。
9MM2 and pMM3 can be prepared as follows.

細胞壁タンパク質遺伝子のシグナル切断部位以前とβ−
アミラーゼのシグナル切断部位以後を合成りNAを用い
て結合させることにより、9MM2を構築することがで
きる。
Before signal cleavage site of cell wall protein gene and β-
9MM2 can be constructed by synthesizing the region after the signal cleavage site of amylase and linking it using NA.

また、両遺伝子の翻訳開始部位に制限酵素BspHIの
認識部位を導入後、5pel−Bsp旧、BspHl−
3phl断片をp M M 2の5pel −5ph1
部位に挿入することにより、pMM3を構築することが
できる。
In addition, after introducing the recognition site of the restriction enzyme BspHI into the translation start site of both genes, 5pel-Bsp old, BspHI-
3phl fragment to pM M2 5pel -5ph1
pMM3 can be constructed by inserting into the site.

(b)上記プラスミドを導入した形質転換本発明は、上
記プラスミドを8.プレビスに導入した形質転換体も包
含する。B、プレビスとしては、例えば、47に株(F
ERM  BP−2308)、47株(FERM  P
−7224)、HO14株(FERM  P−8891
)、81402株(FERM  P−8892)、HO
23株(F E RMP−8893)、8144株等を
挙げることができる。
(b) Transformation into which the above-mentioned plasmid has been introduced In the present invention, the above-mentioned plasmid is introduced into 8. It also includes transformants introduced into Previs. B. As a previs, for example, 47 stocks (F
ERM BP-2308), 47 stocks (FERM P
-7224), HO14 strain (FERM P-8891
), 81402 strain (FERM P-8892), HO
Examples include 23 strains (FERMP-8893) and 8144 strains.

さらに、本発明のプラスミドは、B、プレビス以外に、
枯草菌やその他、このプラスミドが生育し得る細菌中に
導入することもできる。そのような細菌とができる。
Furthermore, the plasmid of the present invention, in addition to B. previs,
It can also be introduced into Bacillus subtilis and other bacteria in which this plasmid can grow. Such bacteria can.

本発明のプラスミドのB、プレビス等への導入は、J、
 Bacter io 1. 、156 :1130−
1134(1983)に記載の方法により行うことがで
きる。
The plasmid of the present invention can be introduced into B, Previs, etc.
Bacterio 1. , 156:1130-
1134 (1983).

(C)耐熱性 −アミラーゼの製造方法さらに、本発明
は、上記本発明のプラスミドをB、プレビス等に導入し
た形質転換体を培養し、培養物から耐熱性β−アミラー
ゼを採取する耐熱性β−アミラーゼの製造方法も包含す
る。
(C) Thermostable - Method for producing amylase Furthermore, the present invention provides thermostable β-amylase in which a transformant in which the plasmid of the present invention is introduced into B, Previs, etc. is cultured, and thermostable β-amylase is collected from the culture. - Also includes a method for producing amylase.

本発明の形質転換体の培養は、例えばトリプトン、酵母
抽出物、カッオニキス等を含む培養液中、30〜37℃
、5〜6日間行うことが適当である。
The transformant of the present invention can be cultured at 30 to 37°C in a culture solution containing, for example, tryptone, yeast extract, blackberry extract, etc.
, it is appropriate to carry out the treatment for 5 to 6 days.

培養物からの耐熱性β−アミラーゼの採取は、常法、例
えば硫安沈澱法等により行うことができる。
Thermostable β-amylase can be collected from the culture by a conventional method, such as ammonium sulfate precipitation.

さらに、得られた耐熱性β−アミラーゼは、さらに菌体
外酵素取得の常法により、精製することができる。
Furthermore, the obtained thermostable β-amylase can be further purified by a conventional method for obtaining extracellular enzymes.

〔発明の効果〕〔Effect of the invention〕

本発明の形質転換体を用いる耐熱性β−アミラーゼの製
造方法によれば、大量に耐熱性β−アミラーゼを製造す
ることができる。
According to the method for producing thermostable β-amylase using the transformant of the present invention, thermostable β-amylase can be produced in large quantities.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに説明する。 The present invention will be further explained below with reference to Examples.

ただし、本発明は、これらの実施例に限定されるもので
はない。
However, the present invention is not limited to these examples.

実施例1  pMMlの調製及び培養 鵜高重三、日本農芸化学会誌61.669(1987)
に記載の方法により枯草菌プラスミドpUBIIOとB
、プレビスの細胞壁タンパク質遺伝子とも含むプラスミ
ドpN0200を得た。
Example 1 Preparation and culture of pMMl Shigezo Udaka, Journal of the Japanese Society of Agricultural Chemistry 61.669 (1987)
Bacillus subtilis plasmids pUBIIO and B by the method described in
Plasmid pN0200, which also contains the cell wall protein gene of P. plevis, was obtained.

一方、特開平1−218589号に記載の方法により耐
熱性β−アミラーゼ遺伝子を含むプラスミドpNK1を
得た。このプラスミドpNK1(DMflI−MflI
約3.6Kb断片を切出し、上記プラスミドpNU20
0(7)BamHI部位に連結し、プラスミドpMM1
  (8466bp)を得た。
On the other hand, plasmid pNK1 containing a thermostable β-amylase gene was obtained by the method described in JP-A-1-218589. This plasmid pNK1 (DMflI-MflI
An approximately 3.6 Kb fragment was excised and used as the above plasmid pNU20.
0(7) into the BamHI site to create plasmid pMM1.
(8466bp) was obtained.

プラスミドpMM1の制限酵素地図を第4図に示し、D
NA塩基配列の一部を第1図に示す。第4図中のMWP
は、細胞壁タンパク質遺伝子を示す。尚、第1図中、1
〜96塩基までが細胞壁タンパク質遺伝子であり、97
〜3744塩基がβ−アミラーゼ遺伝子であり、374
5塩基以後がpNU200の遺伝子である。さらに、6
60〜662塩基に翻訳開始点「ATG」があり、75
5塩基までがシグナル配列である。2313〜2315
塩基に翻訳終止点rTAAJがある。
The restriction enzyme map of plasmid pMM1 is shown in FIG.
A part of the NA base sequence is shown in FIG. MWP in Figure 4
indicates a cell wall protein gene. In addition, in Figure 1, 1
~96 bases are cell wall protein genes, and 97
~3744 bases are the β-amylase gene;
The portion after the 5th base is the gene of pNU200. Furthermore, 6
There is a translation start point "ATG" at bases 60 to 662, and 75
Up to 5 bases are the signal sequence. 2313-2315
There is a translation termination point rTAAJ at the base.

プラスミドpMMlをB、プレビス47−5Q(日、プ
レビス47株のウラシル要求株)に導入し、トリプトン
、酵母抽出物、カッオニキス、ブドウ糖を含む培養液(
pH7,0)中、37°C13日間培養した。培養終了
後、培養液上清をDNS法により測定したところ、7.
070/−の耐熱性β−アミラーゼを得た。
Plasmid pMMl was introduced into B, Previs 47-5Q (Japanese, uracil auxotrophic strain of Previs 47 strain), and culture medium containing tryptone, yeast extract, katyonyx, and glucose (
The cells were cultured at 37°C for 13 days in pH 7.0). After the culture was completed, the culture supernatant was measured by the DNS method, and the result was 7.
070/- thermostable β-amylase was obtained.

比較のため、上記プラスミドpNK1をB、プレビス4
7−5Q株に導入して同様の条件で培養した。その結果
、耐熱性β−アミラーゼの生産量は、1.641J/−
であった。
For comparison, the above plasmid pNK1 was used as B and Previs4.
It was introduced into the 7-5Q strain and cultured under the same conditions. As a result, the production amount of thermostable β-amylase was 1.641J/-
Met.

実施例2 9MM2の調製及び培養 プラスミドpN0200の細胞壁タンパク質遺伝子のシ
グナル直後にプラスミドpNK1の耐熱性β−アミラー
ゼ遺伝子の構造部分を連結するプラスミド(9MM2)
を、以下のようにして構築した。
Example 2 Preparation and cultivation of 9MM2 Plasmid (9MM2) in which the structural part of the thermostable β-amylase gene of plasmid pNK1 is linked immediately after the cell wall protein gene signal of plasmid pN0200
was constructed as follows.

B、プレビスの細胞壁タンパク質遺伝子のNcol以後
、β−アミラーゼ遺伝子のAvaII部位迄DNA合成
した。次いで、Avall−MflI断片と結合し、A
paLI−3phl断片を切出し、pMMlの相当部位
と置換することにより9MM2 (7731bp)を得
た。
B, DNA was synthesized from the Ncol site of the cell wall protein gene of Plebis to the AvaII site of the β-amylase gene. Then, it is ligated with the Avall-MflI fragment, and A
The paLI-3phl fragment was excised and replaced with the corresponding site in pMMl to obtain 9MM2 (7731 bp).

プラスミドpMM2の制限酵素地図を第5図に示し、D
NA塩基配列の一部を第2図に示す。第5図中のMWP
は、細胞壁タンパク質遺伝子を示す。尚、第2図中、5
17〜585塩基までが細胞壁タンパク質遺伝子のシグ
ナル配列であり、586塩基以後がβ−アミラーゼ遺伝
子である。さらに、517〜519塩基に翻訳開始点「
ATG」があり、2143〜2145塩基に翻訳終止点
rTAA」がある。
The restriction enzyme map of plasmid pMM2 is shown in FIG.
A part of the NA base sequence is shown in FIG. MWP in Figure 5
indicates a cell wall protein gene. In addition, in Figure 2, 5
The 17th to 585th bases are the signal sequence of the cell wall protein gene, and the 586th and subsequent bases are the β-amylase gene. Furthermore, the translation start point “
ATG" and a translation end point "rTAA" at bases 2143 to 2145.

得られた9MM2を実施例1と同様にしてB、2レビス
47−5Q株に導入し、TZU+50mMMES+グル
コース2%を含む培養液(pH6,0)中、37°C1
7日間培養し、培養液液中の耐熱性β−アミラーゼ量を
経時的に測定した。その結果を表1に示す。
The obtained 9MM2 was introduced into the B, 2 Levis 47-5Q strain in the same manner as in Example 1, and incubated at 37°C in a culture medium (pH 6,0) containing TZU + 50mMMES + 2% glucose.
The cells were cultured for 7 days, and the amount of heat-stable β-amylase in the culture solution was measured over time. The results are shown in Table 1.

これとは別に、9MM2をB、プレビス−47に株、3
1株(B、プレビスH102、FERM  BP−10
87)、31M株(31株のミュータント)にも同様に
して導入し、培養した。結果を表1に示す。
Separately, 9MM2 was placed in B, Previs-47, and 3
1 strain (B, Previs H102, FERM BP-10
87) and 31M strain (mutant of 31 strains) were similarly introduced and cultured. The results are shown in Table 1.

さらに9MM2を導入したB、プレビス47に株を、T
3±100mM MES+グルコース2%を含む培養液
(pH6,0)を用いて培養した結果、耐熱性β−アミ
ラーゼの生産量は2600 U/1nlであった。この
値は、タンパク質量に換算すると約1.7g/lに相当
する。
In addition, 9MM2 was introduced into B, the stock was placed in Previs 47, and T
As a result of culturing using a culture medium (pH 6.0) containing 3±100 mM MES + 2% glucose, the production amount of thermostable β-amylase was 2600 U/1 nl. This value corresponds to approximately 1.7 g/l in terms of protein amount.

得られた耐熱性β−アミラーゼをセファクリル(5ep
hacry l )S−200で精製した結果比活性ハ
、163407mgタンパク質であり、C,サーモサル
フロゲネスの耐熱性β−アミラーゼを同様にして精製し
た酵素の比活性、151507mgタンパク質とほぼ同
じであった。
The obtained thermostable β-amylase was treated with Sephacryl (5ep
As a result of purification using S-200, the specific activity was 163,407 mg protein, which was almost the same as the specific activity of the enzyme purified in the same manner as heat-stable β-amylase of C. thermosulfurogenes, 151,507 mg protein. .

表  1 シス法により、各開始コドン(ATG)を含む部分の塩
基配列をTCATGA、即ちBsp旧部位に変更した。
Table 1 Using the cis method, the base sequence of the portion containing each initiation codon (ATG) was changed to TCATGA, that is, the Bsp old site.

MWP: ↑ 実施例3  pMM3の調製及び培養 pMM3を以下のように調製した。MWP: ↑ Example 3 Preparation and culture of pMM3 pMM3 was prepared as follows.

プラスミドpNU200の細胞壁タンパク質遺伝子(M
WP)及びプラスミドpNKlの耐熱性β−アミラーゼ
遺伝子(β−am)の各開始コドン直前に、新しく制限
酵素の認識部位を導入し、後に続く部分をつなぎかえた
。即ち、以下に示すように、サイト−ブイレフテッド 
ミュータジエネ次に、Bsp旧切断後、両配列をつなぎ
かえることにより開始コドン以降は、C、サーモサルフ
ロゲ+2の配列とし、それ以前は、細胞壁タンパク質遺
伝子(MWP)であるプラスミドpMM3 (7758
M)を構築した。
Cell wall protein gene (M
A new restriction enzyme recognition site was introduced immediately before each start codon of the thermostable β-amylase gene (β-am) of WP) and plasmid pNKl, and the subsequent portions were reconnected. That is, as shown below, the site-blefted
Mutagiene Next, after Bsp old cleavage, both sequences are reconnected, so that after the start codon, the sequence is C, thermosulfroge +2, and before that, the cell wall protein gene (MWP), plasmid pMM3 (7758
M) was constructed.

プラスミドpMM3の制限酵素地図を第6図に示し、D
NA塩基配列の一部を第3図に示す。第6図中のMWP
は、細胞壁タンパク質遺伝子を示す。尚、第3図中、1
〜516塩基が細胞壁タンパク質遺伝子であり、517
〜612塩基がβ−アミラーゼ遺伝子のシグナル配列で
あり、613塩基以後がβ−アミラーゼ構造遺伝子であ
る。さらに、517〜519塩基に翻訳開始点「ATG
」があり、2170〜2172塩基に翻訳終止点rTA
AJがある。
The restriction enzyme map of plasmid pMM3 is shown in FIG.
A part of the NA base sequence is shown in FIG. MWP in Figure 6
indicates a cell wall protein gene. In addition, in Figure 3, 1
~516 bases are cell wall protein genes, 517
The 612th base is the signal sequence of the β-amylase gene, and the 613th and subsequent bases are the β-amylase structural gene. Furthermore, the translation start point “ATG” is located at bases 517 to 519.
”, and there is a translation end point rTA between bases 2170 and 2172.
There is A.J.

得られたpMM3をB、プレビス47に株に導入し、T
3+ 100mM MES+グルコース2%を含む培養
液(pH6,0)中、37℃、7日間培養し、培養液液
中の耐熱性β−アミラーゼ量を経時的に測定した。その
結果を表2に示す。
The obtained pMM3 was introduced into strains B and Previs 47, and T
The cells were cultured at 37° C. for 7 days in a culture medium (pH 6,0) containing 3+ 100 mM MES + 2% glucose, and the amount of thermostable β-amylase in the culture medium was measured over time. The results are shown in Table 2.

表  2 その結果、耐熱性β−アミラーゼの生産量は約500U
/−であった。得られた耐熱性β−アミラーゼをセファ
クリル(5ephacryl)S−200で精製した結
果鳩活性は、l 51707mgタンパク質であり、C
,サーモサルフロゲネスの耐熱性β−アミラーゼの比活
性、151507mgタンパク質とほぼ同じであった。
Table 2 As a result, the production amount of thermostable β-amylase was approximately 500 U.
It was /-. The obtained thermostable β-amylase was purified with Sephacryl S-200, and the pigeon activity was 151,707 mg protein.
, the specific activity of thermostable β-amylase of S. thermosulfurogenes was almost the same as that of 151,507 mg protein.

さらに、C,サーモサルフロゲネス由来の耐熱性β−ア
ミラーゼタンパク質、及び実施例1〜3で得たpMM1
〜3由来の耐熱性β−アミラーゼタンパク質の5DS−
PAGEを測定した結果、全て同一の箇所に一本のバン
ドが得られた。
Furthermore, thermostable β-amylase protein derived from C. thermosulfurogenes, and pMM1 obtained in Examples 1 to 3
5DS- of thermostable β-amylase protein derived from ~3
As a result of PAGE measurement, one band was obtained at the same location in all cases.

さらに、実施例2及び3で得たpMM2及び3由来の耐
熱性β−アミラーゼの活性の温度依存性を測定した結果
、いずれの耐熱性β−アミラーゼも約70℃に最適温度
を有していた。
Furthermore, as a result of measuring the temperature dependence of the activity of the thermostable β-amylases derived from pMM2 and 3 obtained in Examples 2 and 3, it was found that both thermostable β-amylases had an optimum temperature at about 70°C. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、9〜1M1のDNA塩基配列の一部を示す。 第2図は、pMM2のDNA塩基配列の一部を示す。第
3図は、pMM3のDNA塩基配列の一部を示す。第4
図は、pMMlの制限酵素地図を示す。第5図は、pM
M2の制限酵素地図を示す。第6図は、pMM3の制限
酵素地図を示す。 第 1図−その 0 CCAATGGCTT 0 TCGCAGCAGA 0 AGAAGCAGCA 0 ACTACTACAG 0 CTCCAAAAAT 0 GGACGCTGAT 0 ATGGAAAAAA 0 CCGTAAAACG 0 TCTGGAAGCT 00 CTTGGCGGAT 10 CTTAGTTTAG 20 GTGTGTTTTT 30 ATACTATGGC 40 GCATTAAAAG 50 GAATACCGAC 60 ATCTTTAGAT 70 GAAGCAGCTT 80 TAATAGATGG 90 TTGTAGTAGA 00 TTTAGAATCT 10 ACTGGAATAT 20 CATACTGCCA 30 TTATTAAATC 40 CTACTACGAT 50 CACCCTTGCA 60 GTTTTGGATA 70 TTATGTGGAT 80 ATGGAATGAC 90 TACTTATTGC 00 CATCTTTAGT’ 10 CATAAACAAG 20 TCGGTTCCAG 30 GACGCTTCCA 40 CTAATGATTT 50 TTTACTTCTT 60 TAGCCAGTAC 70 ACAAAGCAGT 80 GGAATCTCGG 90 TATGGCAGGA 00 CTGACAATAG 弔 1図〜その 10 CAATTTTACC 20 TGTTGTAATT 30 TTCTACTTCT 40 TGGCACAGAG 50 AAAATTAGTC 60 ACAGCTATAA 70 TAGCTGGTGC 80 TGTAAAGCAG 90 TAGGTAAAGC 00 AAAATTATAG 10 TTAGGAGGTG 20 ATATTAAAAT 30 AGAAATTTGA 40 TAGAAACTGA 50 ATATAATTAT 60 TGAAAGGGGT 70 GGGAACTATT 80 GGCAAAATAA 90 TATCTTATTA 00 AAATTTTTGG 10 CGGCAAAAAA 20 TAGTGATTAT 30 ATTATTTTTA 40 TCGTATGATG 50 GGAGGGAAAA 60 TAAAAATAGA 70 TGATTGGAGC 80 TTTTAAAAGG 90 TTGGGTCAAA 00 AATTGTTTTT 10 GACATTGTTA ?20 ACGGCATCAT 30 TAATTTTTGC 40 ATCTTCTATA 50 GTAACTGCTA )        790       800T  
TTGTAATGGG  TCCATTAGAA584
− 第1図 その5 1860      1870 TCCAACAACA ATCAAGCTTA880 TGTGAATTGT 890 GCAAATGAAT 900 TAACAGGATA 910 TAATTTTTCT 920 GGATTTACAC 930 TTTTAAGACT 940 TTCGAATATT 950 GTAAATAGTG 960 ATGGATCTGT 970 GACATCAGAG 980 ATGGCTCCTT 990 TTGTAATTAA 000 TATAGTTACA 010 CTAACGCCTA 020 ACGGTACGAT 030 ACCAGTTACA 040 TTTACAATAA 050 ACAATGCGAC 060 AACTTATTAT 2070      2080 GGACAAAATG TATATATTGT090 TGGTAGTACA 100 TCTGATCTTG 2110      2120 GAAATTGGAA TACAACCTAT130 GCCCGTGGTC 140 CTGCATCATG 150 CCCTAATTAT 160 CCTACTTGGA 170 CAATAACGCT 180 TAATCTATTA 190 CCTGGTGAGC 200 AGATACAGTT 2210      2220 TAAAGCTGTA AAAATTGATA230 GTTCAGGAAA 240 TGTAACTTGG 250 GAAGGTGGCT 260 CGAATCATAC 270 TTATACTGTG 2280      2290 CCGACATCTG GGACTGGTAG300 TGTCACCATT 310 ACATGGCAAA 320 ATTAATCAAT 330 AAAATGTTAC 23402350 ACATAGAACA AATTGTAAAC360 ACTGGAATAT 370 ATTCCGGTGT 380 TTTTTTGTAT 390 ATTATGGGCG 400 TTTAATGTTA 第1図 その6 410 AAAATAATAG 420 TGTTTTGATT 430 TTATTAAAAA 440 GTTTGGAGGT 450 AAGAGATGAG 460 TAAAAAAGTT 470 GGTATTCCAA 480 AAGGGCTTTT 490 ATACTACAAC 500 TTTTATCCTA 510 TGTGGAAAAC 520 ATTTTTTGAA 530 GAACTGGGTG 540 CTGAAGTGGT 550 TACTTCCAGT 560 GATACATGTA 570 AAAAAATAAT 580 TGATGATGGC 590 ATCAAGACTT 600 GCGTGGATGA 610 AACCTGCCTT 620 CCTGTCAAGA 2630      2640 CATTTATGGG  TCATGTGATT650 GATTTGAAGG 660 AAAAGGGTGT 670 TGATTATATA 680 TTTGTTCCAA 690 GAGTCATAAG 700 CGTAGAAAGG 710 CGTAGATATC 720 TATGCTCAAA 730 ATTTTTGGGT 740 TTGCCTGACT 750 TAGTGAGAAA 760 TCTTATTTCT 770 GATTTGCCAC 27802790 AAATAATAGA TATGAAGATT800 GATTACTATC 810 GTGGAGAAGA 2820      2830 GTTTATGGAA  AGAGAAATTT840 TGAGAGTTGG 850 CAAGCTGTTT 860 GTTGATAGCA 870 CAAGTAAAAT 880 TAAAGACGCA 890 TACGAAAAAT 900 CTTTAAAAAG 586− 第1図−そのT 2910      2920 GCAAAGGACT  TTTGAATTCA293
0      2940 TTATTAGAGA  AGGATTTTCA950 AATACAGAAG 960 CAATAAAAAT 970 TATGGAAGGG 980 AAAAAATTAG 990 ACGCAAATAC 000 AAAAGGGGAT 010 TTAAAAATAG 020 CTTTATTAGC 030 CCATTCCTAT 040 GACATAATGG 050 ATGATTATTT 060 ATCTATGGGA 070 TTGATAAATA 080 GGCTTAAGAA 090 TATGGGAGCT 100 TATGTGCTTA 110 CAACAAATAT 120 GATAGAAAGA 130 GATAAAATTG 140 AAAATGGTGC 150 CAGCAAACTT 160 CAAAAAGATT 170 TATTTTGGAC 180 TTATGGAAGG 190 GATATTTTAG 200 GTGCAGGTAA 210 ATATTTTATC 220 GAGAGCAAAG 230 AAGTGGACGG 240 GGTAATATCT 250 GTTTCTGCTT 260 TTGGATGTGG 270 GCCAGACTCT 280 ATCACTGATG 290 ACCTTTTAGA 300 AAGGGATTAC 310 AAGAGAGATG 320 GTGGGATTCC 330 ATTTATGCCC 340 ATAACCATTG 350 ATGAACATAC 360 TGGTGAGGCA 370 GGTTTAAACT 380 ACCTAGGTTA 390 GAAGCCTTTA 400 TGGATTTGTT 第1図−その8 410 AAGATGGCCA 420 CAAGGAGAGA 430 TTATGGCATG 440 AAAATAACAT 450 ATCCACATAT 460 GGGTTCGTTA 470 AATATGATAT 480 TAAAGACGAT 490 GTTTGAAGGA 500 ATCAATGTAG 510 AAGTTGTGGA 520 GCCGCCACCT 530 GTGACTAATA 3540       3550 GGACTCTAT、CAATTGGAGTA560 AAATATTCAC 570 CTGAGTTTGT 580 CTGTCTTCCA 590 TATAAGATAA 600 ATCTGGGGAA 610 TTTTATAGAA 620 GCACTTGAAA 630 ACGGTGCTGA 640 TACTATAATA 650 ATGTTGGGTG 660 GTATAGGGCC 670 TTGCAGGTTC 680 GGTTATTATG 690 GACAAGCACA 700 AAGAGAAACA 710 TTAATTGATC 720 TTGGATACAA 730 GTTTAATATG 740 ACTAATATTA 750 GATCCACAGG 760 ACGGGTGTGG 770 TCGCCATGAT 780 CGCGTAGTCG 790 ATAGTGGCTC 800 CAAGTAGCGA 810 AGCGAGCAGG 820 ACTGGGCGGC 830 GGCCAAAGCG 840 GTCGGACAGT 850 GCTCCGAGAA 860 GG 第2図 その 0 AGATCTAAAG 0 CTATCCTGTC 0 TTACAACTTG 0 GCTGTTGTAA 0 ACTTTGAAAA 0 TGCATTAGGA 0 AATTAACCTA 0 ATTCAAGCAA 0 GATTATGAGG 00 TTTTGAACCA 10 AATTGGAAAA 20 AGGTTCAGTC 30 GTGACAGCCC 40 GCCATATGTC 50 CCCTATAATA 60 CGGATTGTGG 70 CGGATGTCAC 80 TTCGTACATA 90 ATGGACAGGT 00 GAATAACGAA 10 CCACGAAAAA 20 AACTTTAAAT 30 TTTTTTCGAA 40 GGCGCCGCAA 50 CTTTTGATTC 60 GCTCAGGCGT 70 TTAATAGGAT 80 GTCACACGAA 90 AAACGGGGAA 00 TTGTGTAAAA 10 AAGATTCACG 20 AATTCTAGCA 30 GTTGTGTTAC 40 ACTAGTGATT 50 GTTGCATTTT 60 ACACAATACT 70 GAATATACTA 80 GAGATTTTTA 90 ACACAAAAAG 00 CGAGGCTTTC 第2図−その2 10 CTGCGAAAGG 20 AGGTGACACG 30 CGCTTGCAGG 40 ATTCGGGCTT 50 TAAAAAGAAA 60 GATAGATTAA 70 CAACAAATAT 80 TCCCCAAGAA 90 CAATTTGTTT 00 ATACTAGAGG 10 AGGAGAACAC 20 AAGGTTATGA 30 AAAAGGTCGT 40 TAACAGTGTA 50 TTGGCTAGTG 60 CACTCGCACT 70 TACTGTTGCT 80 CCCATGGCTT 90 TCGCTAGCAT 00 CGCTCCAAAC 10 TTCAAAGTTT 20 TCGTTATGGG 30 TCCATTAGAA 40 AAAGTCACAG 50 ATTTTAATGC 60 ATTCAAAGAT 70 CAATTGATAA 80 CTTTAAAGAA 90 TAATGGTGTT 00 TATGGTATAA 10 CAACAGATAT 20 TTGGTGGGGC 30 TATGTTGAAA 40 ATGCAGGTGA 50 AAATCAATTT 60 70 80 90 00 第2図−その3 810 GAAGTGGGTT 20 CCAATAATGT 30 CAACGCATGC 40 CTGTGGAGGT 50 AATGTTGGTG 60 ATACAGTAAA 70 TATACCTATT 80 CCGTCATGGG 90 TATGGACAAA 00 AGATACCCAA 10 GATAATATGC 20 AGTATAAGGA 30 TGAAGCCGGA 40 AATTGGGATA 50 ATGAAGCAGT 60 AAGTCCATGG 70 TATTCTGGCT 80 TAACCCAACT 90 CTATAATGAA 000 TTTTATTCAT 010 CTTTTGCATC 020 AAATTTTAGC 030 AGCTATAAAG 040 ATATAATTAC 050 TAAAATATAT 060 ATATCTGGAG 070 GCCCTTCTGG 080 AGAATTAAGA 090 TATCCTTCAT 100 ATAATCCTTC 110 GCATGGATGG 120 ACATATCCTG 130 GACGTGGCTC 140 GCTGCAGTGC 150 TATAGTAAAG 160 CGGCTATAAC 170 AAGTTTTCAA 180 AATGCTATGA 190 AGTCTAAATA 200 TGGAACTATA 210 GCAGCAGTTA 220 ATAGTGCATG 230 GGGTACAAGC 240 CTAACTGATT 250 TTTCTCAAAT 260 TAGTCCACCT 270 ACAGATGGTG 280 ATAATTTCTT 290 TACAAATGGT 300 TATAAAACTA 第2図 その4 310 CTTATGGTAA 1320       1330 TGACTTTTTG  ACATGGTATC340 AAAGTGTTTT 350 GACTAATGAG 360 TTAGCCAATA 370 TTGCTTCTGT 380 AGCTCATAGC 139゜ TGCTTTGATC 400 CAGTATTTAA 410 TGTTCCAATA 420 GGAGCAAAAA 430 TAGCTGGAGT 440 GCATTGGCTA 450 TATAATAGTC 460 CGACAATGCC 470 ACATGCTGCA 480 GAATATTGTG 490 CCGGTTATTA 500 TAATTATAGC 15101520 ACGCTACTCG  ATCAATTTAA530 GGCATCTAAT 540 CTTGCTATGA 550 CATTTACATG 560 TCTTGAAATG 570 GATGATTCTA 580 ATGCATATGT 590 AAGTCCATAT 600 TATTCTGCAC 610 CTATGACGTT 620 AGTCCATTAT 630 GTAGCTAATC 640 TTGCTAATAA 650 TAAAGGTATA 1660       1670 GTCCACAATG  GAGAAAATGC680 TTTGGCTATA 690 TCCAACAACA 700 ATCAAGCTTA 710 TGTGAATTGT 720 GCAAATGAAT 730 TAACAGGATA 740 TAATTTTTCT 750 GGATTTACAC 760 TTTTAAGACT 770 TTCGAATATT 1780      1790 GTAAATAGTG  ATGGATCTGT800 GACATCAGAG 810 182゜ 1日30 840 850 第2図−その5 1860 ACCAGTTACA 870 TTTACAATAA 880 ACAATGCGAC 890 AACTTATTAT 900 GGACAAAATG 910 TATATATTGT 920 TGGTAGTACA 930 TCTGATCTTG 940 GAAATTGGAA 950 TACAACCTAT 960 GCCCGTGGTC 970 CTGCATCATG 980 CCCTAATTAT 990 CCTACTTGGA 000 CAATAACGCT 010 TAATCTATTA 020 CCTGGTGAGC 030 AGATACAGTT 040 TAAAGCTGTA 050 AAAATTGATA 060 GTTCAGGAAA 070 TGTAACTTGG 080 GAAGGTGGCT 090 CGAATCATAC 100 TTATACTGTG 110 CCGACATCTG 120 GGACTGGTAG 130 TGTCACCATT 140 ACATGGCAAA 150 ATTAATCAAT 160 AAAATGTTAC 170 ACATAGAACA 180 AATTGTAAAC 190 ACTGGAATAT 200 ATTCCGGTGT 210 TTTTTTGTAT 220 ATTATGGGCG 230 TTTAATGTTA 240 AAAATAATAG 250 TGTTTTGATT 260 TTATTAAAAA 270 GTTTGGAGGT 280 AAGAGATGAG 290 TAAAAAAGTT 300 GGTATTCCAA 310 AAGGGCTTTT 320 ATACTACAAC 330 TTTTATCCTA 340 TGTGGAAAAC 350 ATTTTTTGAA 第2図−その6 2360      2370 GAACTGGGTG CTGAAGTGGT380 TACTTCCAGT 2390      2400 GATACATGTA  AAAAAATAAT410 TGATGATGGC 420 ATCAAGACTT 2430      2440 GCGTGGATGA  AACCTGCCTT245
゜ CCTGTCAAGA 460 CATTTATGGG 470 TCATGTGATT 2480      2490 GATTTGAAGG  AAAAGGGTGT500 TGATTATATA 510 TTTGTTCCAA 2520      2530 GAGTCATAAG  CGTAGAAAGG540 CGTAGATATC 550 TATGCTCAAA 560 ATTTTTGGGT 570 TTGCCTGACT 580 TAGTGAGAAA 590 TCTTATTTCT 600 GATTTGCCAC 610 AAATAATAGA 620 TATGAAGATT 630 GATTACTATC 640 GTGGAGAAGA 650 GTTTATGGAA 660 AGAGAAATTT 2670      2680 TGAGAGTTGG  CAAGCTGTTT690 GTTGATAGCA 700 CAAGTAAAAT 710 TAAAGACGCA 720 TACGAAAAAT 2730       2740 CTTTAAAAAG  GCAAAGGACT750 TTTGAATTCA 2760      2770      2780T
TATTAGAGA AGGATTTTCA AATA
CAGAAG790 CAATAAAAAT 800 TATGGAAGGG 840 =TAAAAATAG 285゜ CTTTATTAGC 860 870 880 890 900 第2図−その7 2910      2920 GGCTTAAGAA  TATGGGAGCT930 TATGTGCTTA A 940 第3図− 10 CTGCGAAAGG 20 AGGTGACACG 30 CGCTTGCAGG 40 ATTCGGGCTT 50 TAAAAAGAAA 60 GATAGATTAA 70 CAACAAATAT 80 TCCCCAAGAA 90 CAATTTGTTT 00 ATACTAGAGG 10 AGGAGAACAC 20 AAGGTCATGA 30 TTGGAGCTTT 40 TAAAAGGTTG 50 GGTCAAAAAT 60 TGTTTTTGAC 70 ATTGTTAACG 80 GCATCATTAA 90 TTTTTGCATC 00 TTCTATAGTA 10 ACTGCTAATG 20 CAAGCATAGC 30 ACCAAATTTC 40 AAAGTTTTTG 50 TAATGGGTCC 60 ATTAGAAAAA 70 GTCACAGATT 80 TTAATGCATT 90 CAAAGATCAA 00 TTGATAACTT 10 TAAAGAATAA 20 TGGTGTTTAT 30 GGTATAACAA 40 CAGATATTTG 50 GTGGGGCTAT 60 GTTGAAAATG 70 CAGGTGAAAA 80 TCAATTTGAC 90 TGGAGTTATT 00 ATAAGACATA 591− 第3図−その3 810      820      830    
  840      850TGCTGATACCG
TACGCGCTG CGGGATTGAA GTGG
GTTCCA ATAATGTCAA60 CGCATGCCTG 70 TGGAGGTAAT 80 GTTGGTGATA 90 CAGTAAATAT 00 ACCTATTCCG 10 TCATGGGTAT 920       930 GGACAAAAGA TACCCAAGAT40 AATATGCAGT 50 ATAAGGATGA 60 AGCCGGAAAT 970       980       990TG
GGATAATG AAGCAGTAAG TCCAT
GGTAT000 TCTGGCTTAA 010 CCCAACTCTA 020 TAATGAATTT 030 TATTCATCTT 040 TTGCATCAAA 105゜ TTTTAGCAGC 060 TATAAAGATA 070 TAATTACTAA 1080      1090 AATATATATA  TCTGGAGGCC100 CTTCTGGAGA 110 ATTAAGATAT 1120      1130 CCTTCATATA ATCCTTCGCA140 TGGATGGACA 150 TATCCTGGAC 160 GTGGCTCGCT 170 GCAGTGCTAT 180 AGTAAAGCGG 1190      1200 CTATAACAAG  TTTTCAAAAT121
0      1220      1230    
  1240GCTATGAAGT CTAAATAT
GG AACTATAGCA GCAGTTAATA2
50 GTGCATGGGG 1260      1270 TACAAGCCTA ACTGATTTTT280 CTCAAATTAG 290 TCCACCTACA 300 GATGGTGATA 310 ATTTCTTTAC 320 AAATGGTTAT 330 AAAACTACTT 340 ATGGTAATGA 350 CTTTTTGACA 第3図−その4 360 TGGTATCAAA 370 GTGTTTTGAC 380 TAATGAGTTA 390 GCCAATATTG 400 CTTCTGTAGC 410 TCATAGCTGC 420 TTTGATCCAG 430 TATTTAATGT 440 TCCAATAGGA 450 GCAAAAATAG 460 CTGGAGTGCA 470 TTGGCTATAT 480 AATAGTCCGA 490 CAATGCCACA 500 TGCTGCAGAA 510 TATTGTGCCG 520 GTTATTATAA 153゜ TTATAGCACG 540 CTACTCGATC 550 AATTTAAGGC 560 ATCTAATCTT 570 GCTATGACAT 580 TTACATGTCT 590 TGAAATGGAT 600 GATTCTAATG 610 CATATGTAAG 620 TCCATATTAT 630 TCTGCACCTA 640 TGACGTTAGT 650 CCATTATGTA 660 GCTAATCTTG 670 CTAATAATAA 680 AGGTATAGTC 690 CACAATGGAG 700 AAAATGCTTT 710 GGCTATATCC 720 AACAACAATC 730 AAGCTTATGT 740 GAATTGTGCA 750 AATGAATTAA 760 CAGGATATAA 770 TTTTTCTGGA 780 TTTACACTTT 790 TAAGACTTTC 800 GAATATTGTA 第3図−その6 2410 TTCCAGTGAT 420 ACATGTAAAA 430 AAATAATTGA 440 TGATGGCATC 450 AAGACTTGCG 460 TGGATGAAAC 470 CTGCCTTCCT 480 GTCAAGACAT 490 TTATGGGTCA 500 TGTGATTGAT 510 TTGAAGGAAA 520 AGGGTGTTGA 530 TTATATATTT 540 GTTCCAAGAG 550 TCATAAGCGT 560 AGAAAGGCGT 570 AGATATCTAT 580 GCTCAAAATT 590 TTTGGGTTTG 600 CCTGACTTAG 610 TGAGAAATCT 620 TATTTCTGAT 630 TTGCCACAAA 640 TAATAGATAT 650 GAAGATTGAT 660 TACTATCGTG 670 GAGAAGAGTT 680 TATGGAAAGA 690 GAAATTTTGA 700 GAGTTGGCAA 710 GCTGTTTGTT 720 GATAGCACAA 730 GTAAAATTAA 740 AGACGC:ATAC 750 GAAAAATCTT 760 TAAAAAGGCA 770 AAGGACTTTT 780 GAATTCATTA 790 TTAGAGAAGG 800 ATTTTCAAAT 810 ACAGAAGCAA 820 TAAAAATTAT 830 GGAAGGGAAA 840 AAATTAGACG 850 CAAATACAAA 第3図−その7 2910 ATTATTTATC 292゜ TATGGGATTG 930 ATAAATAGGC 940 TTAAGAATAT 950 GGGAGCTTAT 960 GTGCTTACA
FIG. 1 shows a part of the DNA base sequence of 9 to 1M1. FIG. 2 shows a part of the DNA base sequence of pMM2. FIG. 3 shows a part of the DNA base sequence of pMM3. Fourth
The figure shows the restriction enzyme map of pMMl. Figure 5 shows pM
A restriction enzyme map of M2 is shown. FIG. 6 shows a restriction enzyme map of pMM3. Figure 1 - Part 0 CCAATGGCTT 0 TCGCAGCAGA 0 AGAAGCAGCA 0 ACTACTACAG 0 CTCCAAAAT 0 GGACGCTGAT 0 ATGGAAAAAAA 0 CCGTAAACG 0 TCTGGAAGCT 00 CTTGGCGGAT 10 CTTAGTTTAG 20 GTGTGTTTTT 30 ATACTATGGC 40 GCATTAAAG 50 GAATACCGAC 60 ATCTTTAGAT 70 GAAGCAGCTT 80 TAATAGAT GG 90 TTGTAGTAGA 00 TTTAGAATCT 10 ACTGGAATAT 20 CATACTGCCA 30 TTATTAAATC 40 CTACTACGAT 50 CACCCTTGCA 60 GTTTTGGATA 70 TTATGTGGAT 80 ATGGAATGAC 90 TACTTATTGC 00 CATCTTTAGT' 10 CATAAACA AG 20 TCGGTTCCAG 30 GACGCTTCCA 40 CTAATGATTT 50 TTTACTTCTT 60 TAGCCAGTAC 70 ACAAAGCAGT 80 GGAATCTCGG 90 TATGGCAGGA 00 CTGAC AATAG Funeral Figure 1 - Part 10 CAATTTTACC 20 TGTTGTAATT 30 TTCTACTTCT 40 TGGCACAGAG 50 AAAATTAGTC 60 ACAGCTATAA 70 TAGCTGGTGC 80 TGTAAAGCAG 90 TAGGTAAAGC 00 AAAATTATAG 10 TTAGGAGGTG 20 ATATTAAAAT 30 AGAAATTTG A 40 TAGAAAACTGA 50 ATATAATTAT 60 TGAAAGGGGT 70 GGGAACTATT 80 GGCAAATAA 90 TATCTTATTA 00 AAATTTTGG 10 CGGCAAAAAA 20 TAGTGA TTAT 30 ATTATTTTTA 40 TCGTATGATG 50 GGAGGGAAA 60 TAAAAAATAGA 70 TGATTGGAGC 80 TTTTAAAGG 90 TTGGGTCAA 00 AATTGTTTTT 10 GACATTGTTA? 20 ACGGCATCAT 30 TAATTTTTGC 40 ATCTTCTATA 50 GTAACTGCTA) 790 800T
TTGTAATGGG TCCATTAGAA584
- Figure 1 Part 5 1860 1870 TCCAACAACA ATCAAGCTTA880 TGTGAATTGT 890 GCAAATGAAT 900 TAACAGGATA 910 TAATTTTCT 920 GGATTTACAC 930 TTTTA AGACT 940 TTCGAATATT 950 GTAAATAGTG 960 ATGGATCTGT 970 GACATCAGAG 980 ATGGCTCCTT 990 TTGTATTAA 000 TATAGTTACA 010 CTAACGCC TA 020 ACGGTACGAT 030 ACCAGTTACA 040 TTTACAATAA 050 ACAATGCGAC 060 AACTTATTAT 2070 2080 GGACAAAATG TATATATTGT090 TGGTAGTACA 100 TCTGATCTTG 2110 2120 GAAATTGGAA TACAACCTAT130 GCCCGTGGTC 140 CTGCATCATG 150 CCCTAATTAT 160 C CTACTTGGA 170 CAATAACGCT 180 TAATCTATTA 190 CCTGGTGAGC 200 AGATACAGTT 2210 2220 TAAAGCTGTA AAAATTGATA230 GTTCAGGAAA 240 TGT AACTTGG 250 GAAGGTGGCT 260 CGAATCATAC 270 TTATACTGTG 2280 2290 CCGACATCTG GGACTGGTAG300 TGTCACCATT 310 ACATGGCAAA 320 ATTAA TCAAT 330 AAAATGTTAC 23402350 ACATAGAACA AATTGTAAAC360 ACTGGAATAT 370 ATTCCGGTGT 380 TTTTTTGTAT 390 ATTATGGGCG 400 TTTAATGTTA Figure 1 Part 6 410 AAAATAATAG 420 TGTTTTGATT 430 TTATTAAAAAA 440 GTTTGGAGGT 450 AAGAGATGAG 460 TAAAAAAGTT 470 GGTATTCCAA 480 AAGGGCTTTT 490 ATACTACAAC 500 TTTTATCCTA 510 TGTGGAAAAC 520 ATTTTTTGAA 530 GAACTGGGTG 540 CTGAAGTGGT 550 TACTTCCAGT 560 GATACATGTA 570 AAAAAAATAAT 580 TGATGATGGC 590 ATCAAGACTT 600 GCGTGGATGA 610 AACCTGCCTT 620 CCTGTCAAGA 2630 2640 CATTTATGGG TCATGTGATT650 GATTTGAAGG 660 AAAAGGGTGT 670 TGATTATATA 680 TTTGTTCCAA 690 GAGTCATAAG 700 CGTAGAAAGG 710 CGTAGATATC 720 TATGCTCAAA 730 ATTTTTGGGT 740 TTGCCTGACT 750 TAGTGAGAAA 760 TCTTATTTCT 770 GATTTGCCAC 27802790 AAATAATAGA TATGAAGATT800 GATTACTATC 810 GTGGAGAAGA 2820 2830 GTTTATGGAA AGAGAAAATTT840 TGAGAGTTGG 850 CAAGCTGTTT 860 GTTGATAGCA 870 CAAGTAAAAT 880 TAAAGACGCA 890 TACGAAAAAT 900 CTTTAAAAG 586- Figure 1 - Part T 2910 2920 GCAAAGGACT TTTGAATTCA293
0 2940 TTATTAGAGA AGGATTTTCA950 AATACAGAAG 960 CAATAAAAAT 970 TATGGAAGGG 980 AAAAAAATTAG 990 ACGCAAATAC 000 AAAAGGGGAT 010 TTAAAATAG 020 CTTTATTAGC 030 CCATTCCTAT 040 GACATAATG 050 ATGATTATTT 060 ATCTATGGGA 070 TTGATAAATA 080 GGCTTAAGAA 090 TA TGGGAGCT 100 TATGTGCTTA 110 CAACAAATAT 120 GATAGAAAGA 130 GATAAAATTG 140 AAAATGGTGC 150 CAGCAAAACTT 160 CAAAAAAGATT 170 TATTT TGGAC 180 TTATGGAAGG 190 GATATTTTAG 200 GTGCAGGTAA 210 ATATTTTATC 220 GAGAGCAAAG 230 AAGTGGACGG 240 GGTAATATCT 250 GTTTCTGCTT 260 T TGGATGTGG 270 GCCAGACTCT 280 ATCACTGATG 290 ACCTTTTAGA 300 AAGGGATTAC 310 AAGAGAGATG 320 GTGGGATTCC 330 ATTTATGCC 340 ATAA CCATTG 350 ATGAACATAC 360 TGGTGAGGCA 370 GGTTTAAAACT 380 ACCTAGGTTA 390 GAAGCCTTA 400 TGGATTTGTT Figure 1 - Part 8 410 AAGATGGCCA 420 CAAGGAGAGA 430 TTATGGCATG 440 AAAATAACAT 450 ATCCACATAT 460 GGGTTCGTTA 470 AATATGATAT 480 TAAAGACGAT 490 GTTTGAAGGA 500 ATCAATGTAG 510 AAGTTGTGGA 520 GCCGCCACCT 530 GTGACTAATA 3540 3550 GGACTCTAT, CAATTGGAGTA560 AAATATTCAC 5 70 CTGAGTTTGT 580 CTGTCTTCCA 590 TATAAGATAA 600 ATCTGGGGAA 610 TTTTATAGAA 620 GCACTTGAAA 630 ACGGTGCTGA 640 TACTATAATA 650 ATGTTGGGTG 660 GTATAGGGCC 670 TTGCAGGTTC 680 GGTTATTATG 690 GACAAGCACA 700 AAGAGAAACA 710 TTAATTGATC 720 TTGGATACAA 730 G TTTAATATG 740 ACTAATATTA 750 GATCCACAGG 760 ACGGGTGTGG 770 TCGCCATGAT 780 CGCGTAGTCG 790 ATAGTGGCTC 800 CAAGTAGCGA 810 AGCG AGCAGG 820 ACTGGGCGGC 830 GGCCAAAGCG 840 GTCGGACAGT 850 GCTCCGAGAA 860 GG Figure 2 Part 0 AGATCTAAAG 0 CTATCCTGTC 0 TTACAACTTG 0 GCTGTTGTAA 0 ACTTTGAAAA 0 TGCATTAGGA 0 AATTAACCTA 0 ATTCAAGCAA 0 GATTATGAGG 00 TTTTGAACCA 10 AA TTGGAAAA 20 AGGTTCAGTC 30 GTGACAGCCC 40 GCCATATGTC 50 CCCTATAATA 60 CGGATTGTGG 70 CGGATGTCAC 80 TTCGTACATA 90 ATGGACAGGT 00 GAATAACGAA 10 CCACGAAAAA 20 AACTTTAAAT 30 TTTTTTCGAA 40 GGCGCCGCAA 50 CTTTTGATTC 60 GCTCAGGCGT 70 TTAATAGGAT 80 GTCACACGAA 90 AAACGGGGAA 00 TTGTGTAAAA 10 AAGATTCACG 20 AATTCTAGCA 30 GTTGTGTTAC 40 ACTAGTGATT 50 GTTGCATTT T 60 ACACAATACT 70 GAATATACTA 80 GAGATTTTTA 90 ACACAAAAAG 00 CGAGGCTTTC Figure 2 - Part 2 10 CTGCGAAAGG 20 AGGTGACACG 30 CGCTTGCAGG 40 ATTCGGGCTT 50 TAAAAAAGAAA 60 GATAGATTAA 70 CAACAAAATAT 80 TCCCCAAGAA 90 CAATTTGTT 00 ATACTAGGG 10 AGGAGAACAC 20 AAGGTTATGA 30 AAAAGGTCGT 40 TAACAGTGTA 50 TTGGCTAGTG 60 CACTCGCACT 70 TACTGTTGC T 80 CCCATGGCTT 90 TCGCTAGCAT 00 CGCTCCAAAC 10 TTCAAGTTT 20 TCGTTATGGG 30 TCCATTAGAA 40 AAAGTCACAG 50 ATTTTAATG 60 ATTCAA AGAT 70 CAATTGATAA 80 CTTTAAAGAA 90 TAATGGTGTT 00 TATGGTATAA 10 CAACAGATAT 20 TTGGTGGGGC 30 TATGTTGAAA 40 ATGCAGGTGA 50 AAATCAATTT 60 70 80 90 00 Figure 2 - Part 3 810 GAAGTGGGT 20 CCAATAATGT 30 CAACGCATGC 40 CTGTGGAGGT 50 AATGTTGGTG 60 A TACAGTAAA 70 TATACCTATT 80 CCGTCATGGG 90 TATGGACAAA 00 AGATACCCAA 10 GATAATATGC 20 AGTATAAGGA 30 TGAAGCCGGA 40 AATTGGGATA 5 0 ATGAAGCAGT 60 AAGTCCATGG 70 TATTCTGGCT 80 TAACCCAACT 90 CTATAATGAA 000 TTTTATTCAT 010 CTTTTGCATC 020 AAATTTTAGC 030 AGCTATAAAAG 040 ATATAATTAC 050 TAAAATATAT 060 ATATCTGGAG 07 0 GCCCTTCTG 080 AGAATTAAGA 090 TATCCTTCAT 100 ATAATCCTTC 110 GCATGGATGG 120 ACATATCCTG 130 GACGTGGCTC 140 GCTGCAGGTGC 150 T ATAGTAAG 160 CGGCTATAAC 170 AAGTTTCAA 180 AATGCTATGA 190 AGTCTAAATA 200 TGGAACTATA 210 GCAGCAGTTTA 220 ATAGTGCATG 230 GGGT ACAAGC 240 CTAACTGATT 250 TTTCTCAAAT 260 TAGTCCACCT 270 ACAGATGGTG 280 ATAATTTCTT 290 TACAAATGGT 300 TATAAAAACTA Figure 2 Part 4 310 CTTATGG TAA 1320 1330 TGACTTTTTG ACATGGTATC340 AAAGTGTTTT 350 GACTAATGAG 360 TTAGCCAATA 370 TTGCTTCTGT 380 AGCTCATAGC 139゜TGCTTTG ATC 400 CAGTATTTAA 410 TGTTCCAATA 420 GGAGCAAAA 430 TAGCTGGAGT 440 GCATTGGCTA 450 TATAATAGTC 460 CGACAATGCC 470 ACATGCTGCA 480 GAATATTGTG 490 CCGGTTATTA 500 TAATTATAGC 15101520 ACGCTACTCG ATCAATTTAA530 GGCATCTAAT 540 C TTGCTATGA 550 CATTTACATG 560 TCTTGAAATG 570 GATGATTCTA 580 ATGCATATGT 590 AAGTCCATAT 600 TATTCTGCAC 610 CTATGACGTT 620 AGTC CATTAT 630 GTAGCTAATC 640 TTGCTAATAA 650 TAAAGGTATA 1660 1670 GTCCACATG GAGAAAATGC680 TTTGGCTATA 690 TCCAAACAACA 700 ATCAAG CTTA 710 TGTGAATTGT 720 GCAAATGAAT 730 TAACAGGATA 740 TAATTTTCT 750 GGATTTACAC 760 TTTTAAGACT 770 TTCGAATATT 1780 1790 GTAAATAGTG ATGGATCTGT800 GACATCAGAG 810 182° 1 day 30 840 850 Figure 2 - Part 5 1860 ACCAGTTACA 870 TTTACAATAA 880 ACAATGCGAC 890 AACTTATTAT 900 GGACAAAATG 910 TATATATTGT 920 TGGTAGTA 930 TCTGATCTTG 940 GAAATTGGAA 950 TACAACCTAT 960 GCCCGTGGTC 970 CTGCATCATG 980 CCCTAATTAT 990 CCTACTTGGA 000 CAATAACGCT 010 TAATCTATTA 020 CCTGGTGAGC 030 AGATACAGTT 040 T AAAGCTGTA 050 AAAATTGATA 060 GTTCAGGAAA 070 TGTAACTTGG 080 GAAGGTGGCT 090 CGAATCATAC 100 TTATACTGTG 110 CCGACATCTG 120 GGAC TGGTAG 130 TGTCACCATT 140 ACATGGCAAA 150 ATTAATCAAT 160 AAATGTTAC 170 ACATAGAACA 180 AATTGTAAAC 190 ACTGGAATAT 200 ATTCCGG TGT 210 TTTTTTGTAT 220 ATTATGGGCG 230 TTTAATGTTA 240 AAAATAATAG 250 TGTTTTGATT 260 TTATTAAAAAA 270 GTTTGGAGGT 280 AAGAGATGAG 290 T AAAAAAGTT 300 GGTATTCCAA 310 AAGGGCTTTT 320 ATACTACAAC 330 TTTTATCCTA 340 TGTGGAAAAC 350 ATTTTTTGAA Figure 2 - Part 6 2360 2370 GAACTGG GTG CTGAAGTGGT380 TACTTCCAGT 2390 2400 GATACATGTA AAAAAAATAAT410 TGATGATGGC 420 ATCAAGACTT 2430 2440 GCGTGGATGA AACCTGCCTT245
゜CCTGTCAAGA 460 CATTTATGGG 470 TCATGTGATT 2480 2490 GATTTGAAGG AAAAGGGGTGT500 TGATTATATA 510 TTTGTTCCAA 2520 2530 GAGTCA TAAG CGTAGAAAGG540 CGTAGATATC 550 TATGCTCAAA 560 ATTTTTGGGGT 570 TTGCCTGACT 580 TAGTGAGAAA 590 TCTTATTTCT 600 GATTTGCCAC 610 AAATAATAGA 620 TATGAAGATT 630 GATTACTATC 640 GTGGAGAAGA 650 GTTTATGGAA 660 AGAGAAAATTT 2670 2680 TGAGAGTTGG CAAGCTGTTT690 G TTGATAGCA 700 CAAGTAAAAT 710 TAAAGACGCA 720 TACGAAAAAT 2730 2740 CTTTAAAAG GCAAAGGACT750 TTTGAATTCA 2760 2770 2780T
TATTAGAGAGAGGATTTTCA AATA
CAGAAG790 CAATAAAAAT 800 TATGGAAGGG 840 = TAAAAAATAG 285°CTTTATTAGC 860 870 880 890 900 Figure 2 - Part 7 2910 2920 GGCTTAAGAA TATGGG AGCT930 TATGTGCTTA A 940 Figure 3 - 10 CTGCGAAAGG 20 AGGTGAACACG 30 CGCTTGCAGG 40 ATTCGGGCTT 50 TAAAAAAGAAA 60 GATAGATTAA 70 CAACAAA TAT 80 TCCCCAAGAA 90 CAATTTTGTTT 00 ATACTAGAGG 10 AGGAGAACAC 20 AAGGTCATGA 30 TTGGAGCTT 40 TAAAAGGTTG 50 GGTCAAAAAAT 60 TGTTTTTGAC 70 ATTGTTAACG 80 GCATCA TTAA 90 TTTTTGCATC 00 TTCTATAGTA 10 ACTGCTAATG 20 CAAGCATAGC 30 ACCAAATTTC 40 AAAGTTTTTG 50 TAATGGGTCC 60 ATTAGAAAAAA 70 GTC ACAGATT 80 TTAATGCATT 90 CAAAGATCAA 00 TTGATAACTT 10 TAAAGAATAA 20 TGGTGTTTAT 30 GGTATAACAA 40 CAGATATTTG 50 GTGGGGCTAT 60 GTTGAAATG 70 CAGGTGAAAA 80 TCAATTTGAC 90 TGGAGTTATT 00 ATAAGACATA 591- Figure 3 - Part 3 810 820 830
840 850TGCTGATAACCG
TACGCGCTG CGGGATTGAA GTGG
GTTCCA ATAATGTCAA60 CGCATGCCTG 70 TGGAGGTAAT 80 GTTGGTGATA 90 CAGTAAATAT 00 ACCTATTCCG 10 TCATGGGTAT 920 930 GGACAAAAGA T ACCCAAGAT40 AATATGCAGT 50 ATAAGGATGA 60 AGCCGGAAAT 970 980 990TG
GGATAATG AAGCAGTAAG TCCAT
GGTAT000 TCTGGCTTAA 010 CCCAAACTCTA 020 TAATGAATTT 030 TATTCATCTT 040 TTGCATCAAA 105゜TTTTAGCAGC 060 TATAAAAGATA 070 TAATT ACTAA 1080 1090 AATATATATA TCTGGAGGCC100 CTTCTGGAGA 110 ATTAAGATAT 1120 1130 CCTTCATATA ATCCTTCGCA140 TGGATGGACA 150 TATCCT GGAC 160 GTGGCTCGCT 170 GCAGTGCTAT 180 AGTAAAGCGG 1190 1200 CTATAACAAG TTTTCAAAT121
0 1220 1230
1240GCTATGAAGTCTAAAATAT
GG AACTATAGCA GCAGTTATAATA2
50 GTGCATGGGG 1260 1270 TACAAGCCTA ACTGATTTTT280 CTCAAATTAG 290 TCCACCTACA 300 GATGGTGATA 310 ATTTCTTTAC 320 AAATGGTTAT 3 30 AAAACTACTT 340 ATGGTAATGA 350 CTTTTTGACA Figure 3 - Part 4 360 TGGTATCAAA 370 GTGTTTTGAC 380 TAATGAGTTA 390 GCCAATATTG 400 CTTCTGTAG C 410 TCATAGCTGC 420 TTTGATCCAG 430 TATTTAATGT 440 TCCAATAGGA 450 GCAAAAAATAG 460 CTGGAGTGCA 470 TTGGCTATAT 480 AATAGTCCGA 490 CAATGCACA 500 TGCTGCAGAA 510 TATTGTGCCG 520 GTTATTATAA 153゜TTATAGCACG 540 CTACTCGATC 550 AATTTAAGGC 560 ATCTAATCTT 570 GCTATGACAT 580 TTACATGTCT 590 TGAAATGGAT 600 GATTCTAATG 610 CATATGTAAG 620 TCCATATTAT 630 TC TGCACCTA 640 TGACGTTAGT 650 CCATTATGTA 660 GCTAATCTTG 670 CTAATAATAA 680 AGGTATAGTC 690 CACAATGGAG 700 AAAATGCTTT 710 GGCTA TATCC 720 AACAACAATC 730 AAGCTTATGT 740 GAATTGTGCA 750 AATGAATTAA 760 CAGGATATAA 770 TTTTTCTGGA 780 TTTACACTTT 790 TAAGACTTTC 8 00 GAATATTGTA Figure 3 - Part 6 2410 TTCCAGTGAT 420 ACATGTAAAA 430 AAATAATTGA 440 TGATGGCATC 450 AAGACTTGCG 460 TGGATGAAAC 470 CTGCCTTC CT 480 GTCAAGACAT 490 TTATGGGTCA 500 TGTGATTGAT 510 TTGAAGGAAA 520 AGGGTGTTGA 530 TTATATATTT 540 GTTCCAAGAG 550 TCATAAGCGT 560 AGAAAGGCGT 570 AGATATCTAT 580 GCTCAAATT 590 TTTGGGTTTG 600 CCTGACTTAG 610 TGAGAAATCT 6 20 TATTTCTGAT 630 TTGCCACAAA 640 TAATAGATAT 650 GAAGATTGAT 660 TACTATCGTG 670 GAGAAGAGTT 680 TATGGAAAGA 690 GAAATTTTGA 700 GAGTTGGCAA 710 GCTGTTTGTT 720 GATAGCACAA 730 GTAAAATTAA 740 AGACGC:ATAC 750 GAAAAAATCTT 760 TAAAAAAGGCA 770 AAGGACTTT 780 GAATTCATTA 790 TTAGAGAAGG 800 ATTTTCAAAT 810 ACAGAAGCAA 820 TAAAATTAT 830 GGAAGGGAAA 840 AAATTAGACG 850 CAAATACAAAT 3rd Figure-Part 7 2910 ATTATTTATC 292゜TATGGGATTG 930 ATAAAATAGGC 940 TTAAGAATAT 950 GGGAGCTTAT 960 GTGCTTACA

Claims (11)

【特許請求の範囲】[Claims] (1)枯草菌又は¥バチルスブレビス¥に生育し得るプ
ラスミドに耐熱性β−アミラーゼ遺伝子を導入したプラ
スミド。
(1) A plasmid in which a thermostable β-amylase gene is introduced into a plasmid that can grow on Bacillus subtilis or Bacillus brevis.
(2)¥バチルスブレビス¥の細胞壁タンパク質遺伝子
の一部または全部をさらに導入した請求項1記載のプラ
スミド。
(2) The plasmid according to claim 1, further comprising a part or all of a Bacillus brevis cell wall protein gene introduced therein.
(3)¥バチルスブレビス¥の細胞壁タンパク質遺伝子
の一部または全部を導入した枯草菌に生育し得るプラス
ミドが、プラスミドpNU200であり、耐熱性β−ア
ミラーゼ遺伝子が¥クロスト¥¥リジウムサーモサルフ
ロゲネス¥のβ−アミラーゼ遺伝子である請求項1又は
2記載のプラスミド。
(3) Plasmid pNU200 is a plasmid that can grow in Bacillus subtilis into which part or all of the cell wall protein genes of Bacillus brevis have been introduced, and the thermostable β-amylase gene is The plasmid according to claim 1 or 2, which is the β-amylase gene.
(4)¥クロストリジウムサーモサルフロゲネス¥のβ
−アミラーゼ遺伝子がプラスミドpNK1のMflI−
MflI約3.6Kb断片の一部または全部である請求
項3記載のプラスミド。
(4) β of Clostridium thermosulfurogenes
-Amylase gene is MflI of plasmid pNK1-
The plasmid according to claim 3, which is part or all of the approximately 3.6 Kb fragment of MflI.
(5)プラスミドpNU200(7)BamHI部位に
プラスミドpNK1(DMflI−MflI約3.6K
b断片の一部または全部を連結した請求項4記載のプラ
スミド。
(5) Plasmid pNU200 (7) Plasmid pNK1 (DMflI-MflI approximately 3.6K
5. The plasmid according to claim 4, wherein part or all of the b fragments are ligated.
(6)プラスミドpNU200が細胞壁タンパク質遺伝
子の586塩基以降を欠くものであり、この細胞壁タン
パク質遺伝子の直後に¥クロストリ¥¥ジウムサーモサ
ルフロゲネス¥のβ−アミラーゼ構造遺伝子を連結した
ものである請求項4記載のプラスミド。
(6) A claim in which the plasmid pNU200 lacks the 586th base and subsequent bases of the cell wall protein gene, and the β-amylase structural gene of \ Clostri \\ Zium thermosulfologenes \ is ligated immediately after the cell wall protein gene. The plasmid described in 4.
(7)プラスミドpNU200が細胞壁タンパク質遺伝
子の516塩基以降を欠くものであり、この細胞壁タン
パク質遺伝子の直後に¥クロストリ¥¥ジウムサーモサ
ルフロゲネス¥のβ−アミラーゼのシグナル遺伝子及び
構造遺伝子を連結したものである請求項4記載のプラス
ミド。
(7) Plasmid pNU200 lacks the 516th base onward of the cell wall protein gene, and the signal gene and structural gene of β-amylase of Clostri ¥ Zium thermosulfurogenes ¥ are linked immediately after this cell wall protein gene. The plasmid according to claim 4, which is
(8)請求項1〜7のいずれか1項記載のプラスミドを
¥バチルスブレビス¥に導入した形質転換体。
(8) A transformant obtained by introducing the plasmid according to any one of claims 1 to 7 into Bacillus brevis.
(9)¥バチルスブレビス¥が¥バチルスブレビス¥4
7K株である請求項8記載の形質転換体。
(9) ¥ Bacillus brevis ¥ ¥ Bacillus brevis ¥4
The transformant according to claim 8, which is a 7K strain.
(10)請求項8記載の形質転換体を培養し、培養物か
ら耐熱性β−アミラーゼを採取する耐熱性β−アミラー
ゼの製造方法。
(10) A method for producing thermostable β-amylase, which comprises culturing the transformant according to claim 8 and collecting thermostable β-amylase from the culture.
(11)形質転換体が請求項9記載の形質転換体である
請求項10記載の製造方法。
(11) The production method according to claim 10, wherein the transformant is the transformant according to claim 9.
JP4847790A 1990-02-28 1990-02-28 Production of heat-resistant beta-amylase Pending JPH03251185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4847790A JPH03251185A (en) 1990-02-28 1990-02-28 Production of heat-resistant beta-amylase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4847790A JPH03251185A (en) 1990-02-28 1990-02-28 Production of heat-resistant beta-amylase

Publications (1)

Publication Number Publication Date
JPH03251185A true JPH03251185A (en) 1991-11-08

Family

ID=12804469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4847790A Pending JPH03251185A (en) 1990-02-28 1990-02-28 Production of heat-resistant beta-amylase

Country Status (1)

Country Link
JP (1) JPH03251185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506595B2 (en) 1998-03-31 2003-01-14 Itoham Foods Inc. DNAs encoding new fusion proteins and processes for preparing useful polypeptides through expression of the DNAs
WO2006004067A1 (en) * 2004-07-06 2006-01-12 Kaneka Corporation Process for producing protein a-like protein with use of brevibacillus genus bacaterium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506595B2 (en) 1998-03-31 2003-01-14 Itoham Foods Inc. DNAs encoding new fusion proteins and processes for preparing useful polypeptides through expression of the DNAs
WO2006004067A1 (en) * 2004-07-06 2006-01-12 Kaneka Corporation Process for producing protein a-like protein with use of brevibacillus genus bacaterium
JPWO2006004067A1 (en) * 2004-07-06 2008-04-24 株式会社カネカ Method for producing protein A-like protein using Brevibacillus bacteria
JP2010246569A (en) * 2004-07-06 2010-11-04 Kaneka Corp Method for producing protein a-like protein with use of genus brevibacillus bacaterium
US8597908B2 (en) 2004-07-06 2013-12-03 Kaneka Corporation Process for producing protein A-like protein with use of Brevibacillus genus bacterium
JP2014064589A (en) * 2004-07-06 2014-04-17 Kaneka Corp Method for producing protein a-like protein with use of genus brevibacillus bacterium
US8889389B2 (en) 2004-07-06 2014-11-18 Kaneka Corporation Process for producing protein A-like protein with use of Brevibacillus genus bacterium
JP2016063844A (en) * 2004-07-06 2016-04-28 株式会社カネカ Production method of protein a-like protein using brevibacillus bacteria

Similar Documents

Publication Publication Date Title
EP0034470B1 (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
EP0120693B1 (en) Maltogenic amylase enzyme product, preparation and use thereof
EP2290060B1 (en) Alpha-amylase variants
JPH04503757A (en) Novel hyperthermally stable α-amylase
JPS61141890A (en) Production of alcohol
JP2005525120A5 (en)
JPH04228071A (en) Amylase a-180 for producing maltopentaose, method of production thereof, dna structure and alkalophilic isolation body
KR890001827B1 (en) Method for production of alpha-amylase
JPH03251185A (en) Production of heat-resistant beta-amylase
JPH0223872A (en) Recombinant plasmid, bacillus subtilis transformed with said plasmid and production of heat-resistant pullulanase using same
JPH0829083B2 (en) Method for producing neutral protease
KR100367154B1 (en) Amylase with Acabose Resolution, Genes That Encode It, Microorganisms That Produce It, and Its Uses
JP2863607B2 (en) Amylase and production method thereof
EP0795012A1 (en) $i(FERVIDOBACTERIUM) AMYLASE AND PULLULANASE
JPS61282073A (en) Novel amylase, recombinant plasmid containing gene coding said amylase, microorganism transformed by said plasmid and production of novel amylase by said microorganism
JP2623507B2 (en) Method for producing maltooligosaccharides
JP2863602B2 (en) Amylase and production method thereof
FI75367B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN GENETISKT MANIPULERAD MICROORGANISM INNEHAOLLANDE EN FOER AMYLAS KODANDE REKOMBINANT-DNA, OCH ETT FOERFARANDE FOER FRAMSTAELLNING AV AMYLAS.
JPH10136979A (en) Novel acidic alpha-amylase and its production
CN116064480A (en) Alpha-glucosidase cyclization mutant with improved thermal stability and construction method thereof
JP3202986B2 (en) Method for producing cholesterol oxidase
JPH01171488A (en) Recombinant plasmid, bacillus subtilis transformed therewith and production of pullulanase-analog enzyme using said bacillus
JP2655148B2 (en) A recombinant plasmid having a novel thermostable amylase gene
FR2782731A1 (en) PROCESS FOR PRODUCING A THERMOPHILIC GLUCOAMYLASE ENZYME AND ENZYME THUS OBTAINED
JPH0691818B2 (en) Method for producing neopullulanase by transformed Bacillus subtilis