JPH03250424A - Magnetic disk - Google Patents
Magnetic diskInfo
- Publication number
- JPH03250424A JPH03250424A JP2298724A JP29872490A JPH03250424A JP H03250424 A JPH03250424 A JP H03250424A JP 2298724 A JP2298724 A JP 2298724A JP 29872490 A JP29872490 A JP 29872490A JP H03250424 A JPH03250424 A JP H03250424A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic disk
- disk
- center line
- frictional force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 75
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 230000003746 surface roughness Effects 0.000 abstract description 13
- 238000011282 treatment Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 17
- 239000000314 lubricant Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910001362 Ta alloys Inorganic materials 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 235000001270 Allium sibiricum Nutrition 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/68—Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
- G11B5/70—Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
- G11B5/712—Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
Landscapes
- Magnetic Record Carriers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、円板状の剛性基板に磁性層が形成されてなる
磁気ディスク(いわゆるハードディスク)に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic disk (so-called hard disk) in which a magnetic layer is formed on a disk-shaped rigid substrate.
本発明は、テクスチャ処理により表面粗さか規定されて
なる磁気ディスクにおいて、径方向における算術平均中
心線から最深谷底までの値Rvと最高山頂までの値Rp
の関係を最適化することて、C8S (コンタクト・ス
タート・ストップ)耐久性の向上を図ろうとするもので
ある。The present invention provides a value Rv from the arithmetic mean center line to the bottom of the deepest valley in the radial direction and a value Rp to the highest peak in the magnetic disk whose surface roughness is defined by texturing.
The aim is to improve C8S (contact start stop) durability by optimizing the relationship between the two.
(従来の技術〕
例えばコンピュータ等の記憶媒体としては、ランダムア
クセスが可能な円板状の磁気ディスクが広く用いられて
おり、なかでも基板にアルミニウム合金等を用いた。い
わゆるハードディスクが、応答性に優れ記憶容量が大き
い等の理由により、固定ディスクあるいは外部ディスク
として用いられている。(Prior art) For example, disk-shaped magnetic disks that can be randomly accessed are widely used as storage media in computers, etc., and in particular, aluminum alloys are used for the substrate.So-called hard disks have a high responsiveness. Due to its excellent storage capacity and other reasons, it is used as a fixed disk or an external disk.
ところで、上述の磁気ディスク(ハードディスク)にお
いては、走行性、耐久性等の観点から、磁気ヘットとの
接触面か微細な凹凸によって適度な表面粗さを存するこ
とか必要とされ、例えば円板状の剛性基板の表面を周方
向にラッピングし微細な傷を付けることて前記表面粗さ
をコントロールする技術か、テクスチャ処理として知ら
れている。By the way, in the above-mentioned magnetic disk (hard disk), from the viewpoint of running performance, durability, etc., it is necessary that the contact surface with the magnetic head has an appropriate surface roughness due to minute irregularities. The technique of controlling the surface roughness by lapping the surface of a rigid substrate in the circumferential direction and creating minute scratches is known as texturing.
この場合、磁気ディスクの表面粗さは、主に磁気ヘッド
の浮上量やC8S特性によって制約され、表面粗さか過
度に大きすぎると、いわゆるヘットヒツトの原因となり
、逆に表面粗さか小さすぎると磁気ヘッドとの摩擦係数
か大きくなるという不都合か生ずる。In this case, the surface roughness of the magnetic disk is mainly restricted by the flying height of the magnetic head and the C8S characteristics. If the surface roughness is too large, it will cause a so-called head hit, and conversely, if the surface roughness is too small, the magnetic head will This results in the inconvenience that the coefficient of friction between the two ends increases.
したかって、これまでは磁気ディスク表面の表面粗さを
中心線平均粗さRa等で評価し、これを最適化すること
で磁気ヘッドとの最大摩擦力を下げ、耐久性を高めたり
、いわゆるはりつきを解消することが検討されている。Therefore, until now, the surface roughness of the magnetic disk surface has been evaluated using center line average roughness Ra, etc., and by optimizing this, the maximum frictional force with the magnetic head can be lowered, durability can be increased, and so-called sticking can be achieved. Resolving this issue is being considered.
(例えば特開昭6246429号)
〔発明が解決しようとする課題〕
しかしなから、本発明者等か、磁気ヘッドにおする最も
重要な特性であるC8S耐久性について検討を重ねたと
ころ、前記中心線平均粗さ等を規定するだけでは不十分
であるとの結論を得るに至った。(For example, Japanese Unexamined Patent Publication No. 6246429) [Problems to be Solved by the Invention] However, the inventors of the present invention repeatedly studied the C8S durability, which is the most important characteristic to be applied to a magnetic head, and found that the We have come to the conclusion that it is insufficient to simply specify the line average roughness, etc.
本発明は、このような検討結果に基づいて提案されたも
のてあって、磁気ヘッドに対する摩擦係数か小さいこと
はもちろん、C8S耐久性にも優れた磁気ディスクを提
供することを目的とする。The present invention has been proposed based on the results of such studies, and an object of the present invention is to provide a magnetic disk that not only has a small coefficient of friction with respect to a magnetic head but also has excellent C8S durability.
本発明者等は、上述の目的を達成すべく鋭意検討を重ね
、磁気ディスクの表面の凹凸の状態によって、磁気ヘッ
ドと磁気ディスク表面間に摩擦力が働く時間に差か生し
ることを見出した。そして、磁気ヘッドに加わるC3S
時の摩擦力の時間変化を詳細に検討したところ、磁気デ
ィスク表面の径方向における表面凹凸の算術平均中心線
から最深谷底までの値Rvと最高山頂までの値Rpが所
定の関係にあるときに摩擦力か働く時間が短くなり、最
も良いC8S特性か得られることかわかった。The inventors of the present invention have made extensive studies to achieve the above-mentioned object, and have discovered that the time during which frictional force acts between the magnetic head and the surface of the magnetic disk varies depending on the unevenness of the surface of the magnetic disk. Ta. Then, C3S applied to the magnetic head
A detailed study of the temporal change in the frictional force shows that when the value Rv from the arithmetic mean center line of the surface irregularities in the radial direction of the magnetic disk surface to the bottom of the deepest valley and the value Rp to the highest peak have a predetermined relationship. It was found that the time required for frictional force to work was shortened, and the best C8S characteristics could be obtained.
本発明は、上述の知見に基づいて完成されたものであっ
て、周方向にテクスチャ処理された円板状の剛性基板上
に少なくとも磁性層が形成されてなる磁気ディスクにお
いて、該磁気ディスク表面の径方向における表面凹凸の
算術平均中心線から最深谷底までの値Rvと最高山頂ま
での値Rpとが、Rp / Rv≧0.6なる関係を満
足することを特徴とするものである。The present invention was completed based on the above findings, and provides a magnetic disk in which at least a magnetic layer is formed on a circumferentially textured disk-shaped rigid substrate. It is characterized in that the value Rv from the arithmetic mean center line of the surface unevenness in the radial direction to the deepest valley bottom and the value Rp to the highest peak satisfy the relationship Rp/Rv≧0.6.
上記表面凹凸の算術平均中心線から最深谷底までの値R
vと最高山頂までの値Rpは、第1図に示すように、測
定区間における表面凹凸の高さの算術平均を求め、これ
を中心線りとしたときに、中心MLから画定区間内で最
も深い谷の谷底までの深さ及び中心線りから測定区間内
で最も高い山の山頂までの高さとして測定されるもので
ある。Value R from the arithmetic mean center line of the above surface unevenness to the deepest valley bottom
As shown in Fig. 1, the value Rp from v to the highest peak is determined by calculating the arithmetic average of the heights of the surface irregularities in the measurement section and using this as the center line. It is measured as the depth to the bottom of a deep valley and the height from the center line to the top of the highest mountain within the measurement area.
そして、これらの値Rv、Rpは、磁気ディスク表面の
中心線平均粗さ等が同じであっても表面凹凸の振幅分布
によって大きく異なった値を示す。These values Rv and Rp vary greatly depending on the amplitude distribution of the surface irregularities even if the center line average roughness and the like of the magnetic disk surface are the same.
本発明では、剛性基板の表面状態をコントロールするこ
とで、磁気ディスク表面の表面凹凸における前記Rv、
RpかRp/Rv≧0.6なる関係を満足するように設
定する。なお、ここで表面凹凸の状態か問題となるのは
、実際に磁気ヘットと接触する磁気ディスク表面であっ
て、したかって例えば磁性層表面か直接磁気ヘッドと接
触する場合には磁性層の表面状態が、また磁性層表面に
カーボン保護膜か形成されている場合にはカーホン保護
膜の表面状態か前記関係を満足する必要かある。In the present invention, by controlling the surface condition of the rigid substrate, the Rv in the surface unevenness of the magnetic disk surface,
The setting is made so that the relationship Rp or Rp/Rv≧0.6 is satisfied. The problem here is whether the surface is uneven or not, because it is the surface of the magnetic disk that actually comes into contact with the magnetic head.For example, if the surface of the magnetic layer is in direct contact with the magnetic head, the surface condition of the magnetic layer is the problem. However, if a carbon protective film is formed on the surface of the magnetic layer, it is necessary that the surface condition of the carbon protective film satisfy the above relationship.
このとき、中心線平均粗さRaや最大高さR工、yの値
は任意であるか、あまり表面が荒れ過ぎると磁気ヘット
の走行に支障を来たし電磁変換特性も低下することから
、中心線平均粗さRaは20nm以下、最大高さR□8
は200nm以下とすることか好ましい。At this time, the values of the center line average roughness Ra, maximum height R, and y are arbitrary, or if the surface is too rough, it will interfere with the running of the magnetic head and the electromagnetic conversion characteristics will deteriorate, so the center line Average roughness Ra is 20 nm or less, maximum height R□8
is preferably 200 nm or less.
剛性基板の表面状態は、テクスチャ処理によってコント
ロールされるか、テクスチャ処理の手法としては、ラッ
ピングテープを基板の周方向にこすりつけ、基板の周方
向に微細な傷を付ける方法が好適である。ここで、ラッ
ピングテープの種類(例えば表面粗さ等)を変えたり、
異なる種類のラッピングチーブによる処理を組み合わせ
ること等で、前記磁気ディスク表面の表面凹凸における
Rv、Rpの値をコントロールすることかできる。The surface condition of the rigid substrate is controlled by texturing, and a preferred method for texturing is to rub a wrapping tape in the circumferential direction of the substrate to make minute scratches in the circumferential direction of the substrate. Here, you can change the type of wrapping tape (for example, surface roughness, etc.)
By combining treatments using different types of lapping chives, it is possible to control the values of Rv and Rp in the surface unevenness of the magnetic disk surface.
テクスチャ処理される基板は、剛性の基板であって、ア
ルミニウム基板、アルミニウム合金基板、N1−Pメツ
キを施したアルミニウム基板、アルミニウム合金基板、
アルマイト処理を施したアルミニウム基板、アルミニウ
ム合金基板、ガラス基板、ポリエーテルイミド、ポリカ
ーボネート、ポリサルホン、ポリエーテルサルホン、ポ
リアセタール、ポリフェニレンサルファイド等の材料よ
りなるプラスチック基板等が使用可能である。The substrate to be textured is a rigid substrate, such as an aluminum substrate, an aluminum alloy substrate, an aluminum substrate with N1-P plating, an aluminum alloy substrate,
Alumite-treated aluminum substrates, aluminum alloy substrates, glass substrates, plastic substrates made of materials such as polyetherimide, polycarbonate, polysulfone, polyethersulfone, polyacetal, and polyphenylene sulfide can be used.
一方、前記剛性基板上に形成される磁性層は、磁性粉末
、結合剤等を主体とする磁性塗料を筒布することによっ
て形成される磁性粉膜であってもよいし、強磁性金属材
料(例えばCo−Ni合金やCo−Cr−Ta合金、C
o−Cr−Ni合金等)をメツキや蒸着1スパツタ等の
薄膜形成技術により成膜することによって形成される金
属薄膜であってもよく、何ら制約されるものではない。On the other hand, the magnetic layer formed on the rigid substrate may be a magnetic powder film formed by coating a magnetic paint mainly composed of magnetic powder, a binder, etc., or a ferromagnetic metal material ( For example, Co-Ni alloy, Co-Cr-Ta alloy, C
It may be a metal thin film formed by forming an o-Cr-Ni alloy, etc.) by a thin film forming technique such as plating or evaporation sputtering, and there is no restriction at all.
また、磁性層として金属薄膜を形成する場合には、必要
に応じて下地膜を形成してもよい。この場合、下地膜の
材質としては、Bi、Cr等が挙げられ、膜厚は数十人
〜数千人程度(例えばCr下地膜の場合、700〜10
00人程度)に設定すればよい。Further, when forming a metal thin film as the magnetic layer, a base film may be formed as necessary. In this case, the material of the base film includes Bi, Cr, etc., and the film thickness is about tens to thousands of layers (for example, in the case of a Cr base film, 700 to 10
00 people).
さらに、前記磁性層の表面には、必要に応じてカーボン
保護膜や潤滑剤層等が形成されていてもよい。使用する
潤滑剤の種類は任意であるか、特にパーフルオロポリエ
ーテル系の潤滑剤が好適である。また、カーボン保護膜
の膜厚は200〜500人の範囲であることが好ましく
、潤滑剤層の膜厚は20〜60人の範囲であることか好
ましい。Furthermore, a carbon protective film, a lubricant layer, etc. may be formed on the surface of the magnetic layer, if necessary. The type of lubricant used may be arbitrary, but perfluoropolyether-based lubricants are particularly preferred. Further, the thickness of the carbon protective film is preferably in the range of 200 to 500 layers, and the thickness of the lubricant layer is preferably in the range of 20 to 60 layers.
磁気ヘッドを接触させた状態で磁気ディスクの回転数を
第2図(A)に示すように次第に上げていくと、C8S
開始時に磁気ヘッドと磁気ディスク表面の間に働く摩擦
力は、第2図(B)に示すようなものとなる。そして、
このとき磁気ディスクあるいは磁気ヘットに加わるダメ
ージの大きさは、摩擦力の積分値で与えられる。When the rotational speed of the magnetic disk is gradually increased as shown in Figure 2 (A) with the magnetic head in contact, C8S
The frictional force acting between the magnetic head and the magnetic disk surface at the start is as shown in FIG. 2(B). and,
At this time, the amount of damage applied to the magnetic disk or magnetic head is given by the integral value of the frictional force.
ここで、前記摩擦力のカーブは、磁気ディスク表面の表
面凹凸におけるRv、RpO値によって変化し、Rp
/ Rvの値が小さいと、磁気ヘットに加わる最大摩擦
力F、はさほど変わらないか、摩擦力が磁気ヘッドの浮
上とともに零になるまての時間t、が長くなる傾向にあ
る。このことは、Rp / Rvの値が小さくなると、
磁気ヘッドに働く摩擦力は尾を引き、磁気ヘットが磁気
ディスク表面を引きする時間か長くなることを示してい
る。Here, the curve of the frictional force changes depending on the Rv and RpO values of the surface unevenness of the magnetic disk surface, and Rp
When the value of /Rv is small, the maximum frictional force F applied to the magnetic head does not change much, or the time t required for the frictional force to become zero as the magnetic head flies tends to become longer. This means that when the value of Rp/Rv becomes smaller,
The frictional force acting on the magnetic head tails off, indicating that the time it takes for the magnetic head to pull on the magnetic disk surface becomes longer.
したかって、例えば最大摩擦力を下げるために表面粗さ
を粗くした場合、通常はRvの値か大きくなってRp
/ Rvの値が小さくなり、摩擦力が零になるまでの時
間t、が長くなって積分値が大きくなり、結果としてC
8S耐久性が悪くなることになる。Therefore, for example, if the surface roughness is increased in order to lower the maximum frictional force, the value of Rv will usually increase and Rp
/ The value of Rv becomes smaller, the time t until the frictional force becomes zero becomes longer, the integral value becomes larger, and as a result, C
8S durability will deteriorate.
これに対して、本発明においては、Rp / Rvの値
を0.6以上としているので、摩擦力か零になるまでの
時間t、が短いものとなり、C8S耐久性か確保される
。On the other hand, in the present invention, since the value of Rp/Rv is set to 0.6 or more, the time t until the frictional force becomes zero is short, and C8S durability is ensured.
以下、本発明を具体的な実験結果に基づいて説明する。 The present invention will be explained below based on specific experimental results.
実験例1
本実験例において使用したサンプルディスクは、N1−
Pメツキが施されテクスチャ処理により表面凹凸状態を
変えたアルミニウム基板上に磁性層、カーホン保護膜及
び潤滑剤層を順次成膜してなるものである。磁性層は、
Co−Ni合金のスパッタ膜であり、膜厚500人であ
る。また、磁性層の下地膜として、膜厚100人のビス
マス下地膜を形成した。一方、カーボン保護膜の膜厚は
350〜400人、潤滑剤層の膜厚は40人とした。Experimental Example 1 The sample disk used in this experimental example was N1-
A magnetic layer, a carphone protective film, and a lubricant layer are sequentially formed on an aluminum substrate which has been plated with P and whose surface roughness has been changed by texturing. The magnetic layer is
It is a sputtered film of Co--Ni alloy, and has a thickness of 500 mm. Further, a bismuth underlayer film having a thickness of 100 mm was formed as an underlayer film for the magnetic layer. On the other hand, the thickness of the carbon protective film was 350 to 400, and the thickness of the lubricant layer was 40.
使用した潤滑剤は、パーフルオロポリエーテル(商品名
二フォンプリン)である。The lubricant used was perfluoropolyether (trade name Niphonpurin).
各サンプルディスクのRp、Rv、Rp/Rv並びに磁
気ヘッドは加わる最大摩擦力Flll摩擦力が磁気ヘッ
トの浮上によって零になるまでの時間t、を表1−1及
び表1−2に示す。ここで、表1−1に示すサンプルデ
ィスクが本発明の実施例に相当し、表1−2に示すサン
プルディスクは比較例に相当する。Tables 1-1 and 1-2 show Rp, Rv, Rp/Rv of each sample disk, and the time t until the maximum frictional force Fllll applied to the magnetic head becomes zero due to the floating of the magnetic head. Here, the sample disks shown in Table 1-1 correspond to examples of the present invention, and the sample disks shown in Table 1-2 correspond to comparative examples.
なお、各サンプルディスクにおけるRp、 Rv。Note that Rp and Rv on each sample disc.
Rp / Rvの各値は、磁性層及びカーボン保護膜を
形成した状態で測定し、測定長は0.6mとした。Each value of Rp/Rv was measured with the magnetic layer and carbon protective film formed, and the measurement length was 0.6 m.
また、最大摩擦力F、や時間t、の測定に際しては、磁
気ディスク回転数を3600rpm 、前記回転数まで
立ち上がるまでの時間〔第2図(A)中のT〕を4秒と
した。In addition, when measuring the maximum frictional force F and time t, the magnetic disk rotation speed was set to 3600 rpm, and the time to rise to the rotation speed [T in FIG. 2(A)] was set to 4 seconds.
(以下余白)
表1
表1−2
これらの表を見ても明らかな通り、磁気ディスクの表面
状態をコントロールしRp / Rvの値を0.6以上
としたときに、特に摩擦力が零になるまでの時間t、が
短くなり、積分された摩擦力か小さくなることがわかる
。(Margins below) Table 1 Table 1-2 As is clear from these tables, when the surface condition of the magnetic disk is controlled and the value of Rp / Rv is set to 0.6 or more, the frictional force becomes zero. It can be seen that the time t required for this to occur becomes shorter, and the integrated frictional force becomes smaller.
実験例2
磁性層をCo−Cr−Ta合金とし、Crを下地膜とし
て先の実験例1と同様にサンプルディスクを作成した。Experimental Example 2 A sample disk was prepared in the same manner as in Experimental Example 1 using a Co--Cr--Ta alloy as the magnetic layer and a Cr base film.
Co−Cr−Ta合金の膜厚は500人、Cr下地膜の
膜厚は700人である。なお、磁性層として好適なCo
−Cr−Ta合金の組成範囲は、Co wc r yT
a g (x、y、zはいずれも重量%)としたと
きに、
4≦y≦20
0<z≦5
X=残部
であるが、ここではCo□Cr +tT a 、とした
。The thickness of the Co-Cr-Ta alloy is 500 mm, and the thickness of the Cr base film is 700 mm. Note that Co is suitable for the magnetic layer.
The composition range of -Cr-Ta alloy is Cowcr yT
a g (x, y, z are all weight %), 4≦y≦20 0<z≦5
これらサンプルディスクについても、Rp。These sample discs are also Rp.
Rv、Rp/Rv、並びに磁気ヘッドに加わる最大摩擦
力F、、摩擦力が磁気ヘッドの浮上によって零になるま
での時間t、を測定した。結果を表2−1及び表2−2
に示す。ここでも、表2−1に示すサンプルディスクか
本発明の実施例に相当し、表2−2に示すサンプルディ
スクは比較例に相当する。Rv, Rp/Rv, the maximum frictional force F applied to the magnetic head, and the time t until the frictional force becomes zero due to the floating of the magnetic head were measured. The results are shown in Table 2-1 and Table 2-2.
Shown below. Again, the sample disks shown in Table 2-1 correspond to examples of the present invention, and the sample disks shown in Table 2-2 correspond to comparative examples.
(以下余白)
表2
1
表2
磁性層をCo−Cr−Ta合金(COs*Cr+tTa
x)とした場合にも、Rp / Rvの値を0.6以上
とすることで、やはり積分された摩擦力か小さくなるこ
とがわかる。(Left below) Table 2 1 Table 2 The magnetic layer is made of a Co-Cr-Ta alloy (COs*Cr+tTa
x), it can be seen that by setting the value of Rp/Rv to 0.6 or more, the integrated frictional force becomes smaller.
さらに、磁性層をCOs4Cr 12T a 4 とし
て同様の実験を行ったところ、C05gCr+Jaiの
場合と同様の結果か得られた。Furthermore, when a similar experiment was conducted using COs4Cr 12T a 4 as the magnetic layer, the same results as in the case of C05gCr+Jai were obtained.
以上の説明からも明らかなように、本発明においては、
磁気ディスクの表面凹凸におけるRp/Rvの値を0.
6以上となるように設定しているので、磁気ヘッドや磁
気ディスクに加わるダメージ(特に摩擦力の積分値)を
小さくすることができ、C8S耐久性を向上することが
可能である。As is clear from the above description, in the present invention,
The value of Rp/Rv in the surface unevenness of the magnetic disk is 0.
Since it is set to be 6 or more, it is possible to reduce the damage (particularly the integral value of frictional force) applied to the magnetic head and magnetic disk, and it is possible to improve the C8S durability.
第1図はRp及びRvを説明するための模式図である。
第2図(A)はC8S開始時の磁気ディスクの回転数の
変化を示す特性図であり、第2図(B)はそのときの摩
擦力の変化を示す特性図である。FIG. 1 is a schematic diagram for explaining Rp and Rv. FIG. 2(A) is a characteristic diagram showing the change in the rotational speed of the magnetic disk at the start of C8S, and FIG. 2(B) is a characteristic diagram showing the change in the frictional force at that time.
Claims (1)
なくとも磁性層が形成されてなる磁気ディスクにおいて
、 該磁気ディスク表面の径方向における表面凹凸の算術平
均中心線から最深谷底までの値Rvと最高山頂までの値
Rpとが、 Rp/Rv≧0.6 なる関係を満足することを特徴とする磁気ディスク。[Scope of Claim] In a magnetic disk in which at least a magnetic layer is formed on a disk-shaped rigid substrate textured in the circumferential direction, A magnetic disk characterized in that a value Rv to the bottom of the valley and a value Rp to the highest peak satisfy the following relationship: Rp/Rv≧0.6.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91100601A EP0438177B1 (en) | 1990-01-19 | 1991-01-18 | Magnetic recording disk |
DE69103778T DE69103778T2 (en) | 1990-01-19 | 1991-01-18 | Magnetic recording disk. |
KR1019910000819A KR910014880A (en) | 1990-01-19 | 1991-01-18 | Magnetic recording disc |
US07/644,222 US5144512A (en) | 1990-01-19 | 1991-01-22 | Magnetic recording disk having textured surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-8508 | 1990-01-19 | ||
JP850890 | 1990-01-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03250424A true JPH03250424A (en) | 1991-11-08 |
JP3038888B2 JP3038888B2 (en) | 2000-05-08 |
Family
ID=11695068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02298724A Expired - Fee Related JP3038888B2 (en) | 1990-01-19 | 1990-11-02 | Magnetic disk |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3038888B2 (en) |
KR (1) | KR910014880A (en) |
-
1990
- 1990-11-02 JP JP02298724A patent/JP3038888B2/en not_active Expired - Fee Related
-
1991
- 1991-01-18 KR KR1019910000819A patent/KR910014880A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
JP3038888B2 (en) | 2000-05-08 |
KR910014880A (en) | 1991-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2543265B2 (en) | Magnetic disk | |
US4820584A (en) | Magnetic recording medium and method of manufacturing the same | |
JP3018762B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH01154314A (en) | Magnetic disk | |
US5223304A (en) | Process for fabricating magnetic disks | |
US5144512A (en) | Magnetic recording disk having textured surface | |
JPH03250424A (en) | Magnetic disk | |
JPH0567321A (en) | Magnetic recording medium | |
JP2546383B2 (en) | Magnetic disk | |
JPH0568771B2 (en) | ||
JPH04259908A (en) | Magnetic disk substrate | |
JP3051851B2 (en) | Substrate for magnetic disk | |
JPH02281485A (en) | Floating type magnetic head and production thereof | |
JP2764829B2 (en) | Magnetic disk | |
JPH04238116A (en) | Magnetic disk | |
JPS62134826A (en) | Production of magnetic memory body | |
JPS62141628A (en) | Magnetic recording medium | |
JPH0268712A (en) | Thin film magnetic recording medium | |
JPH06325342A (en) | Magnetic recording medium | |
JPH0731807B2 (en) | Magnetic recording medium | |
JPH0371427A (en) | Production of magnetic recording medium | |
JPH04258810A (en) | Magnetic recording medium | |
JPH08329453A (en) | Magnetic recording medium and its production | |
JPH01122028A (en) | Production of magnetic disk | |
JPH05128501A (en) | Magnetic disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080303 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090303 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |