JPH0324989B2 - - Google Patents

Info

Publication number
JPH0324989B2
JPH0324989B2 JP59145041A JP14504184A JPH0324989B2 JP H0324989 B2 JPH0324989 B2 JP H0324989B2 JP 59145041 A JP59145041 A JP 59145041A JP 14504184 A JP14504184 A JP 14504184A JP H0324989 B2 JPH0324989 B2 JP H0324989B2
Authority
JP
Japan
Prior art keywords
light
ferrule
acceleration
optical fibers
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145041A
Other languages
Japanese (ja)
Other versions
JPS6123974A (en
Inventor
Fumiki Sone
Hiroshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14504184A priority Critical patent/JPS6123974A/en
Publication of JPS6123974A publication Critical patent/JPS6123974A/en
Publication of JPH0324989B2 publication Critical patent/JPH0324989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、光フアイバ2次元加速度センサに係
り、特に1個のセンサで2方向の加速度を検出す
るのに好適な光フアイバ2次元加速度センサに関
するものである。
Detailed Description of the Invention [Background and Objectives of the Invention] The present invention relates to an optical fiber two-dimensional acceleration sensor, and particularly to an optical fiber two-dimensional acceleration sensor suitable for detecting acceleration in two directions with one sensor. It is related to.

従来、加速度センサとしては、圧電素子、半導
体素子などの電気式センサが主として使用されて
いた。しかし、これらはほとんど単一方向の加速
度を検出するものであり、また、電磁誘導の影響
を受けやすく、ノイズ防止策が必要であり、か
つ、素子の耐環境性特性によりセンサの使用条件
に制約があるという欠点があつた。
Conventionally, electric sensors such as piezoelectric elements and semiconductor elements have been mainly used as acceleration sensors. However, these sensors almost always detect acceleration in a single direction, are susceptible to electromagnetic induction, require noise prevention measures, and are limited by the sensor's usage conditions due to the environmental resistance characteristics of the element. There was a drawback that there was.

これに対して光フアイバを用いた加速度センサ
が種々提案されているが、その大部分は単一方向
の加速度を検出するものであり、2次元の加速度
を検出できるものがほとんどないのが現状であ
る。
In response, various acceleration sensors using optical fibers have been proposed, but most of them detect acceleration in a single direction, and there are currently very few that can detect acceleration in two dimensions. be.

本発明は、上記に鑑みてなされたもので、その
目的とするところは、1個のセンサで2方向の加
速度を検出することができ、かつ、構造が簡単
で、安定性、信頼性に優れた光フアイバ2次元加
速度センサを提供することにある。
The present invention has been made in view of the above, and its purpose is to be able to detect acceleration in two directions with one sensor, to have a simple structure, and to have excellent stability and reliability. An object of the present invention is to provide an optical fiber two-dimensional acceleration sensor.

[発明の概要] 本発明の特徴は、送光用光フアイバと、3心以
上の受光用光フアイバと、上記各光フアイバの一
方の端面をそれぞれ固定してあるフエルールと、
このフエルールに近接させて設けたマイクロレン
ズと、このマイクロレンズの上記フエルールと
は、反対側に対向させて設けた裏面に弾性支持棒
の一端が固定してある反射板と、上記弾性支持棒
の他端が固定してある上記マイクロレンズと上記
フエルールとを収納固定するハウジングと、上記
送光用光フアイバの他端に接続した発光素子と、
上記各受光用光フアイバの他端にそれぞれ接続し
た受光素子と、この各受光素子の受光量に比例し
た出力を増幅した信号をそれぞれ入力して上記弾
性支持棒に直交する2次元方向の加速度に対応し
た出力をそれぞれ送出する信号処理回路とからな
り、上記各受光用光フアイバは、上記マイクロレ
ンズ側端面を上記ハウジングに作用する加速度が
零のときに上記各受光用光フアイバに入射する上
記反射板からの反射光の光量が等しくなるように
同一円周上に配列した構造としてある点にある。
[Summary of the Invention] The present invention is characterized by a light transmitting optical fiber, a light receiving optical fiber having three or more fibers, a ferrule to which one end surface of each of the optical fibers is fixed,
A microlens is provided close to this ferrule, and the ferrule of this microlens is provided with a reflecting plate having one end of an elastic support rod fixed to the back surface provided facing the opposite side, and a reflection plate having one end of an elastic support rod fixed to the back surface of the microlens. a housing for housing and fixing the microlens and the ferrule, the other end of which is fixed; a light emitting element connected to the other end of the light transmitting optical fiber;
A light-receiving element connected to the other end of each of the light-receiving optical fibers and a signal obtained by amplifying the output proportional to the amount of light received by each light-receiving element are input, and the acceleration in the two-dimensional direction orthogonal to the elastic support rod is calculated. The light-receiving optical fibers each include a signal processing circuit that sends out corresponding outputs, and each of the light-receiving optical fibers receives the reflected light that enters the light-receiving optical fiber when the acceleration acting on the microlens side end face is zero. They are arranged at a certain point on the same circumference so that the amount of light reflected from the plates is equal.

[実施例] 以下本発明を第1図〜第6図に示した実施例を
用いて詳細に説明する。
[Examples] The present invention will be described in detail below using examples shown in FIGS. 1 to 6.

第1図は本発明の光フアイバ2次元加速度セン
サの一実施例を示す全体構成説明図である。第1
図において、1は送光用光フアイバ、21〜2n
はそれぞれ受光用光フアイバ、3は光フアイバ
1,21〜2nの一端がそれぞれ固定してあるフ
エルール、4はフエルール3に近接させて設けた
球レンズまたはロツドレンズからなるマイクロレ
ンズ、5はマイクロレンズ4のフエルール3とは
反対側に対向させて設けた裏面に弾性支持棒6の
一端が固定してある反射板、7は弾性支持棒6の
他端が固定してあるマイクロレンズ4とフエルー
ル3とを収納固定してあるハウジングである。
FIG. 1 is an explanatory diagram of the overall configuration of an embodiment of the optical fiber two-dimensional acceleration sensor of the present invention. 1st
In the figure, 1 is an optical fiber for transmitting light, 2 1 to 2n
are optical fibers for receiving light, 3 is a ferrule to which one end of each of the optical fibers 1, 2 1 to 2n is fixed, 4 is a microlens made of a ball lens or a rod lens provided close to the ferrule 3, and 5 is a microlens. A reflector plate 4 has one end of an elastic support rod 6 fixed to the back surface facing the opposite side from the ferrule 3, and a microlens 4 and ferrule 3 have the other end of the elastic support rod 6 fixed. This is a housing that stores and fixes the

LEDや半導体レーザなどの発光素子8からの
光が走光用光フアイバ1を伝搬してマイクロレン
ズ4に入射すると、この光はマイクロレンズ4に
よつてほぼ平行光となり、反射板5によつて反射
されて再びマイクロレンズ4に入射し、受光用光
フアイバ21〜2nの端部近傍に実像を結ぶよう
に光が集まり、受光用光フアイバ21〜2nに入
射して伝搬され、各受光用光フアイバ21〜2n
の他端にそれぞれ接続した受光素子91〜9nに
受光される。受光素子91〜9nでそれぞれ光一
電変換された電気出力はそれぞれ受光回路101
〜10nで増幅処理され、それぞれ受光レベルに
比例した受光回路101〜10nの出力V1〜Vnは
信号処理回路11に入力して処理され、信号処理
回路11から加速度の直交x,y方向成分に比例
した出力Vx,Vyが送出される。
When light from a light emitting element 8 such as an LED or a semiconductor laser propagates through the optical fiber 1 for phototravel and enters the microlens 4, this light becomes almost parallel light by the microlens 4, and is reflected by the reflection plate 5. The light enters the microlens 4 again, and the light gathers to form a real image near the ends of the light-receiving optical fibers 2 1 to 2n, and then enters and propagates to the light-receiving optical fibers 2 1 to 2n. Optical fiber 2 1 ~ 2n
The light is received by the light receiving elements 9 1 to 9n connected to the other end, respectively. The electrical outputs converted from light to electricity by the light receiving elements 9 1 to 9n are sent to the light receiving circuit 10 1 .
The outputs V 1 to Vn of the light receiving circuits 10 1 to 10n, each proportional to the received light level, are input to the signal processing circuit 11 and processed. Outputs Vx and Vy proportional to are sent out.

弾性支持棒6は、一端が反射板5に、他端がハ
ウジング7に固定してあるので、ハウジング7に
加速度が加わると、第2図に示してあるように、
弾性支持棒6が実線の位置から点線の位置にたわ
み、反射板5の角度が加速度に比例してθだけ変
化する。この場合の比例定数は、反射板5の質量
と弾性支持棒6の弾性率とによつて決まる。この
とき、反射光の角度は2θだけ変化し、その結果、
結像位置が変化する。
The elastic support rod 6 has one end fixed to the reflection plate 5 and the other end fixed to the housing 7, so when acceleration is applied to the housing 7, as shown in FIG.
The elastic support rod 6 is deflected from the position shown by the solid line to the position shown by the dotted line, and the angle of the reflection plate 5 changes by θ in proportion to the acceleration. The proportionality constant in this case is determined by the mass of the reflecting plate 5 and the elastic modulus of the elastic support rod 6. At this time, the angle of the reflected light changes by 2θ, and as a result,
The imaging position changes.

第3図は第1図の受光用光フアイバ21〜2n
のフエルール3への固定端面の配置の一実施例を
示す説明図で、受光用光フアイバが4本の場合を
例示してある。第3図においては4心の受光用光
フアイバ21〜24が正方形配列としてあり、加速
度が零で、反射板5の角度θ=0のときは、送信
用光フアイバ1からの光の反射光の実像が実線斜
線部Iに示すように光フアイバ21〜24のほぼ中
心に結び、受光出力V1=V2=V3=V4となるよう
に、受光用光フアイバ21〜24の位置、マイクロ
レンズ4と反射板5の傾きを調整してある。
Figure 3 shows the light receiving optical fibers 2 1 to 2n in Figure 1.
FIG. 3 is an explanatory diagram showing an example of the arrangement of fixed end faces on the ferrule 3, and illustrates a case where there are four light-receiving optical fibers. In FIG. 3, the four-core light-receiving optical fibers 2 1 to 2 4 are arranged in a square arrangement, and when the acceleration is zero and the angle θ of the reflector 5 is 0, the light from the transmitting optical fiber 1 is reflected. The light receiving optical fibers 21 to 24 are connected so that the real image of the light is connected to the approximate center of the optical fibers 21 to 24 as shown in the solid hatched area I, and the received light outputs V1 = V2 = V3 = V4 . The position of 2 4 and the inclination of the microlens 4 and the reflector 5 are adjusted.

ここで、例えば、加速度がy方向に加えられる
と、像Iが破線で示す位置まで動き、その結果受
光出力V1〜V4が変化する。この例では、V2=V4
の関係は、変わらないので、Vx=0となり、V1
−V3に応じたy方向加速度出力Vyが得られる。
加速度が任意方向の場合はV2−V4,V1−V3に応
じたx方向加速度出力Vx,y方向加速度出力Vy
が得られる。ところで、像Iの大きさは、走光用
光フアイバ1の素線径(コアおよびクラツドの直
径)や心数により変えることができる。
Here, for example, when acceleration is applied in the y direction, the image I moves to the position shown by the broken line, and as a result, the received light outputs V 1 to V 4 change. In this example, V 2 = V 4
Since the relationship remains unchanged, Vx=0, and V 1
A y-direction acceleration output Vy corresponding to −V 3 is obtained.
If the acceleration is in an arbitrary direction, the x-direction acceleration output Vx and the y-direction acceleration output Vy correspond to V 2 −V 4 and V 1 −V 3
is obtained. Incidentally, the size of the image I can be changed depending on the wire diameter (the diameter of the core and the cladding) and the number of fibers of the light-traveling optical fiber 1.

なお、第4図は受光用光フアイバの配置の他の
実施例を示す第3図に相当する説明図で、第4図
には受光用光フアイバが3本で、受光用光フアイ
バ21〜23を正三角形配列としてある。この場合
は、受光出力V1〜V3の処理によりVx,Vyを得
ることができる。
In addition, FIG. 4 is an explanatory diagram corresponding to FIG. 3 showing another example of the arrangement of the light receiving optical fibers. In FIG. 4, there are three light receiving optical fibers, and the light receiving optical fibers 2 1 - 2 3 is an equilateral triangular array. In this case, Vx and Vy can be obtained by processing the received light outputs V 1 to V 3 .

第5図は第1図のハウジング7の被検出対象物
への固定方法の一実施例を示す斜視図で、第6図
はそれの他の実施例を示す斜視図である。第5図
では、被検出対象物のセンサ固定フランジ13の
表面に平行にハウジング7が取り付けてあり、こ
の場合は、固定面に平行な一方向xの加速度と固
定面に直角な方向yの加速度を検出できる。ま
た、第6図では、センサ固定フランジ13の表面
に直角にハウジング7が取り付けてあり、この場
合は、固定面に平行な任意方向(例えば、互いに
直交するx,y方向)の加速度を検出できる。
FIG. 5 is a perspective view showing one embodiment of a method for fixing the housing 7 of FIG. 1 to an object to be detected, and FIG. 6 is a perspective view showing another embodiment of the method. In FIG. 5, the housing 7 is attached parallel to the surface of the sensor fixing flange 13 of the object to be detected, and in this case, the acceleration in one direction x parallel to the fixed surface and the acceleration in the direction y perpendicular to the fixed surface can be detected. In addition, in FIG. 6, the housing 7 is attached perpendicularly to the surface of the sensor fixing flange 13, and in this case, acceleration in any direction parallel to the fixing surface (for example, x and y directions perpendicular to each other) can be detected. .

上記した本発明の実施例によれば、 (1) 1個のセンサで同一地点における2方向の加
速度を検出できる。
According to the embodiment of the present invention described above, (1) One sensor can detect acceleration in two directions at the same point.

(2) 構造が簡単であり、耐環境性に優れている。(2) Simple structure and excellent environmental resistance.

(3) 誘導ノイズの影響がなく、安定性、信頼性に
優れている。
(3) There is no influence of induced noise, and it has excellent stability and reliability.

(4) 被検出対象物への設置が容易である。(4) Easy to install on the object to be detected.

(5) 各受光用光フアイバ21〜2nの受光レベル
の相対値から加速度信号を得るようにしてある
から、発行素子8の発光レベルの変動の影響を
軽減できる。
(5) Since the acceleration signal is obtained from the relative value of the light reception level of each of the light reception optical fibers 2 1 to 2n, the influence of fluctuations in the light emission level of the emission element 8 can be reduced.

[発明の効果] 以上説明したように、本発明によれば、1個の
センサで2方向の加速度を検出することができ、
かつ、構造が簡単で、安定性、信頼性に優れてい
るという効果がある。
[Effects of the Invention] As explained above, according to the present invention, acceleration in two directions can be detected with one sensor,
In addition, the structure is simple, and the structure is excellent in stability and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光フアイバ2次元加速度セン
サの一実施例を示す全体構成説明図、第2図は第
1図の動作原理を説明するためのセンサ部の詳細
図(フエルールは図示を省略してある)、第3図
は第1図の受光用光フアイバのフエルールへの固
定端面の配置の一実施例を示す説明図、第4図は
第1図の受光用光フアイバのフエルールへの固定
端面の配置の他の実施例を示す説明図、第5図、
第6図はそれぞれ第1図のハウジングの被検出対
象物への固定方法の一実施例を示す斜視図であ
る。 1…送光用光フアイバ、21〜2n…受光用光
フアイバ、3…フエルール、4…マイクロレン
ズ、5…反射板、6…弾性支持機、7…ハウジン
グ、8…発光素子、91〜9n…受光素子、101
〜10n…受光回路、11…信号処理回路、12
…駆動回。
Fig. 1 is an explanatory view of the overall configuration of an embodiment of the optical fiber two-dimensional acceleration sensor of the present invention, and Fig. 2 is a detailed view of the sensor section to explain the operating principle of Fig. 1 (ferrules are omitted). ), FIG. 3 is an explanatory diagram showing an example of the arrangement of the fixed end face of the light-receiving optical fiber in FIG. 1 to the ferrule, and FIG. An explanatory diagram showing another example of the arrangement of the fixed end surface, FIG.
FIG. 6 is a perspective view showing an embodiment of a method of fixing the housing of FIG. 1 to an object to be detected. DESCRIPTION OF SYMBOLS 1... Optical fiber for light transmission, 2 1 - 2n... Optical fiber for light reception, 3... Ferrule, 4... Micro lens, 5... Reflection plate, 6... Elastic supporter, 7... Housing, 8... Light emitting element, 9 1 - 9n...light receiving element, 10 1
~10n...Light receiving circuit, 11...Signal processing circuit, 12
...Drive times.

Claims (1)

【特許請求の範囲】[Claims] 1 送光用光フアイバと、3心以上の受光用光フ
アイバと、前記各光フアイバの一方の端部をそれ
ぞれ固定してあるフエルールと、該フエルールに
近接させて設けたマイクロレンズと、該マイクロ
レンズの前記フエニルールとは反対側に対向させ
て設けた裏面に弾性支持棒の一端が固定してある
反射板と、前記弾性支持棒の他端が固定してある
前記マイクロレンズと前記フエルールとを収納固
定するハウジングと、前記送光用光フアイバの他
端に接続した発光素子と、前記各受光用光フアイ
バの他端にそれぞれ接続した受光素子と、該各受
光素子の受光量に比例した出力を増幅した信号を
それぞれ入力して前記弾性支持棒に直交する2次
元方向の加速度に対応した出力をそれぞれ送出す
る信号処理回路とからなり、前記各受光用光フア
イバは、前記マイクロレンズ側端面を前記ハウジ
ングに作用する加速度が零のときに前記各受光用
光フアイバに入射する前記反射板からの反射光の
光量が等しくなるように同一円周上に配列した構
成としてあることを特徴とする光フアイバ2次元
加速度センサ。
1. A light transmitting optical fiber, a light receiving optical fiber having three or more fibers, a ferrule to which one end of each of the optical fibers is fixed, a microlens provided close to the ferrule, and a microlens provided close to the ferrule. a reflection plate having one end of an elastic support rod fixed to the back surface of the lens opposite to the ferrule; the microlens and the ferrule having the other end of the elastic support rod fixed; A housing for storing and fixing, a light emitting element connected to the other end of the light transmitting optical fiber, a light receiving element connected to the other end of each of the light receiving optical fibers, and an output proportional to the amount of light received by each light receiving element. and a signal processing circuit that inputs each amplified signal and sends out an output corresponding to the acceleration in a two-dimensional direction perpendicular to the elastic support rod, and each of the light receiving optical fibers has a side end surface of the microlens. The light is arranged on the same circumference so that when the acceleration acting on the housing is zero, the amount of light reflected from the reflecting plate that enters each of the light-receiving optical fibers is equal. Fiber two-dimensional acceleration sensor.
JP14504184A 1984-07-12 1984-07-12 Two-dimensional acceleration sensor for optical fiber Granted JPS6123974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14504184A JPS6123974A (en) 1984-07-12 1984-07-12 Two-dimensional acceleration sensor for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14504184A JPS6123974A (en) 1984-07-12 1984-07-12 Two-dimensional acceleration sensor for optical fiber

Publications (2)

Publication Number Publication Date
JPS6123974A JPS6123974A (en) 1986-02-01
JPH0324989B2 true JPH0324989B2 (en) 1991-04-04

Family

ID=15376022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14504184A Granted JPS6123974A (en) 1984-07-12 1984-07-12 Two-dimensional acceleration sensor for optical fiber

Country Status (1)

Country Link
JP (1) JPS6123974A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340859C (en) * 2005-09-26 2007-10-03 西安交通大学 Optical acceleration sensor based on Fresnel diffraction micr-lens
CH711448A1 (en) * 2015-08-25 2017-02-28 Sercalo Microtechnology Ltd Optical acceleration sensor.

Also Published As

Publication number Publication date
JPS6123974A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
US4381137A (en) Optical fiber mode separation systems
US5177805A (en) Optical sensors utilizing multiple reflection
US5437186A (en) Integrated optical acceleration sensor
US5689107A (en) Displacement-based opto-electronic accelerometer and pressure sensor
EP0082604A1 (en) Fibre optic hydrophone transducers
US4678902A (en) Fiber optic transducers with improved sensitivity
US6998599B2 (en) Intensity modulated fiber optic microbend accelerometer
US5812251A (en) Electro-optic strain gages and transducer
US4670649A (en) Optical transducer and measuring device
US4595830A (en) Multimode optical fiber accelerometer
HU196259B (en) Optoelktromechanical measuring transducer
JPH0311644B2 (en)
US5266797A (en) Opto-electronic sensor for the measurement of linear values using adjacent emitted-detector pair and focusing and deviating means
WO2005006043A1 (en) Monitoring device
JPH0324989B2 (en)
JPH0345322B2 (en)
US6320992B1 (en) Integrated optic accelerometer and method
US4818860A (en) Light collimating member for photoelectric transfer apparatus
JP3011327B2 (en) Optical fiber tactile sensor
JPH0462624A (en) Optical mouse
JPH073296Y2 (en) Vortex detector and vortex detector
JPS59176637A (en) Temperature sensor
JPS5816397A (en) Optical fiber sensor
JPH02159517A (en) Flow velocity meter
JPS5852503A (en) Mechanical displacement detecting device