JPH03249828A - Method for isolating fault position of optical transmission line and fault position isolating device - Google Patents

Method for isolating fault position of optical transmission line and fault position isolating device

Info

Publication number
JPH03249828A
JPH03249828A JP2218339A JP21833990A JPH03249828A JP H03249828 A JPH03249828 A JP H03249828A JP 2218339 A JP2218339 A JP 2218339A JP 21833990 A JP21833990 A JP 21833990A JP H03249828 A JPH03249828 A JP H03249828A
Authority
JP
Japan
Prior art keywords
optical
light
test light
fault
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2218339A
Other languages
Japanese (ja)
Inventor
Nobuo Tomita
信夫 富田
Hidetoshi Takasugi
英利 高杉
Fumio Takaesu
高江洲 文雄
Soichi Kobayashi
壮一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPH03249828A publication Critical patent/JPH03249828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To instantaneously isolate the faults in an optical line and a transmitter by transferring light to an outgoing conductor when the insertion conductor of the light to be tested is an incoming conductor, and to the incoming conductor in an opposite case, taking out the light by means of a photocoupler installed on the inner side of a station in the same conductor, receiving it in a light receiver and isolating the fault in the optical line and the transmitter in accordance with the presence or absence of the light. CONSTITUTION:The light is demultiplexed by the photocoupler 4 inserted into the outgoing conductor, and it passes through an optical filter for interrupting communication light 10, where the light is subjected to phometry by a light receiver 9. When the fault such as breaking is present in the optical line, the light cannot be received and it is detected to be the line fault. Then, the light is reflected by the optical filter 7 and inserted into an optical fiber for test light transmission 5c. The optical fiber 5c is connected to the other side and it forms a loop between the incoming and outgoing conductors on the light. Thus, the fault can instantaneously be isolated by an operation from inside the station.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は光線路と伝送装置の故障切分けを局内側から高
精度、高速かつ簡便に行う方法及び装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for highly accurate, high-speed, and simple isolation of failures in optical lines and transmission equipment from within a station.

「従来の技術とその課題」 光源と受光器を用いて光線路と伝送装置との故障切分け
を行う場合、従来、光伝送路に故障が発生した後、電話
連絡等により線路保守者が局内側に光源、加入者側に受
光器を持参していき、局内側の故障心線に光源を接続し
て試験光を挿入し、加入者側では保守者が伝送装置の直
近から先受器により上記試験光を受け、その光の有無に
より故障切分けを行っていた。従って、保守者の駆けつ
け時間及び故障切分は時間が長くかかり、故障復旧時間
が極めて長くかかつていた。又加入者宅へ行く必要かあ
るため、特に深夜等は大きな迷惑をかけていた。
"Conventional technology and its issues" When using a light source and a receiver to isolate a fault between an optical line and a transmission device, conventionally, after a fault occurs in an optical transmission line, a line maintainer can contact the station by telephone, etc. A light source is brought inside and a receiver is brought to the subscriber side.The light source is connected to the faulty core inside the station and a test light is inserted.On the subscriber side, a maintenance person uses the first receiver from the vicinity of the transmission equipment. The test light was received and failures were isolated based on the presence or absence of the light. Therefore, it takes a long time for maintenance staff to rush to the system and troubleshoot the problem, and the time required to recover from the failure is extremely long. Also, since it was necessary to go to the subscriber's home, it caused a great deal of inconvenience, especially late at night.

本発明は、上記の事情に鑑みてなされたものであって、
光線路と伝送装置との故障切分けを局内側から自動で行
う方法及び装置を提供することにある。
The present invention has been made in view of the above circumstances, and includes:
An object of the present invention is to provide a method and device for automatically identifying failures between optical lines and transmission equipment from within the station.

「課題を解決するための手段」 上記目的を達成するために、 第1の本発明は、光源と受光器を用いて光線路と伝送装
置との故障切分けを行う方法において、局内側から通信
光と異なる波長の試験光を、光カプラを介し上り又は下
りの一方の心線へ挿入し、局外の加入者側の伝送装置の
直近に上記試験光のみを上り心線から下り心線へ伝送す
る故障位置切分は器を配置し、上記試験光のみを上記故
障位置切分は器により試験光の挿入心線が上り心線の場
合は下り心線へ、逆の場合は上り心線へ伝搬させて、同
心線の局内側に設置した光カプラにより取り出して光受
光器で受け、この試験光の有無により光線路と伝送装置
との故障切分けを行うことを特徴とする。従来の技術と
は、局内側から自動故障切分は試験が出ること、局内側
に先カプラ、局外の加入者側に試験波長光のみを上り、
下り心線間で通過できる機能を有する故障切分1す器を
設けた点が異なる。
"Means for Solving the Problems" In order to achieve the above object, the first invention provides a method for isolating a failure between an optical line and a transmission device using a light source and a light receiver. Insert test light of a different wavelength from the optical coupler into either the upstream or downstream core wire, and pass only the above test light from the upstream core to the downstream core in the vicinity of the transmission equipment on the subscriber side outside the station. To isolate the fault position to be transmitted, place a device to transmit only the above test light to the above fault location. The test light is transmitted to the center, extracted by an optical coupler installed inside the center of the concentric line, and received by a light receiver, and the presence or absence of this test light is used to isolate failures between the optical line and the transmission equipment. The conventional technology is that automatic fault isolation tests are performed from inside the station, a first coupler is placed inside the station, and only the test wavelength light is sent to the subscriber side outside the station.
The difference is that a fault isolator is provided that has the function of passing between the downlink cores.

第2の発明では、第1の発明で示す位置切分は器を、上
り、下りの各心線に設けられて試験光を反射するフィル
タと、これらフィルタとの間に設けられて、反射した試
験光が伝搬される試験光伝搬用光ファイバとから構成さ
せるようにしている。
In the second invention, the position cut shown in the first invention is provided between the filters provided on each of the up and down core wires to reflect the test light, and the filters provided between these filters to reflect the test light. It is configured to include a test light propagation optical fiber through which the test light is propagated.

第3の発明では、第1の発明で示す位置切分は器を、各
心線に接続され、かつ互いが交差するように設けられた
一対の光導波路と、該光導波路の交差部に設けられ、一
方の導波路を通じて供給された試験光を反射して、他方
の光導波路へ伝搬させるフィルタとから構成するように
している。
In the third invention, the positional division shown in the first invention includes a pair of optical waveguides connected to each core wire and provided so as to intersect with each other, and a device provided at the intersection of the optical waveguides. and a filter that reflects the test light supplied through one waveguide and propagates it to the other optical waveguide.

第4の発明では、第1の発明で示す故障位置切分は器を
下り及び上りの各心線に接続された第1及び第2の導波
路に各々交差する第3、第4の導波路を有し、この各々
の交差部に試験光を反射し、通信光を通過するフィルタ
を設置し、上記第3、第4の導波路の交差部に全反射板
を設置し、試験光が下り心線の第1の導波路から挿入さ
れ、フィルタにより反射され、第3の導波路に挿入され
、全反射板で反射されて第4の導波路に挿入され、フィ
ルタにより又反射され第2の導波路へ挿入されて上り心
線へ伝搬し、又上記と逆の経路で伝搬していくようにし
ている。
In the fourth invention, the fault location isolation shown in the first invention is performed by the third and fourth waveguides that intersect with the first and second waveguides connected to the respective down and up core wires of the device. A filter that reflects the test light and passes the communication light is installed at each intersection, and a total reflection plate is installed at the intersection of the third and fourth waveguides, so that the test light falls. The core wire is inserted from the first waveguide, reflected by the filter, inserted into the third waveguide, reflected by the total reflection plate, inserted into the fourth waveguide, reflected again by the filter, and then inserted into the second waveguide. It is inserted into the waveguide, propagates to the upstream core, and propagates along the opposite path to the above.

「作用」 第1の発明によれば、試験光が光受光器により受光でき
ない場合に、心線内に破断等の故障があり、線路故障で
あることがわかる。また、試験光が光受光器により受光
できた場合に、伝送装置が故障していることがわかる。
"Operation" According to the first invention, when the test light cannot be received by the optical receiver, it can be determined that there is a failure such as a break in the core wire, and that there is a line failure. Furthermore, if the test light can be received by the optical receiver, it can be determined that the transmission device is malfunctioning.

第2、第3、第4の発明によれば、一つあるいは一対の
2つのフィルタにより、一方の心線を通して供給された
試験光が反射され、他方の心線へ伝搬される。これによ
って、これら心線に、試験光のみを選択的に伝搬させる
ことができる。
According to the second, third, and fourth inventions, the test light supplied through one core wire is reflected by one or a pair of two filters and propagated to the other core wire. Thereby, only the test light can be selectively propagated through these core wires.

「実施例」 第1図は本発明の第1の実施例を説明する図であって、
1は伝送装置、2は通信光λ。の発光部、3は通信先の
受光部、4は光カプラ、5(58〜5C)は光ファイバ
、6は第1の故障切分は器、7は試験光除去用光フィル
タ、8は試験光の発光部、9は試験光λ1の受光器、I
Oは通信光除去先フィルタ、11は制御装置である。こ
の方法を実行するには、まず、試験光の発光部8から試
験光を下り心線5aへ挿入する。この試験光は光フィル
タフにより反射させられ、試験光伝搬用光ファイバ5c
へ挿入し、下り心線5bの光フィルタ71;より反射さ
せられ同下り心線5bに挿入して局内方向へ伝搬する。
"Example" FIG. 1 is a diagram illustrating a first example of the present invention,
1 is a transmission device, and 2 is a communication light λ. , 3 is the light receiving part of the communication destination, 4 is the optical coupler, 5 (58 to 5C) is the optical fiber, 6 is the first failure isolation device, 7 is the optical filter for removing the test light, 8 is the test A light emitting part, 9 a receiver for test light λ1, I
O is a communication light removal destination filter, and 11 is a control device. To carry out this method, first, test light is inserted from the test light emitting section 8 into the downlink core wire 5a. This test light is reflected by an optical filter and is connected to a test light propagation optical fiber 5c.
It is reflected by the optical filter 71 of the downlink fiber 5b, inserted into the downlink fiber 5b, and propagated toward the inside of the station.

下り心線5bに挿入されている光カプラ4により、試験
光は分岐されて通信先阻止用光フィルタ10を通過して
受光器9で測定できる。もし、光線路内に破断等の故障
があれば、試験光は受光できず、線路故障であることが
わかる。第2図に故障切分けのフローを示す。伝送装置
に故障が発生したことを示すアラームが発生すると(ス
テ・Iブ1)、上記したように試験光の発生部8(LD
λ、)から試験光を発生させて、故障切分は作業を行い
(ステップ2)、光線路又は伝送装置が故障なのかを判
定する(ステップ3〜5)。つまり、試験光の受光器9
に試験光の受光があった場合には伝送装置1の故障と判
断され(ステップ3・4)、また、試験光の受光器9に
試験光の受光がない場合には、光線路である心線5a・
5bの故障と判断されろくステップ3・5)。
The test light is branched by the optical coupler 4 inserted into the downlink cable 5b, passes through the communication destination blocking optical filter 10, and can be measured by the light receiver 9. If there is a failure such as a break in the optical line, the test light cannot be received, indicating a line failure. Figure 2 shows the flow of fault isolation. When an alarm indicating that a failure has occurred in the transmission device occurs (Step 1), the test light generator 8 (LD
A test light is generated from .lambda., ), and a fault isolation operation is performed (step 2), and it is determined whether the optical line or the transmission device is at fault (steps 3 to 5). In other words, the test light receiver 9
If the test light is received at the test light receiver 9, it is determined that the transmission device 1 is malfunctioning (steps 3 and 4), and if the test light receiver 9 does not receive the test light, the core of the optical path is detected. Line 5a・
5b failure (Steps 3 and 5).

次に、第3図を参照して第1図で示した第1の故障切分
は器6の具体的構成例を説明する。
Next, with reference to FIG. 3, a specific example of the configuration of the first fault isolation device 6 shown in FIG. 1 will be explained.

ここで、12はハウジング、13はフード部である。試
験光λ、は光フィルタフにより反射され試験光伝搬用光
ファイバ5Cへ挿入される。この光ファイバ5Cはもう
一方に接続されており試験光に関して上り、下り心線間
にループを形成する。
Here, 12 is a housing, and 13 is a hood part. The test light λ is reflected by the optical filter and inserted into the test light propagation optical fiber 5C. This optical fiber 5C is connected to the other end and forms a loop between the upstream and downstream fibers for the test light.

以上のような構成であるので、局内からの操作により瞬
時に故障切分けができる。この結果から明らかなように
、従来に比べて、故障復旧時間が短くでき、サービス性
の向上が図れる改善がある。
With the above configuration, failures can be isolated instantaneously by operations within the station. As is clear from these results, compared to the conventional method, there is an improvement in that failure recovery time can be shortened and serviceability can be improved.

第4図〜第6図は本発明の第2の実施例であり、14は
第2、第3の故障切分は器である。この方法の実行形態
は第1図に示した第1の実施例と同様であるが、故障切
分は器14の構成が第1の実施例とは異なる。第4図に
全体の概略構成図、第5図、第6図に第2、第3の故障
切分は器14の各具体的構成例を示す。
4 to 6 show a second embodiment of the present invention, and 14 is a second and third failure isolation device. The implementation of this method is similar to the first embodiment shown in FIG. 1, but the failure isolation differs from the first embodiment in the configuration of the device 14. FIG. 4 shows a schematic diagram of the overall configuration, and FIGS. 5 and 6 show specific examples of the configuration of the second and third failure division devices 14.

なお、以下の第2、第3の実施例では、第1の実施例と
構成を共通とする箇所に同一符号を付し説明を簡略化す
る。
In the following second and third embodiments, the same reference numerals are given to parts having the same configuration as in the first embodiment to simplify the explanation.

第5図に示す故障切分は器14は上り心線と下り心線と
が切分は器内で交差しており、その交差点に光フィルタ
7を挿入した構成である。又、第6図に示す故障切分は
器14は、第5図における上り心線5a、下り心線5b
の交差部分に導波回路を用いたものであり、第5図のフ
ァイバ形に比べて極めて小型化ができる。ここで15は
光フアイバコア、16はシリコン基板又はガラス基板、
17は導波路である。これらの場合、第1の実施例に比
べて光フィルタ7が1枚で良いこと、試験光伝搬用光フ
ァイバ5Cが不要であり、切分は器が経済的に構成でき
る効果がある。他の効果は第1の実施例と同様である。
The failure isolation device 14 shown in FIG. 5 has a structure in which the upstream and downstream core wires intersect within the device, and an optical filter 7 is inserted at the intersection. Moreover, the fault isolation device 14 shown in FIG.
A waveguide circuit is used at the intersection of the two, and the size can be significantly reduced compared to the fiber type shown in FIG. Here, 15 is an optical fiber core, 16 is a silicon substrate or a glass substrate,
17 is a waveguide. In these cases, compared to the first embodiment, only one optical filter 7 is required, the test light propagation optical fiber 5C is unnecessary, and the cutting device can be constructed economically. Other effects are similar to those of the first embodiment.

第7図は、本発明の第3の実施例であり、18は試験光
阻止用光フィルタ、19は光マトリツクススイッチ、2
0はモデム、21は遠隔制御装置である。この方法の実
行形態は第1の実施例、第2の実施例と同様であるが、
試験光阻止用光フィルタ18を局内側の伝送装置の直近
に挿入したために、挿入試験光のレベルを考慮せずに試
験しても伝送品質に影響を与えないこと、又光マトリ、
2クススイツチ19と遠隔制御装置21により任意の位
置から遠隔自動切分は試験ができる効果がある。他の効
果については第1の実施例、第2の実施例と同様である
FIG. 7 shows a third embodiment of the present invention, in which 18 is an optical filter for blocking test light, 19 is an optical matrix switch, and 2
0 is a modem, and 21 is a remote control device. The execution form of this method is similar to the first example and the second example, but
Since the test light blocking optical filter 18 is inserted close to the transmission equipment inside the station, the transmission quality is not affected even if the test is performed without considering the level of the inserted test light, and the optical matrix
Remote automatic disconnection can be tested from any position using the two-way switch 19 and the remote control device 21. Other effects are similar to those in the first and second embodiments.

第8図は本発明の第4の実施例であり、23は、第1、
第2、第3、第4の導波路17 a s 17 b 5
17c、17’cと光フィルタ7、全反射板22等から
構成される第4の故障切分は器23である。
FIG. 8 shows a fourth embodiment of the present invention, and 23 indicates the first,
Second, third, and fourth waveguides 17 a s 17 b 5
The fourth failure section is the device 23, which is composed of the optical filters 17c and 17'c, the optical filter 7, the total reflection plate 22, and the like.

次に、本故障切分は器23の動作を説明する。Next, the operation of the fault isolation device 23 will be explained.

第1及び第3の導波路17aと17c、第2及び第4の
導波路17bと17’cの交差部分に光フィルタ7が挿
入され、試験光が光フィルタ7で反射し、導波路17a
から17c、17’cから17bへ又はこれらの逆の経
路で伝搬する。又、導波路17cと17′cの交差点に
は全反射板22が設置してあり、試験光がこの全反射板
22で全反射することにより導波路17cから17′c
へ又はこれらの逆の経路で伝搬する。
An optical filter 7 is inserted at the intersection of the first and third waveguides 17a and 17c and the second and fourth waveguides 17b and 17'c, and the test light is reflected by the optical filter 7 and passes through the waveguide 17a.
It propagates from 17c to 17b, from 17'c to 17b, or in the reverse direction. Further, a total reflection plate 22 is installed at the intersection of the waveguides 17c and 17'c, and the test light is totally reflected by this total reflection plate 22, so that the test light is reflected from the waveguide 17c to 17'c.
or vice versa.

従って、第8図に示すように試験光λ、は下りの光ファ
イバ5aから第1の導波路17aに挿入され、光フィル
タ7で反射し、第3の導波路17Cへ挿入され、全反射
板22で全反射され第4の導波路17′cへ挿入され、
光フィルタ7で反射され第2の導波路17bへ挿入され
、上り光ファイバ5bへ挿入される。又、この逆の経路
も伝搬できる。又、通信先は光フィルタ7をそのまま通
過して伝搬する。導波[17dは反射防止のために先端
に10c′以上の角度を有した状態に加工しである。
Therefore, as shown in FIG. 8, the test light λ is inserted into the first waveguide 17a from the downstream optical fiber 5a, reflected by the optical filter 7, inserted into the third waveguide 17C, and then passed through the total reflection plate. 22 and inserted into the fourth waveguide 17'c,
It is reflected by the optical filter 7, inserted into the second waveguide 17b, and then inserted into the upstream optical fiber 5b. Moreover, the reverse path can also be propagated. Further, the communication destination passes through the optical filter 7 as it is and propagates. The waveguide [17d] is processed to have an angle of 10c' or more at the tip to prevent reflection.

第5、第6図で示した第2、第3の実施例の切分は器で
は、通信光自体が光フィルタで反射して、同じ伝送装置
の受光器へ挿入される場合がある。
In the second and third embodiments shown in FIGS. 5 and 6, the communication light itself may be reflected by the optical filter and inserted into the light receiver of the same transmission device.

例えば第7図において、DSUIのLDλ。2か。For example, in FIG. 7, LDλ of DSUI. 2?

ら発出された強い信号光λ。がフィルタフにより反射さ
れてPD3へ挿入される。この場合、0CUlのLDλ
。2から発出された信号光λ。は線路損失を受けて微弱
な光信号となり、DSUIのPD3で受光される。従っ
て、線路損失が大きいところでは、前述の反射光により
、伝送品質が著しく老化し、信号を伝送できなくなる場
合が生じる。
strong signal light λ emitted from is reflected by the filter and inserted into the PD3. In this case, LDλ of 0CUl
. Signal light λ emitted from 2. becomes a weak optical signal due to line loss, and is received by PD3 of the DSUI. Therefore, in areas where line loss is large, the transmission quality deteriorates significantly due to the above-mentioned reflected light, and it may become impossible to transmit signals.

第8図で示した第4の実施例では上り及び下り回線が交
差しないため、上記のような信号光の反射による、信号
伝送品質の老化はないという効果がある。その他の効果
は第3の実施例と同様である。
In the fourth embodiment shown in FIG. 8, since the uplink and downlink lines do not intersect, there is an effect that the signal transmission quality does not deteriorate due to the reflection of signal light as described above. Other effects are similar to those of the third embodiment.

第9図は本発明の第4の実施例であり、上記第4の切分
は器23を適用したシステム構成を示したものである。
FIG. 9 shows a fourth embodiment of the present invention, and the fourth section shows a system configuration to which the device 23 is applied.

システムの動作、効果は第3の実施例と同様である。2
4はデータベースである。
The operation and effects of the system are similar to those of the third embodiment. 2
4 is a database.

第10図は第9図で示す第4の実施例の動作を示すフロ
ーチャートである。この場合、あらかじめ正常時に測定
しておいた試験光レベルと故障時の場合を比較する方式
であるため、第2図で示す方式より、より精度の高い故
障切分けができる。
FIG. 10 is a flowchart showing the operation of the fourth embodiment shown in FIG. In this case, since the method compares the test light level measured in advance during normal operation and the case at the time of failure, it is possible to isolate the failure with higher accuracy than the method shown in FIG. 2.

「発明の効果」 以上説明したように、本発明によれば、光線路と伝送装
置との故障切分けが瞬時に出来、対策が早くとれるため
に、故障復旧時間の短縮が図れ、サービス性が向上でき
る利点がある。
"Effects of the Invention" As explained above, according to the present invention, it is possible to instantly isolate failures between optical lines and transmission equipment, and countermeasures can be taken quickly, thereby shortening failure recovery time and improving serviceability. There are advantages that can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

箪1図〜第3図は本発明の第1実施例を示す図であって
、第1図はその全体概略構成図、第2図はCPUの制御
内容を示すフロー、第3図は第1の故障切分は器を示す
図、第4図〜第6図は第2の実施例を示す図であって、
第4図はその全体概略構成図、箪5図は第2の故障切分
は器を示す図、第6図は第3の故障切分は器を示す図、
第7図は第3実施例を示す全体概略構成図である。第8
図は第4の故障切分は器を示す図、第9図及び第10図
は本発明の第4の実施例を説明するための図である。 1・・・・・・伝送装置、2・・・・・・通信光の発光
部、3・・・・・・通信光の受光部、4・・・・・・光
カプラ、5・・・・・・光ファイバ(5a・・・心線、
5b・・・心線、5c・・・試験光伝搬用光ファイバ)
、6・・・・・・第1の故障切分は器、(第1の故障位
置切分は器)、7・・・−・・試験光阻止用光フィルタ
、8・・・・・・試験光の発光器、9・旧・・試験光の
受光器、10・・・・・・通信先阻止用光フィルタ、1
1・・・・・・制御装置、12・・・・・・ハウジング
、13・・・・・・コード、14・・・・・・第2及び
第3の故障切分は器(第2及び第3の故障位置切分は器
)、15・・・・・・光フアイバコア、16・・・・・
・シリコン基板又はガラス基板、17・・・・・・導波
路、18・旧・・試験光阻止用光フィルタ、19・・・
・・・光マトリツクススイッチ、20・・・・・・モデ
ム、21・・・・・・遠隔制御装置、22・・・・・・
全反射板、23・・・・・・第4の故障切分は器、24
・・・・・・データベース
1 to 3 are diagrams showing the first embodiment of the present invention, in which FIG. 1 is a schematic diagram of the overall configuration, FIG. 2 is a flowchart showing the control contents of the CPU, and FIG. 4 to 6 are diagrams showing the second embodiment,
Fig. 4 is a schematic diagram of the overall configuration, Fig. 5 is a diagram showing the second failure division, and Fig. 6 is a diagram showing the third failure division,
FIG. 7 is an overall schematic diagram showing the third embodiment. 8th
The figure shows a fourth failure isolation device, and FIGS. 9 and 10 are diagrams for explaining the fourth embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Transmission device, 2...Communication light emitting section, 3...Communication light receiving section, 4...Optical coupler, 5... ...Optical fiber (5a...core wire,
5b... Core wire, 5c... Optical fiber for test light propagation)
, 6... First fault segment is a device, (first fault location segment is a device), 7...-... Optical filter for blocking test light, 8... Test light emitter, 9. Old... Test light receiver, 10... Optical filter for blocking communication destination, 1
1... Control device, 12... Housing, 13... Cord, 14... Second and third fault isolation device (second and third The third failure location is the device), 15... Optical fiber core, 16...
・Silicon substrate or glass substrate, 17... Waveguide, 18. Old... Optical filter for blocking test light, 19...
...Optical matrix switch, 20...Modem, 21...Remote control device, 22...
Total reflection plate, 23...Fourth failure cutoff is vessel, 24
・・・・・・Database

Claims (4)

【特許請求の範囲】[Claims] (1)光源と受光器を用いて光線路と伝送装置との故障
切分けを行う方法において、局内側から通信光と異なる
波長の試験光を光カプラを介し、上り又は下りの一方の
心線へ挿入し、局外の加入者側の伝送装置の直近に上記
試験光のみを上り心線から下り心線へ伝送する故障位置
切分け器を配置し、上記試験光のみを上記故障位置切分
け器により上記試験光の挿入心線が上り心線の場合は下
り心線へ、逆の場合は上り心線へ伝搬させて、同心線の
局内側に設置した光カプラにより取り出して光受光器で
受け、この試験光の有無により光線路と伝送装置との故
障切分けを行うことを特徴とする光伝送路の故障位置切
分け方法。
(1) In a method for isolating failures between optical lines and transmission equipment using a light source and receiver, a test light of a wavelength different from the communication light is transmitted from inside the station to one of the upstream or downstream core wires through an optical coupler. A fault location isolator is placed near the transmission equipment on the outside subscriber side to transmit only the test light from the uplink core to the downlink core, and only the test light is isolated to the fault location. If the inserted core wire is an up core wire, the above test light is propagated to the down core wire, and in the opposite case, it is propagated to the up core wire, and is taken out by an optical coupler installed inside the center of the concentric wire and sent to an optical receiver. A method for locating a fault in an optical transmission line, characterized in that the fault is isolated between the optical line and the transmission device based on the presence or absence of this test light.
(2)上記(1)項記載の故障位置切分け器であって、
上り、下りの各心線に設けられて試験光を反射するフィ
ルタと、これらフィルタとの間に設けられて、反射した
試験光を伝搬する試験光伝搬用光ファイバとから構成さ
れていることを特徴とする光伝送路の故障位置切分け器
(2) The fault location isolator described in item (1) above,
It is made up of a filter that is installed on each upstream and downstream core wire to reflect the test light, and an optical fiber for propagating the test light that is installed between these filters to propagate the reflected test light. Features: Fault location isolater for optical transmission lines.
(3)上記(1)項記載の故障位置切分け器であって、
前記各心線に接続され、かつ互いが交差するように設け
られた一対の光導波路と、該光導波路の交差部に設けら
れ、一方の導波路を通じて供給された試験光を反射して
、他方の光導波路へ伝搬させるフィルタとから構成され
ていることを特徴とする光伝送路の故障位置切分け器。
(3) The fault location isolator described in item (1) above,
A pair of optical waveguides connected to each of the core wires and provided so as to intersect with each other; and a pair of optical waveguides provided at the intersection of the optical waveguides to reflect the test light supplied through one waveguide to the other. 1. A fault location isolater for an optical transmission line, characterized in that it is comprised of a filter for propagating light to an optical waveguide.
(4)上記(1)項記載の故障位置切分け器であって、
前記下り及び上りの各心線に接続された第1及び第2の
導波路に各々交差する第3、第4の導波路を有し、この
各々の交差部に試験光を反射し、通信光を通過するフィ
ルタを設置し、上記第3、第4の導波路の交差部に全反
射板を設置し、試験光が下り心線の第1の導波路から挿
入され、フィルタにより反射され、第3の導波路に挿入
され、全反射板で反射されて第4の導波路に挿入され、
フィルタにより又反射され第2の導波路へ挿入されて上
り心線へ伝搬し、又上記と逆の経路で伝搬していくよう
に構成されていることを特徴とする光伝送路の故障位置
切分け器。
(4) The fault location isolator described in item (1) above,
It has third and fourth waveguides that respectively intersect with the first and second waveguides connected to the downlink and uplink core wires, and the test light is reflected at each of the intersections, and the communication light is A total reflection plate is installed at the intersection of the third and fourth waveguides, and the test light is inserted from the first waveguide of the down cable, reflected by the filter, and a total reflection plate is installed at the intersection of the third and fourth waveguides. It is inserted into the third waveguide, reflected by the total reflection plate, and inserted into the fourth waveguide.
A failure point cutoff in an optical transmission line characterized in that the optical transmission line is configured to be reflected again by a filter, inserted into a second waveguide, propagated to an upstream fiber, and propagated along a path opposite to the above. Divider.
JP2218339A 1989-12-25 1990-08-20 Method for isolating fault position of optical transmission line and fault position isolating device Pending JPH03249828A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-335841 1989-12-25
JP33584189 1989-12-25

Publications (1)

Publication Number Publication Date
JPH03249828A true JPH03249828A (en) 1991-11-07

Family

ID=18292997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218339A Pending JPH03249828A (en) 1989-12-25 1990-08-20 Method for isolating fault position of optical transmission line and fault position isolating device

Country Status (1)

Country Link
JP (1) JPH03249828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199191A (en) * 1992-01-20 1993-08-06 Nippon Telegr & Teleph Corp <Ntt> Method and device for fault bracketing
US7369764B1 (en) 1999-02-19 2008-05-06 Fujitsu Limited Transmission line monitoring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199191A (en) * 1992-01-20 1993-08-06 Nippon Telegr & Teleph Corp <Ntt> Method and device for fault bracketing
US7369764B1 (en) 1999-02-19 2008-05-06 Fujitsu Limited Transmission line monitoring method and apparatus

Similar Documents

Publication Publication Date Title
US4557550A (en) Optical fiber taps
EP0850514B1 (en) System, method and device for monitoring a fiber optic cable
JPH03113930A (en) Optical fiber linkage test device of data communication network
US4822125A (en) Optical fiber tap
US20030035641A1 (en) Active equipment protection methods and apparatus
JPH021632A (en) Optical line test system
JPH03249828A (en) Method for isolating fault position of optical transmission line and fault position isolating device
JPS593902B2 (en) Optical repeater monitoring method
CN106100746B (en) A kind of test waves trunking and its control method for OTDR fiber laser arrays
JPH07312576A (en) Detecting system for fault of optical transmission line
KR19980047009A (en) Optical Output Signal Blocking Method in Optical Repeater of 1 + 1 Protected Synchronous Optical Transmission System
JPH04351935A (en) Beam path test monitoring system
JPS58153431A (en) Optical communication system for car
CN113541795B (en) Single-fiber bidirectional implementation method and equipment for OSC channel of wavelength division system
JPS6142978B2 (en)
JPH055208B2 (en)
JP2781720B2 (en) Optical subscriber system monitoring system
US20240072890A1 (en) Optical signal monitoring apparatus, optical signal monitoring system, and optical signal monitoring method
JP2803726B2 (en) Optical fiber line contrast method
JPH10170396A (en) Method and system for testing light beam path
CA2421554C (en) Communication link with non-intrusive expansion capability
JPH022228A (en) Monitor system and apparatus for long range optical communication system
JP3112030B2 (en) Waveguide type optical coupler
JP2000324053A (en) Branching device
JP3745247B2 (en) Optical line test system