JPH03249587A - Non-carrier pulse radar - Google Patents

Non-carrier pulse radar

Info

Publication number
JPH03249587A
JPH03249587A JP2048017A JP4801790A JPH03249587A JP H03249587 A JPH03249587 A JP H03249587A JP 2048017 A JP2048017 A JP 2048017A JP 4801790 A JP4801790 A JP 4801790A JP H03249587 A JPH03249587 A JP H03249587A
Authority
JP
Japan
Prior art keywords
time
wave
rise
fall
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048017A
Other languages
Japanese (ja)
Other versions
JP2760625B2 (en
Inventor
Kimio Morikawa
森川 公夫
Koji Shibata
柴田 耕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP2048017A priority Critical patent/JP2760625B2/en
Publication of JPH03249587A publication Critical patent/JPH03249587A/en
Application granted granted Critical
Publication of JP2760625B2 publication Critical patent/JP2760625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve the detection distance resolution and the shortest detection distance capacity by setting so that the continued time in the rise direction of a square wave and the continued time in the fall direction become longer than the reciprocating time of a radio wave corresponding to the maximum distance in a measuring range. CONSTITUTION:When a square wave signal is applied to a transmitting antenna 2, since a rise characteristic and a fall characteristic of this square wave are set so as to be steep, a frequency component of a wide band is generated at the time of rise and at the time of fall of this square wave, and this wide band frequency component is radiated as a transmitting wave from the transmitting antenna 2. In this case, when a measuring range is switched successively from a range whose probing distance is short to a range whose probing distance is long, transmitting timing of transmitting waves is monitored by the processing section 5 and a first measuring range which detects a receiving wave while two transmitting waves are radiated is set as an optimal measuring range at that time, probing can always be executed with high resolution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はパルスレーダーに関し、特に例えはアイスレー
ダーや地下探査レーダーのように、近距離を探査するに
最適のノンキャリヤパルスレーダーに関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a pulse radar, and particularly to a non-carrier pulse radar that is most suitable for short-distance exploration, such as ice radar and underground exploration radar. .

(従来の技術) 高周波キャリヤを挿入したパルスを目的物に向けて送イ
エする一般的なパルスレーダーは、キャリヤ挿入の必要
性から上記パルスのパルス巾を狭くすることかできず、
近距離からのエコー(反射波)の探知か困難である(目
的物までの電波の往復時間がレーダーから送信するパル
スのパルス巾以下に相当するときには、送信波の存続中
に反射波か受信されるため、送信波と受信波か混在して
目的物の探査か不可能となる。)。
(Prior Art) A general pulse radar that sends a pulse into which a high-frequency carrier is inserted toward a target object cannot narrow the pulse width of the pulse due to the necessity of carrier insertion.
It is difficult to detect echoes (reflected waves) from a short distance (when the round trip time of the radio waves to the target is less than the pulse width of the pulse transmitted from the radar, it is difficult to detect echoes (reflected waves) from a short distance). Therefore, the transmitted and received waves will be mixed, making it impossible to search for the target.)

このため、近距離の探査を目的とする例えはアイスレー
ダーや地下探査レーダーでは、パルス波を高レベルに増
幅して直接アンテナに給電し、当該パルス波の立ち上り
部分及び立ち下り部分で発生する広帯域の周波数成分(
高周波)を送信し、前記送信パルス巾を実質的に非常に
短くしている。このような方式のレーダーを一般にノン
キャリヤパルスレーダーという。
For this reason, in ice radar and underground exploration radar, which aim at short-distance exploration, a pulse wave is amplified to a high level and directly fed to the antenna, and a wide band generated at the rising and falling parts of the pulse wave is generated. The frequency component of (
(high frequency), and the transmission pulse width is substantially very short. This type of radar is generally called a non-carrier pulse radar.

このようなノンキャリヤパルスレーダーでは、探知距離
分解能と最少探知距離能力を上げるために(アンテナに
接近した目標物をも探査できるように)、例えばi n
5sec 〜10 n5ec巾の非常に狭いパルスを使
用している。
In such a non-carrier pulse radar, in order to increase detection range resolution and minimum detection range capability (so that targets close to the antenna can be detected), for example, i in
Very narrow pulses of 5 sec to 10 n5 ec width are used.

〔発明が解決しようとする課題] 上記従来のノンパルスレーダーでは、探知距離分解能と
最少探知距離能力を上げるために、使用するパルスのパ
ルス巾を狭めるへく、非常な努力が払われているが、上
記パルスの狭巾化には限界があるばかりか(パルス巾1
 n5ec以下のパルス発振器は実現が困難)、当該パ
ルスの立ち上り部分と立ち下り部分の双方て広帯域周波
数成分が発生するため、探知距離分解能と最少探知距離
能力を最大限にするための根本的な解決策とはならない
[Problems to be Solved by the Invention] In the conventional non-pulse radar described above, great efforts have been made to narrow the pulse width of the pulses used in order to increase the detection range resolution and minimum detection range capability. , not only is there a limit to narrowing the pulse width (pulse width 1
(It is difficult to realize a pulse oscillator of n5ec or lower), since broadband frequency components are generated in both the rising and falling parts of the pulse, this is a fundamental solution to maximize detection distance resolution and minimum detection distance capability. It is not a strategy.

すなわち、第3図に示すように、Aに示すパルスか送信
アンテナに直接印加されると、Bに示すように当該パル
スの立ち上り部分と立ち下り部分とに広帯域の周波数成
分(高周波)が発生し、これが送信波(探査用電波)と
して送信アンテナから放射される。この探査用電波が目
標物で反射し、C又はDに示すような受信波となるが、
上記目標物までの距離か上記パルスのパルス巾τに比へ
て充分に長いときには、Cに示すように、Bに示す2つ
の送信波の放射後に受信波が受かるための探査に混乱か
生じなし゛が、電波の往復時間が上記パルスのパルス巾
τ以下に対応する場所に目標物かある場合には、Bに示
すように受信波は反射波がAに示すパルスの存在中に、
すなわち当該パルスの立ち下り部分で生ずる電波が放射
される前に受信される状態となり、探査に混乱が生ずる
。このため、レーダーの受信部をAに示すパルスが存在
する間は不活性としておく必要があり、従ってt波の往
復時間がパルス巾τ以下に相当する距離にある目標物の
探査は不可能である。
In other words, as shown in Figure 3, when the pulse shown in A is directly applied to the transmitting antenna, wideband frequency components (high frequencies) are generated in the rising and falling parts of the pulse as shown in B. , this is radiated from the transmitting antenna as a transmitted wave (probing radio wave). This exploration radio wave is reflected by the target object and becomes a received wave as shown in C or D.
When the distance to the target object is sufficiently long compared to the pulse width τ of the pulse, as shown in C, there will be no confusion in the search for the received wave to be received after the emission of the two transmitted waves shown in B. However, if the target is located at a location where the round trip time of the radio wave is less than or equal to the pulse width τ of the above pulse, the received wave will be reflected during the presence of the pulse shown in A, as shown in B.
In other words, the radio waves generated at the falling edge of the pulse are received before they are radiated, causing confusion in exploration. For this reason, it is necessary to keep the radar receiver inactive while the pulse shown in A is present, and therefore it is impossible to search for a target at a distance where the round trip time of the t-wave corresponds to less than the pulse width τ. be.

このように、従来のノンキャリヤパルスレーダーでは、
探知距離分解能及び最少探知距離能力を、パルス巾τの
時間内に電波が往復する距離以下に高めることはできな
い。
In this way, in conventional non-carrier pulse radar,
The detection distance resolution and the minimum detection distance capability cannot be increased below the distance that the radio waves travel back and forth within the time of the pulse width τ.

本発明は、以上に述へた従来のノンキャリヤパルスレー
ダーの問題点を解決すべく提案するものであり、極めて
近い距離にある目標物の探査を可能とする新規なノンキ
ャリヤパルスレーダーの提供を課題とするものである。
The present invention is proposed to solve the above-mentioned problems of the conventional non-carrier pulse radar, and aims to provide a novel non-carrier pulse radar that enables the exploration of targets located at extremely close distances. This is an issue to be addressed.

〔課題を解決するための手段] 上記課題のため、本発明は、従来のパルスに代って、当
該パルスよりは時間巾が極めて長い矩形波を使用し、当
該矩形波の立ち上り時から立ち下り時までの時間(矩形
波の立ち上り方向の継続時間)及び立ち下り時から立ち
上り時までの時間(矩形波の立ち下り方向の継続時間)
が測定レンジ内最大距離に対応する電波の往復時間より
長くなるように設定し、当該矩形波の立ち上り時及び立
ち下り時にそれぞれ発生する広帯域周波数成分を探査用
電波(送信波)としたものである。
[Means for Solving the Problems] To solve the above problems, the present invention uses a rectangular wave having a much longer time span than the conventional pulse, instead of the conventional pulse, and uses a rectangular wave whose time width is much longer than that of the pulse. time (duration time in the rising direction of the square wave) and time from falling time to rising time (duration time in the falling direction of the square wave)
is set so that it is longer than the round trip time of the radio wave corresponding to the maximum distance within the measurement range, and the wideband frequency components generated at the rise and fall of the rectangular wave are used as exploration radio waves (transmission waves). .

〔作   用〕[For production]

矩形波の立ち上り方向及び立ち下り方向のそれぞれの1
!続時間は、いずれも測定レンジ内最大距離相当時間以
上に設定されるので、探査用電波(送信波)が放射され
たのちの上記測定レンジ内には反射波のみが存在し、送
信波が混在することはあり得ないから、探査用電波の放
射直後に反射波が受信されるような場合であっても目標
物探査が可能となり、探知距離分解能と最少探知距離能
力が飛躍的に向上する。
1 for each of the rising and falling directions of the square wave
! The duration time is set to be longer than the time equivalent to the maximum distance within the measurement range, so after the exploration radio waves (transmitted waves) are emitted, only reflected waves exist within the measurement range, and transmitted waves are mixed. Therefore, even if a reflected wave is received immediately after the radio wave for exploration is emitted, target detection becomes possible, and detection distance resolution and minimum detection distance capability are dramatically improved.

〔実 施 例〕〔Example〕

第1図は本発明の実施例に係るノンキャリヤパルスレー
ダーのブロック図、第2図は第1図に示すノンキャリヤ
パルスレーダーの動作を示すタイムチャートである。
FIG. 1 is a block diagram of a non-carrier pulse radar according to an embodiment of the present invention, and FIG. 2 is a time chart showing the operation of the non-carrier pulse radar shown in FIG.

第1図に示すように、実施例のノンキャリヤパルスレー
ダーは、トリガ回路101及び矩形波発振器102を含
む送信部1、該送信部1から矩形波によって給電され、
探査用電波を放射する送信アンテナ2、該送信アンテナ
2から放射された探査用電波の目標物での反射波を受信
する受信アンテナ3、該受信アンテナ3で受信された反
射波を検波及びサンプリング等の手法によって検出する
受信部4、該受信部4で検出された反射波の受信信号に
基いて目標物の探査データ処理を行なう処理部5、該処
理部5の処理データに基いて、目標物の探査データを表
示する表示部6等で構成される。尚、受信部4、処理部
5及び表示部6のそれぞれについては、レーダー技術の
分野に於ける従来公知の技術で構成可能であるので、詳
細には説明しない。
As shown in FIG. 1, the non-carrier pulse radar of the embodiment includes a transmitter 1 including a trigger circuit 101 and a square wave oscillator 102, and is powered by a rectangular wave from the transmitter 1.
A transmitting antenna 2 that emits exploration radio waves, a receiving antenna 3 that receives the reflected waves of the exploration radio waves emitted from the transmitting antenna 2 at a target, and detecting and sampling the reflected waves received by the receiving antenna 3. A receiving unit 4 detects the target using the method described above, a processing unit 5 performs target object exploration data processing based on the received signal of the reflected wave detected by the receiving unit 4, and a target object is detected based on the processing data of the processing unit 5. It is composed of a display unit 6 etc. that displays exploration data. Note that each of the receiving section 4, the processing section 5, and the display section 6 can be constructed using conventionally known techniques in the field of radar technology, and therefore will not be described in detail.

また、矩形波発振器102から出力される矩形波の立ち
上り及び立ち下り特性は、後で説明する探査用電波を広
いvr域にわたって周波数成分を有するように急峻性が
要求されるが、最近の半導体技術によれば、本発明の実
施に充分対応で幹る急峻性を有した矩形波発振器は容易
に得られる。
Furthermore, the rise and fall characteristics of the rectangular wave output from the rectangular wave oscillator 102 are required to be steep so that the exploration radio waves, which will be explained later, have frequency components over a wide VR range. According to the above, a square wave oscillator having a steepness sufficiently compatible with the implementation of the present invention can be easily obtained.

第2図に示すように、送信部1のトリガ回路101は周
期Tでトリガパルスを発生している。
As shown in FIG. 2, the trigger circuit 101 of the transmitter 1 generates trigger pulses at a period T.

このトリガパルスの周期Tは、測定レンジ内最大距1i
 X mの探査距離を電波が往復する時間以上に設定さ
れている。また、矩形波発振器102は、トリガ回路1
01からトリガパルスが入力される毎に出力を反転させ
ることにより、時間T毎に反転する矩形波(周期2Tの
矩形波)を発振している。
The period T of this trigger pulse is the maximum distance within the measurement range 1i
It is set to be longer than the time it takes for radio waves to travel back and forth over the exploration distance of X m. Further, the rectangular wave oscillator 102 is connected to the trigger circuit 1
By inverting the output every time a trigger pulse is input from 01 onwards, a rectangular wave (a rectangular wave with a period of 2T) that is inverted every time T is oscillated.

以上のようにして送信部1から送出された矩形波信号は
直接、送信アンテナ2に印加される。尚、ここでいう「
直接印加する」ということは、変調等、矩形波信号波形
そのものを変える加工を行なわないで印加することをい
い、単なる増幅ののちコンデンサを通して送信アンテナ
2に印加する場合は、「直接印加するノことの範囲内で
ある。
The rectangular wave signal sent out from the transmitting section 1 as described above is directly applied to the transmitting antenna 2. In addition, here "
"Directly applying" means applying the rectangular wave signal without any processing that changes the waveform itself, such as modulation.If the signal is simply amplified and then applied to the transmitting antenna 2 through a capacitor, "directly applying" is within the range of

送信アンテナ2に上記矩形波信号が印加されると、当該
矩形波の立ち上り特性及び立ち下り特性は急峻であるよ
うにされているので、当該矩形波の立ち上り時及び立ち
下り時に広帯域の周波数成分(高周波)が発生し、この
広帯域周波数成分が第2図に示すように送信アンテナ2
から送信波(探査用電波)として放射される。
When the rectangular wave signal is applied to the transmitting antenna 2, since the rising and falling characteristics of the rectangular wave are steep, wideband frequency components ( This broadband frequency component is transmitted to the transmitting antenna 2 as shown in Figure 2.
It is emitted as a transmission wave (prospecting radio wave) from

送信アンテナ2から放射される送信波の周期は、トリガ
パルスの周期T(矩形波の周期の2分の1)に等しく、
この周期Tは前記したように、測定レンジ内最大距[l
iX mを電波が往復する時間以上に設定しであるから
、当該送信波が目標物に反射して返ってくる受信波(反
射波)は、第2図に示すように必ず上記周期1以内に受
信アンテナ3に入射され、送信アンテナ2からの次の周
期の送信波が、当該受信波の受信以前に放射されること
はない。
The period of the transmission wave radiated from the transmission antenna 2 is equal to the period T of the trigger pulse (half the period of the rectangular wave),
As mentioned above, this period T is the maximum distance within the measurement range [l
Since iX m is set to be longer than the time required for the radio waves to travel back and forth, the received wave (reflected wave) from which the transmitted wave is reflected from the target object is always within the above period 1, as shown in Figure 2. The next cycle of transmission waves that are incident on the reception antenna 3 and sent from the transmission antenna 2 are not radiated before the reception wave is received.

受信部4は、受信波を検波し送信部1からのトリガパル
スを受けて、サンプリング等の公知の手法により受信ア
ンテナ3に入射した上記受信波を検出する。
The receiving section 4 detects the received wave, receives a trigger pulse from the transmitting section 1, and detects the received wave incident on the receiving antenna 3 by a known method such as sampling.

次に処理5は、送信部1からのトリガパルスに基づく送
信波の送出タイミング、及び受信部4からの受信波検出
信号に基づく当該受信波の受信タイミング等により探査
データ処理を行ない、表示部6に探査データの表示を行
なう。
Next, processing 5 performs exploration data processing based on the sending timing of the transmitted wave based on the trigger pulse from the transmitting unit 1 and the receiving timing of the received wave based on the received wave detection signal from the receiving unit 4, and performs exploration data processing on the display unit 6. The exploration data will be displayed.

ところで、測定レンジと矩形波の周期とは前記したよう
な関係を保つ必要があることから測定レンジの切替えに
よって当該矩形波の周期も異フた時間に切替える必要が
あるが、これはトリガ回路101からのトリガパルスの
周期を変えることによって容易に可能である。この場合
に於いて、処理部5での受信波検出情報に基いて上記ト
リガ回路を制御しく第1図に点線で示す方向の制御)、
測定レンジを自動的に切替えるようにすることも可能で
ある。すなわち、測定レンジを探査距離の短いレンジか
ら長いレンジに順次切替えるようにしくトリガパルスの
周期を順次大鮒くなる方向に切替えていく。)、送信波
の送信タイミングを処理部5によって監視しくトリガパ
ルスの監視によって可能である。)、2つの送信波が放
射される間に受信波を検出した最初の測定レンジを、そ
の時の最適測定レンジとすれば常時高い分解能で探査が
可能となる。
By the way, since it is necessary to maintain the above-mentioned relationship between the measurement range and the period of the rectangular wave, it is necessary to switch the period of the rectangular wave to a different time by switching the measurement range. This is easily possible by changing the period of the trigger pulse from . In this case, the trigger circuit is controlled based on the received wave detection information in the processing unit 5 (control in the direction indicated by the dotted line in FIG. 1),
It is also possible to automatically switch the measurement range. That is, the measurement range is sequentially switched from a short range to a long range, and the period of the trigger pulse is sequentially switched in a direction that increases the number of crucian carp. ), the transmission timing of the transmission wave can be monitored by the processing unit 5 by monitoring the trigger pulse. ), if the first measurement range where the received wave is detected between the two transmitted waves is set as the optimal measurement range at that time, exploration can be performed with high resolution at all times.

また、矩形波発振器102の出力特性を、トリガ回路1
01からの1個のトリガパルスによって2回反転するよ
うにする(すなわち、1回のトリガで矩形波出力の1周
期分が送出されるようにする)こともできる。この場合
に於いては、矩形波発振器102の特性によって矩形波
の立ち上り方向の継続時間と立ち下り方向の継続時間と
を、前記測定レンジと矩形波の周期との関係を保ったう
えて異った時間に設定でが、このことは、同時に2つの
測定レンジによる探査の可能性を示唆している。
In addition, the output characteristics of the rectangular wave oscillator 102 are
It is also possible to invert twice with one trigger pulse from 01 (that is, one period of the square wave output is sent out with one trigger). In this case, depending on the characteristics of the square wave oscillator 102, the duration time in the rising direction and the duration time in the falling direction of the square wave are different while maintaining the relationship between the measurement range and the period of the square wave. This suggests the possibility of simultaneous exploration with two measurement ranges.

発明の効果) 以上に説明したように、本発明は立ち上り方向の継続時
間及び立ち上り方向の継続時間(通常は2分の1周期)
が、測定レンジ内最大距離を電波が往復するに相当する
時間より長くなるように設定した矩形波を送信アンテナ
に印加したときの当該矩形波の立ち上り時及び立ち下り
時に生ずる広帯域周波数成分を探査用電波としたもので
あり、従来のノンキャリヤパルスレーダーのように、受
信波の妨害となる2個目の送信波が放射されることがな
いから、探知距離分解能及び最短探知距離能力が飛躍的
に向上し、又、矩形波の立ち上り時と立ち下り時に発生
する高周波成分を双方とも探査用電波として使用するこ
とができ、探査効率が非常によい。
Effects of the Invention) As explained above, the present invention provides a rise direction duration time and a rise direction duration time (usually 1/2 period).
is used to explore the wideband frequency components that occur at the rise and fall of a rectangular wave set so that the maximum distance within the measurement range is longer than the time equivalent to the round trip of the radio wave and applied to the transmitting antenna. Since it is a radio wave, and unlike conventional non-carrier pulse radar, a second transmitted wave that interferes with the received wave is not emitted, the detection distance resolution and shortest detection distance capability are dramatically improved. Furthermore, both the high frequency components generated at the rise and fall of the rectangular wave can be used as radio waves for exploration, resulting in very high exploration efficiency.

また、パルス巾を狭くすることに比へて矩形波の立ち上
り特性及び立ち下り特性を急峻にすることは、非常に容
易なことであり、狭いパルス巾及び当該パルスの立ち上
り、立ち下り特性の急峻さの双方が要求される従来のノ
ンキャリヤパルスレーダーに比べて本発明に係るノンキ
ャリヤパルスレーダーは非常に簡単に構成できる。
Furthermore, it is very easy to make the rising and falling characteristics of a square wave steeper than narrowing the pulse width, and it is very easy to make the rising and falling characteristics of a square wave steeper than narrowing the pulse width. The non-carrier pulse radar according to the present invention can be constructed very simply compared to the conventional non-carrier pulse radar which requires both of the following.

また、矩形波信号の周期の可変設定により測定レンジの
切替えが容易に可能である等、本発明は極めて顕著な効
果を奏するものである。
Furthermore, the present invention has extremely significant effects, such as being able to easily switch the measurement range by variable setting of the period of the rectangular wave signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るノンキャリヤレーダーの
ブロック図、第2図は第1図に示すノンキャリヤレーダ
ーの動作を説明するタイムチャート、第3図は従来のノ
ンキャリヤレーダーの動作を示すタイムチャートである
。 1・・・送信部     101・・・トリガ回路10
2・・・矩形波発振器 2・・・送信アンテナ3・・・
受信アンテナ  4・・・受信部5・・・処理部   
  6・・・表示部第 図 第 図 0m ×m 0m 0m  on
Fig. 1 is a block diagram of a non-carrier radar according to an embodiment of the present invention, Fig. 2 is a time chart explaining the operation of the non-carrier radar shown in Fig. 1, and Fig. 3 is a diagram illustrating the operation of the conventional non-carrier radar. FIG. 1... Transmission section 101... Trigger circuit 10
2... Square wave oscillator 2... Transmission antenna 3...
Receiving antenna 4... Receiving section 5... Processing section
6...Display section 0m x m 0m 0m on

Claims (1)

【特許請求の範囲】 1 立ち上り時から立ち下り時までの時間及び立ち下り
時から立ち上り時までの時間が、測定レンジ内最大距離
を電波が往復するに相当する時間より長くなるように設
定した矩形波を送信アンテナに印加し、当該矩形波の上
記立ち上り時及び立ち下り時に発生する広帯域周波数成
分を探査用電波として上記送信アンテナから放出される
ようにしたノンキャリヤパルスレーダー。 2 矩形波の、立ち上り時から立ち下り時までの時間と
、立ち下り時から立ち上り時までの時間とを等しく設定
した請求項1に記載のノンキャリヤパルスレーダー。 3 矩形波の、立ち上り時がら立ち下り時までの時間と
、立ち下り時から立ち上り時までの時間とを互に異った
時間に設定した請求項1に記載のノンキャリヤパルスレ
ーダー。 4 探査用電波の送信時から当該探査用電波の反射波の
受信時までの時間に対応して矩形波の周期を変えるよう
にし、もって測定レンズを自動切替えするようにした請
求項1乃至3のいずれかに記載のノンキャリヤパルスレ
ーダー。
[Claims] 1. A rectangle that is set so that the time from the rise to the fall and the time from the fall to the rise are longer than the time required for the radio wave to travel back and forth over the maximum distance within the measurement range. A non-carrier pulse radar in which a wave is applied to a transmitting antenna, and broadband frequency components generated at the rising and falling times of the rectangular wave are emitted from the transmitting antenna as exploration radio waves. 2. The non-carrier pulse radar according to claim 1, wherein the time from the rise to the fall of the rectangular wave is set equal to the time from the fall to the rise. 3. The non-carrier pulse radar according to claim 1, wherein the time from the rise to the fall of the rectangular wave and the time from the fall to the rise of the rectangular wave are set to different times. 4. The method according to claims 1 to 3, wherein the period of the rectangular wave is changed in accordance with the time from the transmission of the exploration radio wave to the reception of the reflected wave of the exploration radio wave, thereby automatically switching the measurement lens. Non-carrier pulse radar described in any of the above.
JP2048017A 1990-02-28 1990-02-28 Non-carrier pulse radar Expired - Fee Related JP2760625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048017A JP2760625B2 (en) 1990-02-28 1990-02-28 Non-carrier pulse radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048017A JP2760625B2 (en) 1990-02-28 1990-02-28 Non-carrier pulse radar

Publications (2)

Publication Number Publication Date
JPH03249587A true JPH03249587A (en) 1991-11-07
JP2760625B2 JP2760625B2 (en) 1998-06-04

Family

ID=12791542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048017A Expired - Fee Related JP2760625B2 (en) 1990-02-28 1990-02-28 Non-carrier pulse radar

Country Status (1)

Country Link
JP (1) JP2760625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128425A (en) * 2017-02-10 2018-08-16 日本信号株式会社 Radar device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128425A (en) * 2017-02-10 2018-08-16 日本信号株式会社 Radar device

Also Published As

Publication number Publication date
JP2760625B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US6154166A (en) Microwave detector
US4142189A (en) Radar system
US4014021A (en) Radar for short range measurements
US10677912B2 (en) Signal processing device, radar apparatus and method of processing signal
US3363248A (en) Chirp radar technique for suppressing second time around echoes
US3685050A (en) Single antenna signal retransmission device
US2532221A (en) Pulse modulated echo ranging system
US4682178A (en) HF arrangement
JPH03249587A (en) Non-carrier pulse radar
JPH0228837B2 (en)
US2741762A (en) Radar indicator system
JPH085732A (en) Radar equipment
US3095561A (en) Microwave transmitter and receiver
JPH01207682A (en) Radar
JP2586184B2 (en) Microwave circuit device
JP3335778B2 (en) Radar equipment
JPH04127080A (en) Radar apparatus
JPH0572324A (en) Pulse radar apparatus
JP2897493B2 (en) Active sonar device
JPS6361976A (en) Ultrasonic switch
JPH04315977A (en) Testing device for radar evaluation
JPS6331022Y2 (en)
JP2000206233A (en) Echo eliminating method of radar
US2934758A (en) Radar system evaluator
JP2001133541A (en) Pulse compression radar device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees