JPH03248490A - Excimer laser device - Google Patents

Excimer laser device

Info

Publication number
JPH03248490A
JPH03248490A JP4527790A JP4527790A JPH03248490A JP H03248490 A JPH03248490 A JP H03248490A JP 4527790 A JP4527790 A JP 4527790A JP 4527790 A JP4527790 A JP 4527790A JP H03248490 A JPH03248490 A JP H03248490A
Authority
JP
Japan
Prior art keywords
laser
gas
temperature
chamber
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4527790A
Other languages
Japanese (ja)
Other versions
JP2805959B2 (en
Inventor
Yoshifumi Yoshioka
吉岡 善文
Tamio Yoshida
吉田 多見男
Yutaka Ido
豊 井戸
Hideki Okamoto
英樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4527790A priority Critical patent/JP2805959B2/en
Publication of JPH03248490A publication Critical patent/JPH03248490A/en
Application granted granted Critical
Publication of JP2805959B2 publication Critical patent/JP2805959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To put the gas cooled by a gas purifying device to proper temperature so as to sent it into a chamber by taking out the gas inside a laser chamber by the gas purifying device so as to remove impurities by a low temperature trap, and also detecting the temperature of laser gas, and controlling a heater by means of the control circuit to which detection output is input. CONSTITUTION:By opening gas flow valves 6 and 7 during the oscillation of a laser, the laser gas inside a laser chamber 1 is circulated, and first of all gas impurities are removed by a liquid nitrogen trap 8. Then, the laser gas is set in the laser chamber 1, after being put to proper temperature by a heater 9 for heating. At this time, by monitoring the gas temperature by a temperature sensor 10, and controlling the heater 9 for heating by the control circuit 11 to which this output is input, the laser gas to be sent in the laser chamber 1 is controlled to be at proper temperature. That is, when laser gas temperature has risen, by decreasing the current being let flow to the heater for heating, the laser gas temperature is lowered, and when the temperature has dropped, by increasing the currents, laser gas temperature is raised.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エキシマレーザ、特に希ガスハライド・エキ
シマレーザのうちレーザガスとしてアルゴン(Ar)と
フッ素(F2)を成分とするArFレーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excimer laser, and particularly to an ArF laser of rare gas halide excimer lasers whose laser gases include argon (Ar) and fluorine (F2).

[従来技術] 希ガスハライド・エキシマレーザ装置は、レーザガスと
してクリプトン(Kr)、キセノン(Xe)、アルゴン
(Ar)などの希ガスと、フッ素(F2)、塩化水素(
Hcl)などのハロゲンと、ヘリウム(He)やネオン
(Ne)を用いた希釈ガスとの混合ガスを用いるもので
あり、放電等で励起することにより強力な紫外レーザー
光を得ることができる。
[Prior art] A rare gas halide excimer laser device uses rare gases such as krypton (Kr), xenon (Xe), and argon (Ar) as laser gases, as well as fluorine (F2) and hydrogen chloride (
It uses a mixed gas of a halogen such as HCl) and a diluent gas using helium (He) or neon (Ne), and can produce powerful ultraviolet laser light by exciting it with an electric discharge or the like.

希ガスとハロゲンの組み合わせにより幾通りかの発振線
が得られるが、この中で特にアルゴンとフッ素の組み合
わせによるArFエキシマレーザは、発振波長が193
nmと希ガスハライドエキシマレーザ中、最も短波長で
あり、光子エネルギーも大きいことから光リソグラフィ
ーや光CVDの光源として期待されている。
Several types of oscillation lines can be obtained by combining rare gases and halogens, but among these, the ArF excimer laser, which is made by combining argon and fluorine, has an oscillation wavelength of 193.
Among the rare gas halide excimer lasers, it has the shortest wavelength and high photon energy, so it is expected to be used as a light source for optical lithography and optical CVD.

エキシマレーザガスを放電等により励起した場合、レー
ザ発振効率、即ち、注入した放電エネルギーの何%がレ
ーザ光エネルギーに変換されるかの比率、は、たかだか
数%のオーダであり、残りは熱エネルギー、音波などに
なる。特に、熱エネルギーの発生は大きく、そのまま放
置すれば、レーザガス温度上昇を招き、レーザ発振の不
安定化をもたらす。そこで、通常、熱交換器をレーザチ
ャンバー内に設け、この熱交換器に冷却水を流すことに
より、レーザガスの冷却を行っている。
When excimer laser gas is excited by discharge or the like, the laser oscillation efficiency, that is, the ratio of what percentage of the injected discharge energy is converted to laser light energy, is on the order of several percent at most, and the remainder is thermal energy, It becomes a sound wave. In particular, the generation of thermal energy is large, and if left untreated, the temperature of the laser gas will rise, leading to instability of laser oscillation. Therefore, a heat exchanger is usually provided in the laser chamber, and the laser gas is cooled by flowing cooling water through the heat exchanger.

一方、エキシマレーザ用ガスでは、成分として上記のよ
うにフッ素等活性ガスを用いるため、この活性カスがレ
ーザ共振器を構成するチャンバー電極等の構造物もしく
は構造物の表面に付着した水分等の不純物と反応する。
On the other hand, since excimer laser gas uses an active gas such as fluorine as a component as mentioned above, this active residue may cause impurities such as moisture attached to the structures such as the chamber electrodes that make up the laser resonator or the surfaces of the structures. reacts.

この反応により発生した不純物ガスによって光が吸収さ
れるため、レーザ出力が徐々に減少するという問題点が
あり、従来、レーザチャンバーからのガスを、低温トラ
ップによって不純物を取り除くガス純化装置に供給する
ことによりガス不純物を除去している。
Since the light is absorbed by the impurity gas generated by this reaction, there is a problem that the laser output gradually decreases. Conventionally, the gas from the laser chamber is supplied to a gas purification device that removes impurities using a low temperature trap. Gas impurities are removed by

[発明が解決しようとする課題] 従来のエキシマレーザ装置は、上記のように構成されお
り、ArFレーザ以外のエキシマレーザの場合にはこれ
で十分であるが、ArFエキシマレーザの場合には次の
ような問題点がある。すなわち、ArFエキシマレーザ
の場合にはレーザガス温度が30〜40  Cより低下
すると、著しく発振効率が低下してパワーが激減し、第
3図のようにチャンバー温度、発振の繰り返し周波数に
よってレーザ出力は大きく変化する。このため、ArF
エキシマレーザは発振出力が不安定であり、放電のため
の注入エネルギーが小さいときや、発振の繰り返し周波
数が低いときには、レーザガスが過冷却されることによ
り、発振効率が低下する問題があった。
[Problems to be Solved by the Invention] Conventional excimer laser devices are configured as described above, and this is sufficient for excimer lasers other than ArF lasers, but in the case of ArF excimer lasers, the following There are problems like this. In other words, in the case of an ArF excimer laser, when the laser gas temperature drops below 30 to 40 C, the oscillation efficiency drops significantly and the power decreases dramatically, and as shown in Figure 3, the laser output increases depending on the chamber temperature and oscillation repetition frequency. Change. For this reason, ArF
Excimer lasers have an unstable oscillation output, and when the injection energy for discharge is small or the oscillation repetition frequency is low, there is a problem that the laser gas is supercooled and the oscillation efficiency decreases.

本発明は、上記のような従来技術の欠点を解消するため
に創案されたものであり、気温変化や設定発振繰返し数
の影響を受けることなく、レーザの出力及び発振効率の
増大及び安定化を図ることができるエキシマレーザ装置
を提供することを目的とする。
The present invention was devised to eliminate the drawbacks of the prior art as described above, and increases and stabilizes laser output and oscillation efficiency without being affected by temperature changes or set oscillation repetition rate. An object of the present invention is to provide an excimer laser device that can achieve the desired results.

[課題を解決するための手段] 上記目的を達成するために、本発明におけるエキシマレ
ーザ装置は、レーザチャンバーと、このレーザチャンバ
ーからのガスが供給され、低温トラップによって不純物
を取り除くガス純化装置と、このガス純化装置からのガ
スを適温にしてチャンバ内に送り込むヒータと、レーザ
ガスの温度に応じて上記ヒータを制御する制御回路とを
有する。
[Means for Solving the Problems] In order to achieve the above object, an excimer laser device according to the present invention includes a laser chamber, a gas purification device to which gas from the laser chamber is supplied and removes impurities by a low-temperature trap, It has a heater that brings the gas from the gas purification device to an appropriate temperature and sends it into the chamber, and a control circuit that controls the heater according to the temperature of the laser gas.

[作用] 上記のように構成されたエキシマレーザ装置は、ガス純
化装置によりレーザチャンバ内のガスを取り出して低温
トラップによって不純物を除去するとともに、レーザガ
スの温度を温度センサー等により検出し、この検出出力
が入力される制御回路によってヒータを制御することに
より、ガス純化装置によって冷却されたガスを適温にし
てチャンバ内に送り込む。
[Operation] The excimer laser device configured as described above extracts the gas in the laser chamber using a gas purification device and removes impurities using a low-temperature trap, and also detects the temperature of the laser gas using a temperature sensor, etc., and outputs this detection output. By controlling the heater by a control circuit to which the gas is input, the gas cooled by the gas purifier is brought to an appropriate temperature and sent into the chamber.

[実施例] 実施例について図面を参照して説明すると、第1図、第
2図において、1はレーザチャンバー2は放電電極、3
はレーザ反射ミラー、4はレーザ光取出し窓、5はレー
ザ光、6.7はガス流バルブ、8は液体窒素トラップ、
9は加熱用ヒータ、10は温度センサ、11は制御回路
であり、液体窒素トラップ8はレーザガスが流通するパ
イプを液体窒素によって冷却することにより不純物を除
去するものである。
[Example] An example will be described with reference to the drawings. In FIGS. 1 and 2, 1 indicates a laser chamber 2, a discharge electrode, and 3
is a laser reflection mirror, 4 is a laser beam extraction window, 5 is a laser beam, 6.7 is a gas flow valve, 8 is a liquid nitrogen trap,
9 is a heater, 10 is a temperature sensor, 11 is a control circuit, and a liquid nitrogen trap 8 removes impurities by cooling a pipe through which laser gas flows with liquid nitrogen.

このエキシマレーザ装置の使用方法を説明すると、レー
ザチャンバー1にレーザガスを封入し、放電電極2に電
圧を印加して放電によりレーザガスを励起し、発生した
放射光をレーザ反射ミラー3(全反射ミラー)とレーザ
光取出し窓4(部分反射ミラー)からなる共振器で閉じ
込めることにより、レーザ光5を得る。注入する励起エ
ネルギーのうち光エネルギーに変換される割合は、わず
か数%であり、他の大部分は熱エネルギーとして放出さ
れる。このため、放電を続ければレーザガスの温度上昇
を招き、レーザ発振の不安定性をもたらす。そこで、熱
交換器(図示せず)をレーザチャンバー1内に設け、こ
の熱交換器に冷却水を流すことにより、レーザガスの冷
却を行っている。
To explain how to use this excimer laser device, a laser gas is sealed in a laser chamber 1, a voltage is applied to a discharge electrode 2, the laser gas is excited by discharge, and the emitted light is reflected by a laser reflection mirror 3 (total reflection mirror). A laser beam 5 is obtained by confining it in a resonator consisting of a laser beam extraction window 4 (partial reflection mirror) and a laser beam extraction window 4 (partial reflection mirror). Only a few percent of the injected excitation energy is converted into optical energy, and most of the rest is emitted as thermal energy. Therefore, if the discharge continues, the temperature of the laser gas will increase, resulting in instability of laser oscillation. Therefore, a heat exchanger (not shown) is provided in the laser chamber 1, and the laser gas is cooled by flowing cooling water through the heat exchanger.

一方、レーザの発振中、ガス流バルブ6.7を開くこと
によりレーザチャンバー1内のレーザガスを循環させ、
まず液体窒素トラップ8でガス不純物を除去する。この
後、加熱用ヒータ9によりレーザガスを適温にしてレー
ザチャンバー1内に送り込む。このとき、レーザチャン
バー1内のガス温度を温度センサー10でモニターし、
この温度センサー10の出力が入力される制御回路11
によって加熱用ヒータ9を制御することにより、レーザ
チャンバー1内に送り込むレーザガスが適温となるよう
に制御する。すなわち、制御回路11はレーザガス温度
が上昇した時には、加熱用ヒータに流す電流を減少させ
ることにより、レーザガス温度を低下させ、レーザガス
温度が低下した場合には、加熱用ヒータ9に流す電流を
増加することにより、レーザガス温度を上昇させる。
Meanwhile, during laser oscillation, the laser gas in the laser chamber 1 is circulated by opening the gas flow valve 6.7;
First, gas impurities are removed using the liquid nitrogen trap 8. Thereafter, the laser gas is heated to an appropriate temperature by the heater 9 and sent into the laser chamber 1. At this time, the gas temperature in the laser chamber 1 is monitored by the temperature sensor 10,
A control circuit 11 to which the output of this temperature sensor 10 is input.
By controlling the heating heater 9, the laser gas fed into the laser chamber 1 is controlled to have an appropriate temperature. That is, when the laser gas temperature rises, the control circuit 11 lowers the laser gas temperature by decreasing the current flowing through the heating heater, and when the laser gas temperature decreases, it increases the current flowing through the heating heater 9. This increases the laser gas temperature.

上記実施例では、レーザガスの温度を検出するするため
にレーザチャンバー内に温度センサーを設けたが、レー
ザチャンバー外のガス循環配管内の適当な場所に温度セ
ンサーを設けることにより、レーザガスの温度を検出す
ることもできる。
In the above embodiment, a temperature sensor was installed inside the laser chamber to detect the temperature of the laser gas, but the temperature of the laser gas can be detected by installing a temperature sensor at an appropriate location in the gas circulation piping outside the laser chamber. You can also.

[発明の効果] 本発明は、以上のように、低温トラップによって不純物
を除去するガス純化装置の後に加熱用ヒータを設け、レ
ーザガス温度を一定に制御しているので、気温変化や設
定発振繰返し数の影響を受けることなく、レーザの出力
、及び、発振効率の増大と安定化を図ることができる。
[Effects of the Invention] As described above, the present invention provides a heater after the gas purification device that removes impurities using a low-temperature trap, and controls the laser gas temperature at a constant level, so that it is not affected by changes in temperature or the set oscillation repetition rate. It is possible to increase and stabilize the laser output and oscillation efficiency without being affected by this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるエキシマレーザ装置を示す図、
第2図は第1図のエキシマレーザ装置の制御回路のブロ
ック図、第3図は従来のエキシマレーザ装置の出力特性
を説明するためのデータ図である。 1・・・・・・レーザチャンバー 2・・・・・・放電
電極、3・・・・・・レーザ反射ミラー 4・・・・・
・レーザ光取出し窓、5・・・・・・レーザ光、6.7
・・・・・・ガス流バルブ、8・・・・・・液体窒素ト
ラップ、9・・・・・・加熱用ヒータ、10・・・・・
・温度センサ、11・・・・・・制御回路
FIG. 1 is a diagram showing an excimer laser device according to the present invention,
FIG. 2 is a block diagram of a control circuit of the excimer laser device shown in FIG. 1, and FIG. 3 is a data diagram for explaining the output characteristics of the conventional excimer laser device. 1... Laser chamber 2... Discharge electrode, 3... Laser reflection mirror 4...
・Laser light extraction window, 5... Laser light, 6.7
... Gas flow valve, 8 ... Liquid nitrogen trap, 9 ... Heating heater, 10 ...
・Temperature sensor, 11... Control circuit

Claims (1)

【特許請求の範囲】[Claims] (1)レーザチャンバーと、このレーザチャンバーから
のガスが供給され、低温トラップによって不純物を取り
除くガス純化装置と、このガス純化装置からのガスを適
温にしてチャンバ内に送り込むヒータと、レーザガスの
温度に応じて上記ヒータを制御する制御回路とをそれぞ
れ有することを特徴とするエキシマレーザ装置。
(1) A laser chamber, a gas purification device to which the gas from the laser chamber is supplied and removes impurities using a low-temperature trap, a heater that brings the gas from the gas purification device to an appropriate temperature and sends it into the chamber, and a heater to adjust the temperature of the laser gas. An excimer laser device comprising a control circuit for controlling the heaters according to the respective conditions.
JP4527790A 1990-02-26 1990-02-26 Excimer laser device Expired - Fee Related JP2805959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4527790A JP2805959B2 (en) 1990-02-26 1990-02-26 Excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4527790A JP2805959B2 (en) 1990-02-26 1990-02-26 Excimer laser device

Publications (2)

Publication Number Publication Date
JPH03248490A true JPH03248490A (en) 1991-11-06
JP2805959B2 JP2805959B2 (en) 1998-09-30

Family

ID=12714818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4527790A Expired - Fee Related JP2805959B2 (en) 1990-02-26 1990-02-26 Excimer laser device

Country Status (1)

Country Link
JP (1) JP2805959B2 (en)

Also Published As

Publication number Publication date
JP2805959B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP3046955B2 (en) Narrow-band excimer laser containing gas additive
US6151350A (en) Gas laser
JP2000236131A (en) Fluorine laser containing neon as buffer gas
JP2002151767A (en) Method for providing constant propagation delay, discharge circuit, and excimer or molecular fluorine laser system
US3936772A (en) High flow metal halide vapor laser
US6993052B2 (en) System and method for delay compensation for a pulsed laser
JPH03248490A (en) Excimer laser device
JP2601410B2 (en) Laser gas control device in discharge excitation type laser device
JP2782893B2 (en) Excimer laser device
Le Guyadec et al. A 280-W average power Cu-Ne-HBr laser amplifier
KR20010049332A (en) F2 laser with visible red and ir control
JP3827214B2 (en) Gas laser equipment for exposure
JPH03248486A (en) Excimer laser device
JPH03284890A (en) Excimer laser
Paetzel et al. KrF excimer laser with repetition rates of 1 kHz for DUV lithography
JP3794249B2 (en) ArF excimer laser device, KrF excimer laser device, and fluorine laser device
JPH03227081A (en) Excimer laser device
Hueber et al. Performance of very high repetition rate ArF lasers
JP2000294856A (en) Ultraviolet laser device and gas for ultraviolet laser
JP4204214B2 (en) Gas laser device
JP2980381B2 (en) Laser equipment
JPH03194991A (en) Excimer laser device
RU2229188C1 (en) Method for reducing pre-pulse concentration of electrons in active medium of metal halide vapor laser and active element of metal halide vapor laser
Bragin et al. Prospects for very high repetition rate lasers for microlithography
JP2007141941A (en) Excimer laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees