JPH0324763Y2 - - Google Patents

Info

Publication number
JPH0324763Y2
JPH0324763Y2 JP4594085U JP4594085U JPH0324763Y2 JP H0324763 Y2 JPH0324763 Y2 JP H0324763Y2 JP 4594085 U JP4594085 U JP 4594085U JP 4594085 U JP4594085 U JP 4594085U JP H0324763 Y2 JPH0324763 Y2 JP H0324763Y2
Authority
JP
Japan
Prior art keywords
sound insulating
flooring material
glass fiber
material according
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4594085U
Other languages
Japanese (ja)
Other versions
JPS61163843U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4594085U priority Critical patent/JPH0324763Y2/ja
Publication of JPS61163843U publication Critical patent/JPS61163843U/ja
Application granted granted Critical
Publication of JPH0324763Y2 publication Critical patent/JPH0324763Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Floor Finish (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は遮音床材に係り、より詳しく述べると
コンクリート造りの集合住宅の階上の床構造に好
適に使用され、子供の飛び跳ねる音などの床衝撃
音を遮断する遮音床材に関する。 コンクリート造りの集合住宅などにおける階上
の大人や子供の歩行、子供の飛び跳ね、家具の移
動などにより発生する振動や騒音すなわち固体伝
搬音(床衝撃音)は住宅環境の中で住民に堪えが
たい不快感を与える為、近隣の人間関係をも損か
ねないという社会的な問題になつており、その改
善は住宅建築技術の分野において重要かつ緊急な
課題となつている。 〔従来の技術〕 この問題の対策としては、コンクリートスラブ
の厚みを増したり、コンクリートスラブ上にグラ
スウールやロツクウール等の緩衝材を敷いてその
上にモルタル、コンクリートを施工する湿式浮床
工法や、コンクリートスラブ上に防振ゴム付きの
支持脚を介して合板類を設けたりする乾式置床工
法、あるいはコンクリートスラブ上に硬質のプラ
スチツクフオームを敷設したりする方法等が採用
されている。 〔考案が解決しようとする問題点〕 しかしながら上記のコンクリートスラブの厚み
を増加する方法は建築物躯体の総重量が増え、強
度保持の為基礎を打つ段階から資材費や工事費等
が高くなり、またそのままで床として使用した場
合、堅い床の感じや、冷やかな感じを人間に与
え、歩行安全性や保温性、断熱性に問題を生じる
等の欠点を有している。 また、湿式浮床工法はコンクリートスラブと浮
床の完全な遮断をおこなわなければその効果が期
待できず、施工が非常に難しいという欠点と、や
はり該コンクリートスラブ自体の厚みを増す方法
と同様、床表面がコンクリートであるため快適な
居住空間とは言い難いという欠点を有している。 一方、上記の構造を有する乾式浮床では簡単に
床工事ができ、工期が短縮できるという特徴に加
えて軽量衝撃音の伝搬防止には効果があるもの
の、上記したような子供の飛び跳ねなどによる重
量衝撃音の伝搬防止にはほとんど効果がないとい
う欠点がある。同様に、コンクリートスラブ上に
硬質プラスチツクフオームを敷設したりする方法
では重量衝撃音の伝搬防止には殆ど効果がない。 〔問題点を解決するための手段〕 本考案は、上記の如き問題点を解決し、コンク
リートスラブの厚みを増すことなく、固体伝搬音
を有効に遮断し、また歩行安全性や保温・断熱性
を有し快適な居住空間を保持する浮床方式におい
ても同様の効果を発揮する遮音床材として、硬化
性樹脂と必要に応じて用いる硬化剤との合計量
100重量部に対し、制振フイラー100〜300重量部
およびガラス繊維補強素材10〜200重量部を基本
組成として配合して成るガラス繊維複合樹脂層
を、芯材の少なくとも片面に一体的に積層して成
る遮音床材を提供する。 ガラス繊維補強プラスチツク(FRP)板は、
曲げ剛性を小さくして、コインシデンス限界周波
数をできるだけ高周波数になるようにすると共
に、単位面積当りの質量を高め、即ち、面密度を
増加させて振動の透過損失を上昇させることによ
つて遮音効果を高め得ることが認められるが、こ
のコインシデンス効果と質量法則だけでは、集合
住宅における固体伝搬音、特に重量衝撃音に対
し、高周波数域での振動の損失は認められるもの
の、性能基準を決める低周波域(63〜125Hz)で
の振動の損失は殆んど認められない。この低周波
数域の振動の損失には内部損失が関係していると
いわれているが、本考案者は、樹脂中に後記の如
き粒子状制振フイラーを均一に分散配合すること
によつて、振動に対する内部損失がおこり、低周
波数域の振動の大幅な損失がおきること、そし
て、この性質を利用して、FRPが本来有してい
る高強度という床材としての適正に加えて、床材
自体に振動減衰機能をもたせることによつて、前
記の従来技述の問題点を解決できることを見い出
し、本考案を完成するに到つたものである。 ガラス繊維複合樹脂層に用いる熱硬化性樹脂と
しては、フエノール樹脂、ポリエステル樹脂、お
よびエポキシ樹脂などが好適であり、固形状、液
状あるいはワニス状で使用できる。 ガラス繊維複合樹脂層に配合する制振フイラー
は、粒径が一般的に0.1〜100μm、好ましくは0.5
〜50μm、更に好ましくは1〜50μmの金属また
はその酸化物の粒子からなる。金属またはその酸
化物の種類は、特に限定されず、鉄、鉛、亜鉛
等、そしてこれらの酸化物を用いることができる
が、特に好ましく用いられるのは鉄酸化物であ
り、例えば、フエライト、マグネタイト、ヘマタ
イト、リモネイト、砂鉄等や、あるいはベンガ
ラ、四三酸化鉄を主成合とする鍛造物から発生す
るミルスケール等を使用することができる。ただ
し、金属または金属酸化物粒子は結晶性のものが
樹脂とのズル現象を起こしやすく、振動の内部損
失において優れており、好ましい。そして、この
制振フイラーは熱硬化性樹脂中に各個別の粒子が
独立して存在し、その全表面が熱硬化性樹脂との
界面を有するまで均一に混合分散させることが好
ましい。制振フイラーの粒径が100μmより大き
いと、一粒子当りの重量が大くなりすぎて均質な
混合分散ができなくなり、また粒径が0.1μm未満
では、現実的に得がたい大きさである。 このような制振フイラーは、前記熱硬化性樹脂
と必要に応じて用いられるその硬化剤との合計量
100重量部に対して、100〜300重量部の量で用い
る。100重量部より少ないと低周波数域の振動を
充分に吸収できず、また300重量部より多いと、
熱硬化性樹脂との濡れ性が悪くなり、制振フイラ
ー粒子と熱硬化性樹脂との界面にすきまが生じ
て、振動の内部損失が認められなくなる。 ガラス繊維補強素材の材質および性能は、特に
限定されることなく、一般のFRPに用いられて
いるものを用いることができる。その使用量は、
熱硬化性樹脂100重量部に対して10〜200重量部で
ある。10重量部より少ないと床構造体として強度
が不足となり、100重量部より多いと熱硬化性樹
脂との濡れ性が悪くなり、良好なガラス繊維複合
樹脂層が得られなくなる。 前述の本考案の目的は、上記の如くガラス繊維
複合樹脂層に制振フイラーを配合することによつ
て基本的には達成されるが、ガラス繊維複合樹脂
層の製造上の理由から、あるいは構造材としての
床材に要求される「ソリ」や「タワミ」を防止す
る特性を満たすために、上記ガラス繊維複合樹脂
層は芯材に積層一体化して用いる。制振フイラー
配合ガラス繊維複合樹脂層は芯材の少なくとも片
面に設けるが、両面にもうけてもよい。 このような芯材としては、合板、発泡プラスチ
ツク板(ウレタンフオーム板、アクリルフオーム
板、スチレンフオーム板、スチレン−ポリエチレ
ン−グラフトフオーム板、フエノールフオーム板
等)、木質系ボード(パーテイクルボード、イン
シユレーシヨンボード、ハードボード等)、ある
いは石綿セメント板などが用いられるが、特に限
定されず、その性質に応じて床材にいろいろな特
性を与えることができる。 この遮音床材の厚みは、特に限定はされない
が、一般的には、10〜50mmの範囲内のものが用い
られ、制振フイラーを配合したガラス繊維樹脂層
の厚みは5〜30mmの範囲内、芯材の厚みは5〜20
mmの範囲内のものが一般的である。芯材の厚みは
振動減衰に影響はないが高層住宅の居室の高さを
高くとる意味で全体厚みを下げる建築業の思想が
あり、芯材の厚みは5〜20mmにする方が床材とし
ての商品価値を保ことができる。 また、この考案の遮音床材において遮音床材の
ガラス繊維複合樹脂層の密度は1.0〜3.0g/cm3
あることが好適である。1.0g/cm3より小さいと
振動の内部損失が小さくなり、3.0g/cm3より大
きいと、樹脂との濡れ性が落ち、同時に振動の内
部損失も少なくなる傾向にある。 この遮音床材の製造方法は、特に限定はされな
いが、ハンドレアツプ法、マルチドメタルダイ
法、レジン・インジエクシヨン法、引抜き成形
法、等によることができ、その中でポリエステル
樹脂を母材とした製造法の1例でハンドレアツプ
による製造法をつぎに簡単に示す。予め造られた
木型(例えば3尺×6尺)に芯材を設置して、そ
の上にガラスマツト(例えばチヨツプドストラン
ドマツト)を積層しながら、結晶性鉄酸化物等の
制振フイラーをあらかじめ均一に混合させておい
た樹脂をハンドローラで脱泡しながら含浸する。
この工法をガラスマツト1プラス毎に繰り返す。
芯材の両面にガラス繊維樹脂層を設ける場合に
は、芯材の片面に樹脂層を積層一体化後、芯材を
裏返して再び樹脂層の積層一体化を行なう。自硬
性の場合、硬化剤の量は硬化剤の種類にもよるが
樹脂に対して1〜2%が作業性が良い。なお、硬
化剤はメチルエチルケトン、パーオキサイドなど
である。ガラス繊維はシラン処理をしたチヨツプ
ドストランドマツト(300g/m2〜600g/m2
か、ロービングクロスマツトを使つている。以上
がハンドレアツプ法で造る場合の製造法であるが
量産の場合はマルチドメタルダイ法や引抜き成形
法が最適である。 尚、上記ガラス繊維複合樹脂層には、必要に応
じて炭酸カルシウム、水和アルミナ、クレー、な
どの他の添加剤を加えてもかまわないことはいう
までもない。 この考案に係る遮音床材は浮床構造の遮音床材
として用いて好適に用いることができる。 〔作用〕 従来のFRP単体はその面密度と曲げ剛性のバ
ランスにより高周波域の振動の透過損失は認めら
れるも、内部損失(振動に対する制振効果)はほ
とんどなく低周波の振動の領域となると全く減衰
させる事は出来ない。面密度、曲げ剛性のバラン
ス、内部損失の3点の機能を満たしてはじめて集
合住宅での床材として固体伝搬音を実効的に遮断
出来るのである。 本考案は、制振フイラー粒子を粘弾性特性のあ
る樹脂中に、均一に混合分散させ、各粒子が樹脂
中に微細に独立して存在し、粒子表面に樹脂との
界面を形成するようにする。こうして、振動があ
ると、微細に独立して分散した制振フイラー粒子
が粘弾性特性のある樹脂との界面でズレ(ズリ)
現象を起こし、これによつて振動の内部損失が達
成されると考えられる。この樹脂内部における制
振フイラー粒子のズレ(ズリ)現象が集合住宅の
階上で発生する低周波数の振動音(固体伝搬音)
を著しく減衰させる作用を有すると考えられる。 〔実施例〕 第1図に本考案に係る遮音床材の1例を示す。
同図中、芯材1は厚さ12mmの合板であり、芯材1
の上下両面に一体的に積層されたガラス繊維複合
樹脂層2,3はポリエステル樹脂100重量部とそ
の硬化剤(メチルエチルケトンパーオキサイド)
1重量部、結晶性鉄酸化物(粒径10μm)200重
量部およびガラス繊維補強素材(チヨツプドスト
ランドガラスマツト)100重量部を基本組成とし
て、前述の如き製法で芯材に積層して一体化した
ものである。ガラス繊維複合樹脂層2,3の厚さ
はそれぞれ5mmである。 この遮音床材11を用いて第2図に示す如き浮
床構造を組み立てた。同図中、12は厚さ130mm
のコンクリートスラブ、13は硬度80゜のクツシ
ヨンゴム、14は支柱、15は厚さ12mmのコンク
リートパネル合板(捨板)である。この浮床構造
においてJIS A−1418に従い床衝撃音遮断特性を
測定した。その結果を第1表に示す。
[Industrial Application Field] The present invention relates to sound insulating flooring materials, and more specifically, it is suitable for use in the upper floor structure of concrete apartment complexes, and is a sound insulating material that blocks floor impact sounds such as the sound of children jumping. Regarding flooring. Vibrations and noise generated by adults and children walking on floors, children jumping, moving furniture, etc. in concrete apartment complexes, i.e. solid-borne sound (floor impact noise), are difficult for residents to bear in residential environments. It has become a social problem as it causes discomfort and can damage interpersonal relationships in the neighborhood, and its improvement has become an important and urgent issue in the field of housing construction technology. [Conventional technology] Countermeasures for this problem include increasing the thickness of the concrete slab, using a wet floating floor method in which a cushioning material such as glass wool or rock wool is laid on the concrete slab, and then mortar and concrete are applied on top of it. Dry floor construction methods, in which plywood is placed on top of support legs with anti-vibration rubber, or hard plastic foam is laid on top of concrete slabs, etc., have been adopted. [Problems that the invention aims to solve] However, the above method of increasing the thickness of the concrete slab increases the total weight of the building frame, and increases material and construction costs from the stage of pouring the foundation to maintain strength. In addition, when used as a floor as is, it gives people the feeling of a hard floor or a cold floor, and has the disadvantage of causing problems in walking safety, heat retention, and insulation. In addition, the wet floating floor construction method cannot be expected to be effective unless the concrete slab and floating floor are completely isolated, and the disadvantage is that construction is extremely difficult.As with the method of increasing the thickness of the concrete slab itself, the floor surface Since it is made of concrete, it has the disadvantage of not being a comfortable living space. On the other hand, with the dry floating floor having the above structure, floor construction can be done easily and the construction period can be shortened, and although it is effective in preventing the propagation of lightweight impact sound, it is also effective in preventing the propagation of light impact sound. The drawback is that it has little effect on preventing sound propagation. Similarly, methods such as laying hard plastic foam on a concrete slab have little effect on preventing the propagation of weight impact sound. [Means for solving the problems] The present invention solves the above problems, effectively blocks solid-borne sound without increasing the thickness of the concrete slab, and improves walking safety, heat retention, and insulation. The total amount of curable resin and curing agent used as necessary is used as a sound insulating floor material that exhibits the same effect in floating floor systems that maintain a comfortable living space.
A glass fiber composite resin layer consisting of a basic composition of 100 parts by weight, 100 to 300 parts by weight of a damping filler, and 10 to 200 parts by weight of a glass fiber reinforcing material is integrally laminated on at least one side of the core material. To provide sound insulating flooring materials consisting of: Fiberglass reinforced plastic (FRP) board is
The sound insulation effect is achieved by reducing the bending stiffness and making the coincidence limit frequency as high as possible, as well as increasing the mass per unit area, that is, increasing the areal density and increasing the vibration transmission loss. However, this coincidence effect and the mass law alone can reduce the vibration loss in the high frequency range for solid-borne sound in apartment buildings, especially weight impact sound, but the low Almost no vibration loss is observed in the frequency range (63-125Hz). It is said that this loss of vibration in the low frequency range is related to internal loss, but the inventor of the present invention achieved Internal loss due to vibration occurs, resulting in a large loss of vibration in the low frequency range.Using this property, FRP can be used as a flooring material in addition to its inherent high strength, making it suitable as a flooring material. The present invention was completed based on the discovery that the problems described in the prior art described above can be solved by providing the vibration damping function to the vibration damping function. As the thermosetting resin used for the glass fiber composite resin layer, phenol resin, polyester resin, epoxy resin, etc. are suitable, and they can be used in solid, liquid or varnish form. The vibration damping filler blended into the glass fiber composite resin layer generally has a particle size of 0.1 to 100 μm, preferably 0.5 μm.
It consists of particles of metal or its oxide with a diameter of ~50 μm, more preferably 1-50 μm. The type of metal or its oxide is not particularly limited, and iron, lead, zinc, etc., and oxides thereof can be used, but iron oxides are particularly preferably used, such as ferrite, magnetite, etc. , hematite, limonate, iron sand, etc., or mill scale generated from a forged product whose main composition is red iron oxide or triiron tetroxide. However, crystalline metal or metal oxide particles are preferable because they tend to cause a shearing phenomenon with the resin and are excellent in terms of internal vibration loss. It is preferable that each individual particle of the vibration damping filler exists independently in the thermosetting resin, and the particles are uniformly mixed and dispersed until the entire surface thereof has an interface with the thermosetting resin. If the particle size of the vibration damping filler is larger than 100 μm, the weight per particle becomes too large and homogeneous mixing and dispersion cannot be achieved, and if the particle size is less than 0.1 μm, it is difficult to obtain in reality. Such a vibration damping filler has a total amount of the thermosetting resin and its curing agent used as necessary.
It is used in an amount of 100 to 300 parts by weight per 100 parts by weight. If it is less than 100 parts by weight, it will not be able to absorb vibrations in the low frequency range sufficiently, and if it is more than 300 parts by weight,
The wettability with the thermosetting resin deteriorates, a gap is generated at the interface between the vibration damping filler particles and the thermosetting resin, and internal loss of vibration is no longer recognized. The material and performance of the glass fiber reinforced material are not particularly limited, and those used in general FRP can be used. Its usage is
The amount is 10 to 200 parts by weight per 100 parts by weight of the thermosetting resin. If it is less than 10 parts by weight, the strength of the floor structure will be insufficient, and if it is more than 100 parts by weight, the wettability with the thermosetting resin will deteriorate, making it impossible to obtain a good glass fiber composite resin layer. The above-mentioned object of the present invention is basically achieved by adding a damping filler to the glass fiber composite resin layer as described above, but for manufacturing reasons or structural problems of the glass fiber composite resin layer, In order to satisfy the characteristics required for flooring materials to prevent warping and sagging, the glass fiber composite resin layer is laminated and integrated with the core material. The glass fiber composite resin layer containing a vibration damping filler is provided on at least one side of the core material, but it may be provided on both sides. Such core materials include plywood, foamed plastic boards (urethane foam board, acrylic foam board, styrene foam board, styrene-polyethylene-graft foam board, phenol foam board, etc.), and wood-based boards (particle board, insulator board, etc.). rayon board, hardboard, etc.) or asbestos cement board, but there are no particular limitations, and various properties can be imparted to the flooring material depending on the properties. The thickness of this sound insulating floor material is not particularly limited, but it is generally within the range of 10 to 50 mm, and the thickness of the glass fiber resin layer containing the vibration damping filler is within the range of 5 to 30 mm. , the thickness of the core material is 5 to 20
Generally, it is within the mm range. Although the thickness of the core material has no effect on vibration damping, there is a philosophy in the construction industry to lower the overall thickness in order to increase the height of living rooms in high-rise housing, so it is better to make the core material 5 to 20 mm thick as a floor material. The product value can be maintained. Further, in the sound insulation flooring material of this invention, it is preferable that the density of the glass fiber composite resin layer of the sound insulation flooring material is 1.0 to 3.0 g/cm 3 . When it is smaller than 1.0 g/cm 3 , the internal loss of vibration tends to be small, and when it is larger than 3.0 g/cm 3 , the wettability with the resin decreases, and at the same time, the internal loss of vibration tends to decrease. The manufacturing method of this sound insulating flooring material is not particularly limited, but can be carried out by the hand wrap method, the multi-metal die method, the resin injection method, the pultrusion method, etc. Among these methods, manufacturing using polyester resin as a base material is possible. As an example of the method, the production method by hand wrap will be briefly described below. A core material is installed in a pre-made wooden mold (e.g. 3 shaku x 6 shaku), and while glass mat (e.g. chopped strand mat) is laminated on top of it, vibration damping filler such as crystalline iron oxide is added. is impregnated with the resin that has been uniformly mixed in advance while defoaming with a hand roller.
Repeat this method for each glass mat.
When glass fiber resin layers are provided on both sides of the core material, the resin layers are laminated and integrated on one side of the core material, and then the core material is turned over and the resin layers are laminated and integrated again. In the case of self-hardening, the amount of curing agent depends on the type of curing agent, but workability is good when the amount of curing agent is 1 to 2% based on the resin. Note that the curing agent is methyl ethyl ketone, peroxide, or the like. The glass fiber is chopped strand pine treated with silane (300g/m 2 - 600g/m 2 )
Or using roving cross mats. The above is the manufacturing method for manufacturing by the hand drawn method, but for mass production, the multi-metal die method or pultrusion method is optimal. It goes without saying that other additives such as calcium carbonate, hydrated alumina, and clay may be added to the glass fiber composite resin layer as required. The sound insulating flooring material according to this invention can be suitably used as a sound insulating flooring material having a floating floor structure. [Function] Conventional FRP itself has a transmission loss of vibration in the high frequency range due to the balance between its surface density and bending rigidity, but it has almost no internal loss (damping effect on vibration) and has no effect at all in the area of low frequency vibration. It cannot be attenuated. Only when the three functions of surface density, balance of bending rigidity, and internal loss are satisfied can a material be used as a flooring material in an apartment complex to effectively block solid-borne sound. The present invention involves uniformly mixing and dispersing vibration damping filler particles in a resin with viscoelastic properties, so that each particle exists finely and independently in the resin and forms an interface with the resin on the particle surface. do. In this way, when vibration occurs, the vibration-damping filler particles, which are finely and independently dispersed, shift (slip) at the interface with the viscoelastic resin.
It is believed that the internal loss of vibration is achieved by this phenomenon. This phenomenon of shearing of the damping filler particles inside the resin causes low-frequency vibration noise (solid-borne sound) that occurs on the floors of apartment complexes.
It is thought that it has the effect of significantly attenuating the [Example] Fig. 1 shows an example of the sound insulating flooring material according to the present invention.
In the figure, core material 1 is plywood with a thickness of 12 mm;
The glass fiber composite resin layers 2 and 3, which are integrally laminated on both the upper and lower surfaces, are made of 100 parts by weight of polyester resin and its curing agent (methyl ethyl ketone peroxide).
The basic composition is 1 part by weight, 200 parts by weight of crystalline iron oxide (particle size 10 μm), and 100 parts by weight of glass fiber reinforcement material (chopped strand glass mat), and is laminated on the core material by the manufacturing method described above. It is integrated. The thickness of each of the glass fiber composite resin layers 2 and 3 is 5 mm. Using this sound insulating floor material 11, a floating floor structure as shown in FIG. 2 was assembled. In the same figure, 12 is 130mm thick
13 is a cushion rubber with a hardness of 80°, 14 is a column, and 15 is a concrete panel plywood (scrap board) with a thickness of 12 mm. The floor impact sound isolation characteristics of this floating floor structure were measured in accordance with JIS A-1418. The results are shown in Table 1.

【表】 第1図の遮音床材11,1,2,3の代りに厚
さ25mmの合板(パーチクルボード)を用いて上記
と同様の浮床構造を組み立て、上記と同様にして
床衝撃音遮断特性を測定した。その結果を第2表
に示す。
[Table] A floating floor structure similar to the above was assembled using 25 mm thick plywood (particle board) in place of the sound insulating flooring materials 11, 1, 2, and 3 shown in Figure 1, and the floor impact sound isolation characteristics were obtained in the same manner as above. was measured. The results are shown in Table 2.

〔考案の効果〕[Effect of idea]

本考案に係る遮音床材は、制振フイラーを配合
したFRP層を芯材の少なくとも片面に積層一体
化して成り、コンクリートスラブの厚みを増すこ
となしに重量衝撃音の階下への伝搬を防止するこ
とができる。しかも、乾式浮床構造の有する歩行
安全性、保温・断熱性に優れた快適な居住空間を
提供するものである。
The sound insulation flooring material according to the present invention is made by laminating an FRP layer containing a damping filler on at least one side of the core material, and prevents weight impact sound from propagating downstairs without increasing the thickness of the concrete slab. be able to. Moreover, it provides a comfortable living space with excellent walking safety, heat retention, and insulation properties of the dry floating floor structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る遮音床材の斜視図、第2
図は第1図の遮音床材を用いて組み立てた浮床構
造の模式断面図である。 1……芯材、2,3……制振フイラー配合ガラ
ス繊維複合樹脂層、11……遮音床材、12……
コンクリートスラブ、13……クツシヨンゴム、
14……支柱、15……コンクリートパネル合板
(捨板)。
Figure 1 is a perspective view of the sound insulating flooring material according to the present invention;
The figure is a schematic cross-sectional view of a floating floor structure assembled using the sound-insulating flooring material of FIG. 1. 1... Core material, 2, 3... Glass fiber composite resin layer containing vibration damping filler, 11... Sound insulation flooring material, 12...
Concrete slab, 13...Cushion rubber,
14... Support column, 15... Concrete panel plywood (scrap board).

Claims (1)

【実用新案登録請求の範囲】 1 熱硬化性樹脂と必要に応じて用いる硬化剤と
の合計量100重量部に対し、制振フイラー100〜
300重量部およびガラス繊維補強素材10〜200重
量部を基本組成として配合して成るガラス繊維
複合樹脂層を、芯材の少なくとも片面に一体的
に積層して成ることを特徴とする遮音床材。 2 前記熱硬化性樹脂がフエノール樹脂、ポリエ
ステル樹脂、またはエポキシ樹脂である実用新
案登録請求の範囲第1項記載の遮音床材。 3 前記制振フイラーが金属または金属酸化物の
粒子からなる実用新案登録請求の範囲第1項ま
たは第2項記載の遮音床材。 4 前記金属が鉄、鉛または亜鉛である実用新案
登録請求の範囲第3項記載の遮音床材。 5 前記制振フイラーの前記粒子が結晶性である
実用新案登録請求の範囲第3項または第4項記
載の遮音床材。 6 前記芯材が合板、発泡プラスチツク板、木質
系ボードまたは石綿セメント板である実用新案
登録請求の範囲第1項から第5項までのいずれ
かに記載の遮音床材。 7 前記ガラス繊維複合樹脂層の密度が1.0〜
3.0/cm3の範囲内である実用新案登録請求の範
囲第1項から第6項までのいずれか記載の遮音
床材。
[Claims for Utility Model Registration] 1. 100 parts by weight of the total amount of the thermosetting resin and the hardening agent used as necessary, 100 to 100 parts of the vibration damping filler.
1. A sound insulating flooring material comprising a glass fiber composite resin layer having a basic composition of 300 parts by weight and 10 to 200 parts by weight of a glass fiber reinforcing material, which is integrally laminated on at least one side of a core material. 2. The sound insulating flooring material according to claim 1, wherein the thermosetting resin is a phenolic resin, a polyester resin, or an epoxy resin. 3. The sound insulating flooring material according to claim 1 or 2, wherein the vibration damping filler is made of metal or metal oxide particles. 4. The sound insulating flooring material according to claim 3, wherein the metal is iron, lead or zinc. 5. The sound insulating flooring material according to claim 3 or 4, wherein the particles of the vibration damping filler are crystalline. 6. The sound insulating flooring material according to any one of claims 1 to 5, wherein the core material is plywood, foamed plastic board, wood board, or asbestos cement board. 7 The density of the glass fiber composite resin layer is 1.0~
3.0/cm 3 The sound insulating flooring material according to any one of claims 1 to 6 of the claims for utility model registration, which is within the range of 3.0/cm 3 .
JP4594085U 1985-03-30 1985-03-30 Expired JPH0324763Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4594085U JPH0324763Y2 (en) 1985-03-30 1985-03-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4594085U JPH0324763Y2 (en) 1985-03-30 1985-03-30

Publications (2)

Publication Number Publication Date
JPS61163843U JPS61163843U (en) 1986-10-11
JPH0324763Y2 true JPH0324763Y2 (en) 1991-05-29

Family

ID=30559878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4594085U Expired JPH0324763Y2 (en) 1985-03-30 1985-03-30

Country Status (1)

Country Link
JP (1) JPH0324763Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284329A (en) * 1988-09-20 1990-03-26 Nec Corp Fiber reinforced composite material

Also Published As

Publication number Publication date
JPS61163843U (en) 1986-10-11

Similar Documents

Publication Publication Date Title
KR100635742B1 (en) Floor structure of building for insulation and noise interruption
KR100908920B1 (en) Concrete structure and slab construction structure
CN110104999A (en) Insulate against sound mortar, acoustical insulation floor and construction techniques
KR102393404B1 (en) Noise reduction reinforcement structure between floors in buildings with high functional mortar using poss nano-complex produced by hydrolytic condensation reaction of silane compounds
KR101479167B1 (en) Reduce noise floors and structure reduce noise between floors of building
KR100429103B1 (en) Floating floor structure for reducing floor shock sound and floor materials for building
JPH0324763Y2 (en)
KR20190140745A (en) Reinforced concrete slab structure for noise reduction and floor system including the structure
KR100831998B1 (en) High strength concrete with high heat insulation capacity and floor stuructue for insulating muti-level impact sound using the same
KR200321612Y1 (en) Floor Structure for Buildings
JPH10292610A (en) Sound-proof floor structure
KR100611184B1 (en) Separate/dual floor structure for reducing noise of wall-type apartment and method of construction such floor structure
KR102184551B1 (en) Reinforced concrete slab structure incorporating Kagome truss for noise reduction and floor system including the structure
KR100732469B1 (en) Floor structure for reduction of light-weight and heavy-weight impact sound and construction method thereof
CN206737232U (en) A kind of vibration damping sound insulation mortar floor framing
JP2696337B2 (en) Soundproof flooring
JP2838872B2 (en) Soundproof flooring
JPH0355705Y2 (en)
CN211037356U (en) Hollow floor sound insulation structure
KR102125575B1 (en) Reinforcement method to prevent and reduce noise between walls in reinforced concrete building
KR102131435B1 (en) Reinforcement member to enhance noise reduction between floors in buildings and vibration prevention and reinforcement method using the same
KR200322187Y1 (en) Panel for preventing impact vibration and sound between floor in apartment house
KR100261134B1 (en) Floating floor system for reducing impact sound in apartement house
KR20240066202A (en) Floor noise reduction structure
KR20060099382A (en) Flooring material having soundproofing thermal- insulating and reinforcing functions simultaneously and construction method therof