JPH0324759B2 - - Google Patents

Info

Publication number
JPH0324759B2
JPH0324759B2 JP57211574A JP21157482A JPH0324759B2 JP H0324759 B2 JPH0324759 B2 JP H0324759B2 JP 57211574 A JP57211574 A JP 57211574A JP 21157482 A JP21157482 A JP 21157482A JP H0324759 B2 JPH0324759 B2 JP H0324759B2
Authority
JP
Japan
Prior art keywords
lamp
temperature
tube wall
voltage
coldest point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57211574A
Other languages
Japanese (ja)
Other versions
JPS59101797A (en
Inventor
Katsumasa Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP21157482A priority Critical patent/JPS59101797A/en
Publication of JPS59101797A publication Critical patent/JPS59101797A/en
Publication of JPH0324759B2 publication Critical patent/JPH0324759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、放電灯点灯装置に関する。[Detailed description of the invention] (Technical field) The present invention relates to a discharge lamp lighting device.

(背景技術) ランプの小型化または白熱灯代替を目的として
管径を従来より細くして屈曲させた螢光ランプが
提案され、実用化されつつある。第1図はそのよ
うなランプの一例を示す斜視図で、外管1とステ
ム(ボタンステム)2によつて気密に保たれる放
電空間3内に、U字状に屈曲させた内管4を2本
収納した小型の螢光ランプであり、上記U字状内
管4の内面には螢光体5が塗布されている。また
U字状内管4の一端は電極6の周囲にガラス溶着
により気密に固定され、他の開口端7を利用して
両電極6,6間で放電が行なわれる。なお、図中
8は点灯装置部、9はねじ口金である。
(Background Art) For the purpose of miniaturizing lamps or replacing incandescent lamps, fluorescent lamps with tube diameters smaller than conventional ones and bent have been proposed and are being put into practical use. FIG. 1 is a perspective view showing an example of such a lamp, in which an inner tube 4 bent into a U-shape is placed in a discharge space 3 that is kept airtight by an outer tube 1 and a stem (button stem) 2. This is a small fluorescent lamp that houses two tubes, and the inner surface of the U-shaped inner tube 4 is coated with a fluorescent material 5. Further, one end of the U-shaped inner tube 4 is hermetically fixed around the electrode 6 by glass welding, and the other open end 7 is used to cause discharge between the two electrodes 6, 6. In addition, in the figure, 8 is a lighting device part, and 9 is a screw cap.

このようなランプにおいて十分に小型で、且つ
十分な光束を得るためには、内管4を細く長くす
ると共に外管1を小さく構成するのが有効であ
る。而して、かかる二重管構造のランプでは、第
2図に示すように、単に放電管10を屈曲させて
小型化したランプと比べて、外管1の容積全体に
熱が拡散するため、管壁最冷点温度を低く保てる
効果がある。しかしながら、小型・高光束化の要
求に伴い、かかる構成を採つても常温における管
壁最冷点温度が、最高効率を与える温度よりかな
り高くなつてしまうことは避けられない。
In order to make such a lamp sufficiently compact and to obtain a sufficient luminous flux, it is effective to make the inner tube 4 thin and long and to make the outer tube 1 small. As shown in FIG. 2, in a lamp with such a double tube structure, heat is diffused over the entire volume of the outer tube 1, compared to a lamp made smaller by simply bending the discharge tube 10. This has the effect of keeping the coldest point temperature of the pipe wall low. However, with the demand for smaller size and higher luminous flux, even if such a configuration is adopted, it is inevitable that the temperature at the coldest point of the tube wall at room temperature will be considerably higher than the temperature that provides the highest efficiency.

ここで、管壁最冷点温度とは、放電管(外管)
上で最も温度の低い場所のことを指し、管内の水
銀蒸気圧はこの温度で決定し、封入ガスアルゴン
数Torrと水銀数mmTorrの条件で、約40℃で最高
効率光束となり、ランプ電圧、ランプ電流、ラン
プ電力等もこの温度の付近を最大値または最小値
とする変化傾向を示す。
Here, the tube wall coldest point temperature refers to the discharge tube (outer tube)
The mercury vapor pressure inside the tube is determined at this temperature, and the highest efficiency luminous flux is achieved at approximately 40℃ under the conditions of the number of argon filled gas Torr and the number of mercury mmTorr, and the lamp voltage and lamp Current, lamp power, etc. also tend to change with maximum or minimum values around this temperature.

第3図は第1図に示す如きランプで実測した周
囲温度特性の一例で、測定条件は電源電圧及び周
囲温度を一定とし、第1図に示すランプをねじ口
金9が上方に位置するように配置して安定器を用
いて点灯し、平衡状態に移行(安定点灯)した後
のランプ電圧、ランプ電流、ランプ電力及び光束
を周囲温度を−10℃から50℃まで変化させてそれ
ぞれ測定し、周囲温度が25℃(常温)のときの各
測定値を100%として表したものであり、第4図
は上記測定時における管壁最冷点温度(外管1頂
部の温度)とランプ電圧の関係を変化率で表した
ものである。この2つの特性図におけるランプ電
圧の最大値より、第1図に示すランプは周囲温度
約0℃のとき管壁最冷点温度が約40℃となる特性
のランプ、つまり、常温(周囲温度約25℃)で使
用した場合、管壁最冷点温度が約65℃となるラン
プであることがわかる。このように、第1図に示
す如きランプでは、通常のランプに比べ管壁温度
が高くなるため、周囲温度が0℃近辺で最高光束
となり、ランプ電圧もその付近で最大となる。
FIG. 3 shows an example of the ambient temperature characteristics actually measured using the lamp shown in FIG. The lamp voltage, lamp current, lamp power, and luminous flux after entering the equilibrium state (stable lighting) were measured by changing the ambient temperature from -10°C to 50°C. Each measurement value when the ambient temperature is 25℃ (room temperature) is expressed as 100%, and Figure 4 shows the temperature at the coldest point of the tube wall (temperature at the top of outer tube 1) and lamp voltage at the time of the above measurement. The relationship is expressed as a rate of change. From the maximum value of the lamp voltage in these two characteristic diagrams, the lamp shown in Figure 1 is a lamp with characteristics such that the temperature of the coldest point on the tube wall is approximately 40°C when the ambient temperature is approximately 0°C. It can be seen that when the lamp is used at a temperature of 25°C, the temperature at the coldest point on the tube wall is approximately 65°C. In this way, in the lamp shown in FIG. 1, the tube wall temperature is higher than that of a normal lamp, so the luminous flux reaches its maximum when the ambient temperature is around 0° C., and the lamp voltage also reaches its maximum around that temperature.

今、かかるランプを常温(約25℃)で点灯した
場合を考えると、管壁最冷点温度は始動時の周囲
温度と同温の常温から次第に上昇していき、ラン
プ電圧の最大値となる過程を経た後に平衡する。
つまり、第5図に実測値(周囲温度25℃で測定)
で示すように、始動後数分後(始動時の管壁最冷
点温度は当然25℃となる)にランプ電圧が最大と
なる管壁最冷点温度(約40℃)となり、その後は
ランプ電圧が下がつてきて平衡する(その時の管
壁最冷点温度は上述のように約65℃となる)。従
つて、常温での点灯特性で最適な点灯回路定数を
設定した場合、始動後平衡するまでの過程でちら
つきや立消えを起すことがある。その理由は、上
記のように回路定数を設定した場合、始動後数分
後にランプ電圧は平衡時の約120%となり、ラン
プの再点弧電圧が電源電圧より高くなる期間が存
在し、その電源電圧より高い状態が小さい時はち
らつき(不完全点灯)となり、大きい時は立消え
となるからである。
Now, if we consider the case where such a lamp is lit at room temperature (approximately 25 degrees Celsius), the temperature at the coldest point on the tube wall will gradually rise from room temperature, which is the same as the ambient temperature at the time of startup, until it reaches the maximum value of the lamp voltage. Equilibrium occurs after the process.
In other words, Figure 5 shows the actual measured values (measured at an ambient temperature of 25°C).
As shown in , several minutes after startup (the temperature at the coldest point on the tube wall at startup is naturally 25℃), the temperature at the coldest point on the tube wall (approximately 40℃) at which the lamp voltage reaches its maximum is reached; The voltage decreases and reaches equilibrium (the temperature at the coldest point on the tube wall at that time is approximately 65°C as mentioned above). Therefore, when optimal lighting circuit constants are set based on the lighting characteristics at room temperature, flickering or turning off may occur during the process after startup until equilibrium is reached. The reason for this is that when the circuit constants are set as described above, the lamp voltage becomes approximately 120% of the equilibrium value several minutes after starting, and there is a period when the lamp re-ignition voltage is higher than the power supply voltage. This is because when the state higher than the voltage is small, it will flicker (incomplete lighting), and when it is large, it will turn off.

また、上述の如きランプを低周囲温度で点灯し
た場合、例えば周囲温度0℃で点灯した場合、第
3図から明らかなように、平衡した後もランプ電
圧は常温時の約120%であるので、前記理由によ
り、平衡した後もちらつきや立消えが起る可能性
があつた。従来、このような場合には低周囲温度
での特性に焦点を合せた回路設計をしていたが、
実用上常温付近の周囲温度で使用することが多
く、一時的な高ランプ電圧のために安定器の2次
電圧を大きくする等、装置の大型化、電力損増、
コストアツプを招いていた。
Furthermore, when a lamp like the one described above is lit at a low ambient temperature, for example, when it is lit at an ambient temperature of 0°C, as is clear from Figure 3, even after equilibrium, the lamp voltage remains approximately 120% of that at room temperature. For the above-mentioned reason, there was a possibility that flickering or fading may occur even after equilibration. Conventionally, in such cases, circuit design focused on characteristics at low ambient temperatures.
In practice, it is often used at an ambient temperature around room temperature, and the secondary voltage of the ballast is increased due to temporary high lamp voltage, resulting in larger equipment, increased power loss,
This led to an increase in costs.

(発明の目的) 本発明は上述の欠点に鑑みなされたもので、そ
の目的とするところは、常温における管壁最冷点
温度が最高効率光束を与える温度よりも約20℃以
上高い低圧放電灯を用いた放電灯点灯装置におい
て、始動後ランプが平衡状態に到るまでの間にし
ばしば生じていたちらつきや立消え現象を防止す
ると共に、始動性を改善した放電灯点灯装置を提
供するにある。
(Object of the Invention) The present invention was made in view of the above-mentioned drawbacks, and its purpose is to provide a low-pressure discharge lamp in which the temperature at the coldest point of the tube wall at room temperature is approximately 20°C or more higher than the temperature that provides the highest efficiency luminous flux. To provide a discharge lamp lighting device which prevents flickering and turning-off phenomena that often occur until the lamp reaches an equilibrium state after starting, and improves startability.

(発明の開示) 第6図は本発明の一実施例を示す回路図で、そ
の構成は、常温での点灯特性を決定するインピー
ダンスBと並列に、補助インピーダンスB′とス
イツチSとの直列回路を接続すると共に、上記ス
イツチSを螢光ランプFLのランプ電圧が最大と
なる管壁最冷点温度以上の温度(以下、スイツチ
ング温度という)でオフせしめたことを特徴とす
るもので、図中Vsは商用電源、Gはグロースタ
ータである。尚、補助インピーダンスB′は抵抗
で構成してもよい。
(Disclosure of the Invention) Fig. 6 is a circuit diagram showing an embodiment of the present invention, which consists of a series circuit of an auxiliary impedance B' and a switch S in parallel with an impedance B that determines the lighting characteristics at room temperature. is connected, and the switch S is turned off at a temperature equal to or higher than the temperature of the coldest point on the tube wall at which the lamp voltage of the fluorescent lamp FL reaches its maximum (hereinafter referred to as the switching temperature). Vs is a commercial power supply, and G is a glow starter. Incidentally, the auxiliary impedance B' may be constituted by a resistor.

第7図は、スイツチSとしてバイメタル構造の
ものを使用し、第1図に示す如きランプに本発明
を適用した例を示す模式図で、かかる場合、ラン
プのステム2にスイツチSを取付け、ランプの管
壁最冷点温度との相関が明確なステム2部の温度
を検知するものである。また、ステム2の部分は
ランプにとつて発光に寄与しないので、かかる部
分に探スイツチSを取付ければ特性に影響を与え
ない利点がある。
FIG. 7 is a schematic diagram showing an example in which the present invention is applied to a lamp as shown in FIG. 1, using a bimetallic structure as the switch S. In such a case, the switch S is attached to the stem 2 of the lamp, and the lamp is This detects the temperature of the second part of the stem, which has a clear correlation with the temperature of the coldest point on the tube wall. Furthermore, since the stem 2 portion does not contribute to the light emission of the lamp, there is an advantage that the characteristics will not be affected if the search switch S is attached to this portion.

次に上記実施例の動作を説明する。上述のよう
にスイツチSは、ランプFLの管壁最冷点温度と
の相関のある温度を検知し、ランプ電圧が最大と
なる管壁最冷点温度以上の温度でオフするように
構成されているので、スイツチング温度以下では
スイツチSはオンし、補助インピーダンスB′が
インピーダンスBに並列に接続されるため、イン
ピーダンスBのみの時よりもランプ電流は多く流
れ、結果的に負特性の関係にあるランプ電圧(螢
光ランプはランプ電圧−ランプ電流特性が負特性
である)は低下する。従つて、第5図で示したよ
うな(第8図において点線で示す)、常温中にお
いて始動後ランプが平衡するまでのランプ電圧の
変動過程は、第8図において実線で示す如き特性
になり、従来のランプにおいて生じていたランプ
電圧の一時的な上昇は抑えられ、それに伴うちら
つき現象や立消え現象は解消した。
Next, the operation of the above embodiment will be explained. As mentioned above, the switch S is configured to detect a temperature that is correlated with the temperature of the coldest point on the tube wall of the lamp FL, and to turn off at a temperature equal to or higher than the temperature of the coldest point on the tube wall at which the lamp voltage becomes maximum. Therefore, below the switching temperature, switch S turns on and auxiliary impedance B' is connected in parallel to impedance B, so more lamp current flows than when only impedance B is used, resulting in a negative characteristic relationship. The lamp voltage (fluorescent lamps have a negative lamp voltage-lamp current characteristic) decreases. Therefore, as shown in Fig. 5 (indicated by the dotted line in Fig. 8), the fluctuation process of the lamp voltage after starting at room temperature until the lamp reaches equilibrium will have the characteristics as shown by the solid line in Fig. 8. The temporary rise in lamp voltage that occurred in conventional lamps was suppressed, and the accompanying flickering and fading phenomena were eliminated.

また、螢光ランプにおいてはランプの温度が十
分に冷えた状態では、水銀の蒸気圧が低く、特に
低温では点灯しにくい欠点があり、始動の容易性
を決定する1つの要因として、始動直後のランプ
電圧が安定器の2次電圧と比べて十分に低いこと
があるが、本発明によれば上述の如く、管壁温度
が低い始動直後はスイツチSはオン状態であるの
で、ランプ電圧は低く抑えられ、相対的にランプ
の始動性も良好になる。
In addition, in fluorescent lamps, when the temperature of the lamp is sufficiently cool, the vapor pressure of mercury is low, which makes it difficult to light, especially at low temperatures.One of the factors that determines the ease of starting is the Although the lamp voltage may be sufficiently low compared to the secondary voltage of the ballast, according to the present invention, as described above, the switch S is in the on state immediately after starting when the tube wall temperature is low, so the lamp voltage is low. This also improves the starting performance of the lamp.

(発明の効果) 本発明は上記のように、常温における管壁最冷
点温度が最高効率光束を与える温度よりも約20℃
以上高い低圧放電灯を電源に安定器を介して点灯
して成る放電灯点灯装置において、上記安定器
を、常温での点灯特性を決定するインピーダンス
と、補助インピーダンスとスイツチ要素の直列回
路とを並列接続して構成すると共に、上記スイツ
チ要素をランプ電圧が最大となる管壁最冷点温度
以上の温度でオフせしめたことを特徴とするの
で、常温でのランプ点灯に対して、始動後平衡す
るまでの間に生じる一時的なランプ電圧の上昇に
伴うちらつき現象や立消え現象がなくなり、管壁
温度に応じた点灯条件が設定されるため、不要な
電力損の低減が図れ、広範囲にわたる周囲温度で
安定且つ最適に近い点灯状態を達成することがで
き、しかも、始動性も改善することができた。
(Effects of the Invention) As described above, the present invention provides that the temperature of the coldest point of the tube wall at room temperature is about 20°C lower than the temperature that provides the highest efficiency luminous flux.
In a discharge lamp lighting device that uses a high-pressure discharge lamp as a power source and lights it via a ballast, the ballast is connected in parallel with an impedance that determines the lighting characteristics at room temperature, an auxiliary impedance, and a series circuit of a switch element. In addition, the switch element is turned off at a temperature equal to or higher than the temperature of the coldest point of the tube wall at which the lamp voltage reaches its maximum, so that the lamp is balanced after starting when the lamp is lit at room temperature. The flickering and extinguishing phenomena caused by the temporary increase in lamp voltage that occur during It was possible to achieve a stable and nearly optimal lighting condition, and also to improve startability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の小型螢光ランプの斜視図、第2
図は従来の屈曲型螢光ランプの斜視図、第3図は
第1図に示す如きランプで実測した周囲温度特性
の一例を示す図、第4図は同上の管壁最冷点温度
に対するランプ電圧特性図、第5図は同上の始動
後経過時間に対するランプ電圧特性図、第6図は
本発明の一実施例を示す回路図、第7図は小型螢
光ランプに本発明を適用した例を示す模式図、第
8図は本発明に係る始動後経過時間に対するラン
プ電圧特性図である。 FL……低圧放電灯、Vs……電源、B……イン
ピーダンス、B′……補助インピーダンス、S…
…スイツチ。
Figure 1 is a perspective view of a conventional compact fluorescent lamp, Figure 2 is a perspective view of a conventional compact fluorescent lamp;
The figure is a perspective view of a conventional bending type fluorescent lamp, Figure 3 is a diagram showing an example of the ambient temperature characteristics actually measured with the lamp shown in Figure 1, and Figure 4 is a diagram showing the temperature of the coldest point on the tube wall of the same lamp. Voltage characteristic diagram; Figure 5 is a lamp voltage characteristic diagram with respect to elapsed time after starting the same as above; Figure 6 is a circuit diagram showing an embodiment of the present invention; Figure 7 is an example in which the present invention is applied to a small fluorescent lamp. FIG. 8 is a diagram showing lamp voltage characteristics with respect to elapsed time after starting according to the present invention. FL...Low pressure discharge lamp, Vs...Power supply, B...Impedance, B'...Auxiliary impedance, S...
...Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 常温における管壁最冷点温度が最高効率光束
を与える温度よりも約20℃以上高い低圧放電灯を
電源に安定器を介して点灯して成る放電灯点灯装
置において、上記安定器を、常温での点灯特性を
決定するインピーダンスと、補助インピーダンス
とスイツチ要素の直列回路とを並列接続して構成
すると共に、上記スイツチ要素をランプ電圧が最
大となる管壁最冷点温度以上の温度でオフせしめ
たことを特徴とする放電灯点灯装置。
1. In a discharge lamp lighting device that is powered by a low-pressure discharge lamp whose tube wall coldest point temperature at room temperature is about 20°C or more higher than the temperature that gives the highest efficiency luminous flux and is lit via a ballast, the ballast is operated at room temperature. An impedance that determines the lighting characteristics of the lamp, an auxiliary impedance, and a series circuit of a switch element are connected in parallel, and the switch element is turned off at a temperature equal to or higher than the temperature of the coldest point on the tube wall at which the lamp voltage is maximum. A discharge lamp lighting device characterized by:
JP21157482A 1982-11-30 1982-11-30 Device for firing discharge lamp Granted JPS59101797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21157482A JPS59101797A (en) 1982-11-30 1982-11-30 Device for firing discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21157482A JPS59101797A (en) 1982-11-30 1982-11-30 Device for firing discharge lamp

Publications (2)

Publication Number Publication Date
JPS59101797A JPS59101797A (en) 1984-06-12
JPH0324759B2 true JPH0324759B2 (en) 1991-04-04

Family

ID=16608021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21157482A Granted JPS59101797A (en) 1982-11-30 1982-11-30 Device for firing discharge lamp

Country Status (1)

Country Link
JP (1) JPS59101797A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW520618B (en) 1999-10-21 2003-02-11 Matsushita Electric Ind Co Ltd Fluorescent lamp operating apparatus and compact self-ballasted fluorescent lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398176A (en) * 1977-02-09 1978-08-28 Hitachi Ltd Initial lighting compensating circuit of fluorescent lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398176A (en) * 1977-02-09 1978-08-28 Hitachi Ltd Initial lighting compensating circuit of fluorescent lamp

Also Published As

Publication number Publication date
JPS59101797A (en) 1984-06-12

Similar Documents

Publication Publication Date Title
US4270071A (en) Composite base and ballast member for compact single-ended fluorescent lamp
US4170744A (en) Combination discharge-incandescent lamp with thermal switch control
US4277725A (en) Gas and/or vapor discharge lamp
JPH0324759B2 (en)
JPS6361743B2 (en)
JPS6362144A (en) Electric bulb type fluorescent lamp
JPH1074488A (en) Mercury discharge lamp device
JPH0896763A (en) Lighting system for high pressure discharge lamp
JPS59148257A (en) Mercury vapor discharge lamp
JPH0415579B2 (en)
RU2079183C1 (en) High-pressure discharge tube
JP3413669B2 (en) High pressure discharge lamp and lighting system with built-in starter
JPS6361742B2 (en)
WO2005027588A1 (en) Blended light lamp
KR200216978Y1 (en) A Mercury Lamp Having Preheat Structure
RU1810928C (en) Lighting unit
JPH10334856A (en) High-pressure vapor with built-in starter discharge lamp
JPH117919A (en) High pressure vapor discharge lamp with built-in starter
JPH03112048A (en) High-pressure sodium lamp
JPS58154156A (en) Metal vapor electric-discharge lamp
JPS5665457A (en) Metal vapor discharge lamp
JPH027513B2 (en)
JP2001052883A (en) High-pressure sodium lamp lighting device and lighting system
JPH01209698A (en) Lighting device for metallic vapor discharge lamp
JPS5665455A (en) Metal vapor discharge lamp