JPH03246439A - System for measuring dispersion characteristic of optical fiber - Google Patents

System for measuring dispersion characteristic of optical fiber

Info

Publication number
JPH03246439A
JPH03246439A JP4235990A JP4235990A JPH03246439A JP H03246439 A JPH03246439 A JP H03246439A JP 4235990 A JP4235990 A JP 4235990A JP 4235990 A JP4235990 A JP 4235990A JP H03246439 A JPH03246439 A JP H03246439A
Authority
JP
Japan
Prior art keywords
measurement
optical fiber
signal
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4235990A
Other languages
Japanese (ja)
Other versions
JP2617599B2 (en
Inventor
Shiro Ryu
史郎 笠
Yukio Horiuchi
幸夫 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP2042359A priority Critical patent/JP2617599B2/en
Publication of JPH03246439A publication Critical patent/JPH03246439A/en
Application granted granted Critical
Publication of JP2617599B2 publication Critical patent/JP2617599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the dispersion characteristic of an optical communication system inserted with an optical device of a narrow band in an optical fiber transmission system with a high resolving power and high accuracy at a faraway end by disposing a reference signal generating means on the signal receiving side of an optical fiber for measurement. CONSTITUTION:An output electric signal S4 corresponding to a wavelength change from an initial state is obtd. by a frequency measuring instrument 14 and an output electric signal S corresponding to a phase change from an initial state is obtd. by a phase comparator 6 when a control voltage value signal S1 output by a control voltage generator 14 is kept constant and the oscillation wavelength of a laser 2 for measurement is swept in this state. The dispersion characteristics of these signals are then measured via a control circuit 17. An oscillation wavelength detecting signal S3 of the laser 2 is also inputted to the circuit 17 by an optical wavelength meter 12. Since a reference electric signal S2 is not propagated in an optical fiber 4, the dispersion characteristics are measured even if the optical device of the narrow band is inserted into the optical communication system to be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバ内において生じる光信号の分散特
性を測定する光ファイバ分散特性測定方式に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber dispersion characteristic measuring method for measuring the dispersion characteristic of an optical signal generated within an optical fiber.

[従来の技術] 光ファイバを伝送路として用いる光ファイバ通信におい
ては、光源であるレーザが周波数的にスペクトル広がり
をもっているため、これと光ファイバの分散特性が相ま
って送信端でパルス波形が正しく送出されても受信側で
受信されるパルスに波形歪みが生じ、これによって受信
特性が劣化するという問題がある。
[Prior Art] In optical fiber communication that uses optical fiber as a transmission path, the laser that is the light source has a spectrum spread in terms of frequency, and this, combined with the dispersion characteristics of the optical fiber, makes it difficult for the pulse waveform to be sent out correctly at the transmitting end. However, there is a problem in that waveform distortion occurs in the pulses received on the receiving side, which deteriorates the reception characteristics.

従って光通信システムを設計していく上では光ファイバ
の有する分散特性を把握することが必要不可欠であり、
これまでに各種の分散測定方式が提案されている。
Therefore, when designing optical communication systems, it is essential to understand the dispersion characteristics of optical fibers.
Various dispersion measurement methods have been proposed so far.

第2図は従来の分散特性測定方式のブロック図であり、
1は測定用レーザから出射される光を外部変調器で変調
するための変調電気信号Saを供給するための発振器、
2は測定用光信号L1を出射するDFBレーザ又はDB
Rレーザである測定用レーザ、4は分散特性を測定する
測定用光ファイバ、5は測定用光ファイバ4から出射さ
れた強度変調光を充電変換するための光受信器、6は復
調電気信号りと基準電気信号sbの位相差を検出するた
めの位相比較器、8はDFBレーザ又はDBRレーザで
ある測定用レーザ2から出射され光ファイバFaを分道
した測定用光信号L1に対してスペクトル線幅を広げる
ことなく発振器1からの変調電気信号Saより強度変調
する外部変調器、9は外部変Ill!i8を通過後、光
ファイバFbを分道した測定用光信号L2を適当な比で
3つに分岐するための光分岐器、10は測定用レーザ2
から出力される測定用光信号L1の発振波長を光ヘテロ
ダイン検波により測定するためのモニタ用レーザ、11
は測定用レーザ2とモニタ用レーザ10の発振波長差を
モニタするためのスペクトラムアナライザ、12は測定
用レーザ2の発振波長を大まかに測定してモニタ用レー
ザ10の発振波長を決定するための光波長計、FC〜〜
Ffは光ファイバ、sbは基準電気信号、SCは中間周
波電気信号である。
Figure 2 is a block diagram of a conventional dispersion characteristic measurement method.
1 is an oscillator for supplying a modulated electric signal Sa for modulating the light emitted from the measurement laser with an external modulator;
2 is a DFB laser or DB that emits the measurement optical signal L1
A measurement laser which is an R laser, 4 a measurement optical fiber for measuring dispersion characteristics, 5 an optical receiver for charging and converting the intensity modulated light emitted from the measurement optical fiber 4, and 6 a demodulated electrical signal and a phase comparator for detecting the phase difference between the reference electric signal sb and the reference electric signal sb; An external modulator 9 modulates the intensity from the modulated electric signal Sa from the oscillator 1 without increasing the width. After passing through i8, an optical branching device for branching the measurement optical signal L2 branched from the optical fiber Fb into three at an appropriate ratio; 10 is a measurement laser 2;
a monitoring laser for measuring the oscillation wavelength of the measurement optical signal L1 output from the optical heterodyne detection, 11;
12 is a spectrum analyzer for monitoring the difference in oscillation wavelength between the measurement laser 2 and the monitor laser 10; 12 is a light for roughly measuring the oscillation wavelength of the measurement laser 2 and determining the oscillation wavelength of the monitor laser 10; Wavemeter, FC~~
Ff is an optical fiber, sb is a reference electrical signal, and SC is an intermediate frequency electrical signal.

なお、光ヘテロダイン検波によるモニタ部20(以下、
単にモニタ部20と称す)は、モニタ用レーザ10、光
合成器13、光受信器5C及びスペクトラム・アナライ
ザ11から構成されている。
Note that the monitor unit 20 (hereinafter referred to as
The monitor section 20 (simply referred to as a monitor section 20) is composed of a monitor laser 10, a light combiner 13, an optical receiver 5C, and a spectrum analyzer 11.

第2図の構成において、測定用レーザ2には、単一縦モ
ード発振特性に優れ、かつスペクトル線幅の狭いDFB
レーザ又はDBRレーザを用いている。また測定用レー
ザ2からの出力光は外部変調器8によって変調されるの
で光源のスペクトル線幅は何ら影響を受けることはない
。従って、光源のスペクトル広がりによる分散特性への
影響を軽減することができる。
In the configuration shown in Fig. 2, the measurement laser 2 includes a DFB with excellent single longitudinal mode oscillation characteristics and a narrow spectral linewidth.
A laser or DBR laser is used. Furthermore, since the output light from the measurement laser 2 is modulated by the external modulator 8, the spectral line width of the light source is not affected in any way. Therefore, the influence of the spectrum broadening of the light source on the dispersion characteristics can be reduced.

また、第2図の構成においては、光分岐器9で分岐され
た測定光信号L2とモニタ用レーザ10からのモニタ光
信号LOとを光合成器13で合成して両波のビート信号
り成分を作成し、光受信器5Cで中間周波電気信号SC
に光電変換してスペクトラム・アナライザ11上で観測
し、その後、測定用レーザ2の発振波長を徐々に変化さ
せていくことにより、初期の発振波長からの波長変化を
スペクトラム・アナライザ11上で観測すると同時に、
出力信号Sを測定して、分散特性を高分解能・i精度に
測定している。しかしながら、第2図の構成においては
基準電気信号sbと測定用光信号L2が別の伝送路を伝
搬したものを測定するため、周囲の温度変化等の理由に
より測定用光ファイバ4が伸縮した場合に生じる復調電
気信号りの位相変動の影響を除去することができない。
In addition, in the configuration shown in FIG. 2, the measurement optical signal L2 branched by the optical splitter 9 and the monitor optical signal LO from the monitoring laser 10 are combined by the optical combiner 13, and the beat signal components of both waves are combined. Create an intermediate frequency electrical signal SC using the optical receiver 5C.
When the wavelength change from the initial oscillation wavelength is observed on the spectrum analyzer 11 by photoelectrically converting the oscillation wavelength into the oscillation wavelength and observing it on the spectrum analyzer 11, the oscillation wavelength of the measurement laser 2 is gradually changed. at the same time,
The output signal S is measured to measure the dispersion characteristics with high resolution and i-accuracy. However, in the configuration shown in FIG. 2, since the reference electrical signal sb and the measurement optical signal L2 are measured through different transmission paths, even if the measurement optical fiber 4 expands or contracts due to a change in ambient temperature, etc. It is not possible to remove the effects of phase fluctuations in the demodulated electrical signal that occur in the demodulated electrical signal.

第3居は、上記問題点をIi!決した餐来輯戚で、測定
用光ファイバ4の零分散波長とほぼ同一の波長の約1.
3μmで発振する基準用レーザ2“の出力光である基準
光信号L3を測定用光ファイバ4を伝搬させると共に、
遠端測定できるように光ヘテロゲイン検波を用いたモニ
タ部20を受信側に配置した構成にしている。さらに、
基準用レーザ2#と測定用レーザ2′の出力光である基
準光信号L3と測定用光信号L1はそれぞれ別々の外部
変調器8a、8bを用いてそれぞれ基準光信号L4と測
定用光信号L2に変調され、光分波器7゜光受信器5a
、5bを用いてそれぞれ復調電気信号[)a、[)bに
変換されている。なお、FQ、Fhは光′ファイバであ
る。基準用レーザ2″の出力光が零分散波長に近いため
、分散の影響をほとんど受けずかつ測定用光ファイバ4
の伸縮の影響は、測定用レーザ2−からの出力光と同等
に受けているため両波に対するI[:J電気信号Da及
びDbを位相比較器6で差動合成することにより、測定
用光ファイバ4の伸縮の影響は除去して分散特性を測定
するここが可断である。
The third room addresses the above problems! The wavelength is approximately 1.0 mm, which is approximately the same as the zero dispersion wavelength of the optical fiber 4 for measurement.
The reference optical signal L3, which is the output light of the reference laser 2'' that oscillates at 3 μm, is propagated through the measurement optical fiber 4, and
A monitor section 20 using optical heterogain detection is arranged on the receiving side to enable far-end measurement. moreover,
The reference optical signal L3 and the measurement optical signal L1, which are the output lights of the reference laser 2# and the measurement laser 2', are converted into a reference optical signal L4 and a measurement optical signal L2, respectively, using separate external modulators 8a and 8b. is modulated into an optical demultiplexer 7° and an optical receiver 5a.
, 5b to demodulated electrical signals [)a and [)b, respectively. Note that FQ and Fh are optical fibers. Since the output light of the reference laser 2'' is close to the zero dispersion wavelength, it is almost unaffected by dispersion and can be easily connected to the measurement optical fiber 4.
Since the influence of the expansion and contraction of is equally affected by the output light from the measurement laser 2-, the measurement light is It is possible to remove the influence of expansion and contraction of the fiber 4 and measure the dispersion characteristics.

[発明が解決しようとする課題] ところで前記した従来の分散特性測定方式においては、
基準用レーザ2“の波長として測定用光ファイバ4の零
分散波長と同一の約1.3μmを用いており、また測定
用レーザ2′としては通常波長1.55μm帯の光が使
われる。従って、測定用ファイバ4の途中に半導体レー
ザ増幅器、光ファイバレーザ増幅器、光フィルタなどの
狭帯域光デバイスが挿入された系においては、基準用レ
ーザ2#から送出された波長的1.3μmの光は分道せ
ず、測定が不可能になるという問題点があった。
[Problem to be solved by the invention] By the way, in the conventional dispersion characteristic measurement method described above,
As the wavelength of the reference laser 2'', approximately 1.3 μm, which is the same as the zero dispersion wavelength of the measurement optical fiber 4, is used, and as the measurement laser 2', light in the wavelength band of 1.55 μm is normally used. In a system in which a narrowband optical device such as a semiconductor laser amplifier, an optical fiber laser amplifier, or an optical filter is inserted in the middle of the measurement fiber 4, the light with a wavelength of 1.3 μm sent out from the reference laser 2# is There was a problem that there was no separation, making measurement impossible.

本発明は、前記した従来技術の問題点を解決するために
なされたもので、光ファイバ伝送系の途中に狭帯域光デ
バイスが挿入された光通信システムでも、高分解能、高
精度に測定することが可能な光ファイバ分散特性測定方
式を提供せんとするものである。
The present invention was made in order to solve the problems of the prior art described above, and it is possible to perform measurements with high resolution and high precision even in an optical communication system in which a narrowband optical device is inserted in the middle of an optical fiber transmission system. The purpose of this invention is to provide an optical fiber dispersion characteristic measurement method that allows for the measurement of optical fiber dispersion characteristics.

[1題を解決するための手段] 前記課題の解決は、本発明の光ファイバ分散特性測定方
式が、測定用レーザから出力された測定用信号光を外部
変調器で変調して測定用光ファイバに入射し、該測定用
光ファイバの出力端から出射された該測定用信号光を光
受信器で測定電気信号に変換した後、該測定電気信号と
基準電気信号との位相差及び前記測定用信号光の発振波
長変化から分散特性を測定する光ファイバ分散特性測定
方式において、前記光受信器側に配置されて前記基準電
気信号を発生する基準信号発生手段を有し、発振周波数
が一定にされている前記測定用信号光を前記測定用光フ
ァイバに入射し、前記光受信器で変換された測定電気信
号と、前記基準信号発生手段から発生された前記基準電
気信号とを位相比較器で比較して位相差が等しくなるよ
うに初期設定した後、前記測定用信号光を掃引して前記
測定用光ファイバの分散特性を測定する、以上の構成手
段を採用することにより達成される。
[Means for Solving Problem 1] The above problem can be solved by using an optical fiber dispersion characteristic measurement method according to the present invention, which modulates the measurement signal light outputted from the measurement laser with an external modulator and converts it into the measurement optical fiber. After converting the measurement signal light incident on the measurement optical fiber and emitted from the output end of the measurement optical fiber into a measurement electrical signal by an optical receiver, the phase difference between the measurement electrical signal and the reference electrical signal and the measurement signal light are determined. In an optical fiber dispersion characteristic measurement method for measuring dispersion characteristics from changes in the oscillation wavelength of signal light, the method includes a reference signal generating means disposed on the optical receiver side and generating the reference electric signal, and the oscillation frequency is kept constant. inputting the measurement signal light into the measurement optical fiber, and comparing the measurement electrical signal converted by the optical receiver with the reference electrical signal generated from the reference signal generation means using a phase comparator. This is achieved by employing the above-described configuration means, in which the measurement signal light is initially set so that the phase differences are equal, and then the measurement signal light is swept to measure the dispersion characteristics of the measurement optical fiber.

[作 用] 本発明は前記手段を講じたので、基準信号発生手段を光
受信器側に配し基準信号を測定用光ファイバ中を伝搬さ
せないため、周囲温度変化等の原因により測定用光ファ
イバの伸縮や、測定用光ファイバの途中に半導体レーザ
増幅器、光ファイバレーザ増幅器、光フィルタ等の狭帯
域光デバイスが挿入された系を不可避とする場合にも全
く影響されず、しかも従来例における測定用信号光の波
長と異なる零分散波長の基準信号を発生させる基準用レ
ーザが省略可能となり、それだけ高分解能かつ高精度、
高信頼性の分散測定を実現する。
[Function] Since the present invention takes the above measures, the reference signal generating means is disposed on the optical receiver side and the reference signal is not propagated in the measurement optical fiber, so that the measurement optical fiber may be damaged due to changes in ambient temperature, etc. It is completely unaffected by the expansion and contraction of the optical fiber for measurement, or when a narrowband optical device such as a semiconductor laser amplifier, optical fiber laser amplifier, or optical filter is unavoidably inserted in the middle of the measurement optical fiber. The reference laser that generates a reference signal with a zero-dispersion wavelength different from the wavelength of the reference signal light can be omitted, resulting in higher resolution, higher precision, and
Achieve highly reliable dispersion measurement.

[実施例] 本発明の実施例を第1図につき説明する。[Example] An embodiment of the invention will be described with reference to FIG.

従来例と同一構成については同一符号を付し、説明の!
l複を省く。なお、従来構成と異なる点は、測定用光フ
ァイバ4の受信側(測定用信号光L2の光ファイバ4の
出射側)に直接電気信号の基準信号を発生する基準信号
発生手段Aを配置し、測定用光ファイバ4に基準信号を
伝搬させずに測定用光信号L2と基準電気信号との位相
比較を行って、分散特性の測定が可能と成るように構成
したことにある。以下に、f:c来構成と興なる構成!
分を中心に、本発明の詳細な説明する。
Components that are the same as those of the conventional example are given the same reference numerals and explained in the following!
Omit the double. Note that the difference from the conventional configuration is that a reference signal generating means A that directly generates a reference signal of an electric signal is arranged on the receiving side of the measuring optical fiber 4 (the output side of the optical fiber 4 of the measuring signal light L2), The present invention is configured such that the dispersion characteristics can be measured by comparing the phases of the measuring optical signal L2 and the reference electric signal without propagating the reference signal through the measuring optical fiber 4. Below is the f:c next composition and the new composition!
The present invention will be described in detail, focusing on the following sections.

光受信器5により復調された復調電気信100は、位相
比較器6の一方の入力端子に入力される。
The demodulated electrical signal 100 demodulated by the optical receiver 5 is input to one input terminal of the phase comparator 6 .

方、本発明の特徴である基準信号発生手段Aを構成する
制御電圧発生器15からのII ’m電圧値信号S1に
応じて発振周波数が定まる電圧制御発振器16の出力で
ある基準電気信号S2が、位相比較器6の、もう1つの
入力端子に入力されている。
On the other hand, the reference electric signal S2, which is the output of the voltage controlled oscillator 16 whose oscillation frequency is determined according to the II'm voltage value signal S1 from the control voltage generator 15 constituting the reference signal generating means A, which is a feature of the present invention, is , is input to another input terminal of the phase comparator 6.

さて、測定の開始時には、初期設定として、まず測定用
レーザ2の発振周波数を掃引せずに、ある固定された波
長で発振させておく。この時、復調電気信号りの位相は
一定である。この状態において、位相比較器6の出力電
気信号Sがゼロの位相差を示すように制御回路17から
出力した調整電気信号S5により制御電圧発生器15の
制御電圧値信号S1を制御する。位相比較器6の位相差
がゼロとなる制御電圧値信号S1が電圧制御発振器16
に印加すれば、電圧制御発振器16の出力基準電気信号
S2は、復調電気信号りと完全に位相が同期したものと
なる。従って、この状態に5いて電圧制御発振器16か
ら出力された基準電気信号S2は、従来例の第2図にお
ける基準電気信号Sbあるいは第3図における復調電気
信号[)aと完全に等価なものとすることができる。
Now, when starting a measurement, as an initial setting, the oscillation frequency of the measurement laser 2 is not swept but is oscillated at a certain fixed wavelength. At this time, the phase of the demodulated electrical signal is constant. In this state, the control voltage value signal S1 of the control voltage generator 15 is controlled by the adjustment electric signal S5 outputted from the control circuit 17 so that the output electric signal S of the phase comparator 6 shows a zero phase difference. The control voltage value signal S1 at which the phase difference of the phase comparator 6 is zero is transmitted to the voltage controlled oscillator 16.
, the output reference electrical signal S2 of the voltage controlled oscillator 16 becomes completely synchronized in phase with the demodulated electrical signal. Therefore, the reference electrical signal S2 outputted from the voltage controlled oscillator 16 in this state is completely equivalent to the reference electrical signal Sb in FIG. 2 of the conventional example or the demodulated electrical signal [)a in FIG. 3. can do.

そこで制御電圧発生器15の出力する制御電圧値信号S
1をこのまま一定に保っておき、この状態で測定用レー
ザ2の発振波長を掃引すれば、周波数測定器14により
、初期状態からの波長変化に対応した出力電気信号S4
が、また位相比較器6により、初期状態からの位相変化
に対応した出力電気信号Sを得ることができ、これらの
信号を制御回路17を介して分散特性を測定することが
できる。あわせて、光波長計12で測定用レーザ2の発
振波長検出電気信号S3をも制御回路17に入力する。
Therefore, the control voltage value signal S output from the control voltage generator 15
1 is kept constant and the oscillation wavelength of the measurement laser 2 is swept in this state, the frequency measuring device 14 generates an output electrical signal S4 corresponding to the wavelength change from the initial state.
However, the phase comparator 6 can also obtain an output electrical signal S corresponding to a phase change from the initial state, and the dispersion characteristics of these signals can be measured via the control circuit 17. At the same time, the optical wavelength meter 12 also inputs the oscillation wavelength detection electric signal S3 of the measurement laser 2 to the control circuit 17.

上述のように、本発明は基準電気信号S2を測定用光フ
ァイバ4を伝搬させないため、測定すべき光通信システ
ムに狭帯域の光デバイスが挿入されていても、分散特性
の測定が可能となる。
As described above, since the present invention does not propagate the reference electrical signal S2 through the measurement optical fiber 4, it is possible to measure dispersion characteristics even if a narrowband optical device is inserted into the optical communication system to be measured. .

また、本発明では第3図の従来構成に加え、測定用信号
光の波長(1,5μm)と異なる零分散波長(1,3μ
m)の基準光信号L3を発生させる基準用レーザ2″が
不要となるため、発振特性の異なる2つのレーザの外部
温度の調整等が不要となり、高分解能かつ高精度な分散
測定が可能である。
In addition to the conventional configuration shown in FIG.
Since the reference laser 2'' that generates the reference optical signal L3 of m) is not required, there is no need to adjust the external temperature of the two lasers with different oscillation characteristics, and high-resolution and high-precision dispersion measurement is possible. .

しかも、従来では測定用レーザ2′の発振波長変化をス
ペクトラム・アナライザ11上で観測していたため、手
動の測定を行わざるを得ず、実用化の妨げとなっていた
が、本発明ではスペクトラム・アナライザ11の代わり
に周波数カウンタなどの周波数測定器14を用いること
により正確に測定することができ、かつ自動測定可能な
方法を提供している。
Furthermore, in the past, changes in the oscillation wavelength of the measurement laser 2' were observed on the spectrum analyzer 11, which necessitated manual measurement, which hindered practical application. By using a frequency measuring device 14 such as a frequency counter instead of the analyzer 11, a method is provided that allows accurate measurement and automatic measurement.

[発明の効果] かくして本発明は、測定用信号光の出射側すなわち、測
定用光ファイバ4の受信側に直接電気基準信号S2を発
生する基準信号発生手段Aを配置して初期設定すること
により、光ファイバ伝送系に狭帯域の特性を有する光デ
バイスが挿入された光通信システムの分散特性を高分解
能、高精度に遠端測定することでき、かつ外部の温度変
化等により変動しやすい基準用レーザ2#を無くすこと
ができる。
[Effects of the Invention] Thus, the present invention can be achieved by arranging and initializing the reference signal generating means A that directly generates the electrical reference signal S2 on the output side of the measuring signal light, that is, on the receiving side of the measuring optical fiber 4. , can measure the dispersion characteristics of an optical communication system in which an optical device with narrowband characteristics is inserted into an optical fiber transmission system at the far end with high resolution and precision, and is used as a reference that is easily fluctuated due to external temperature changes, etc. Laser 2# can be eliminated.

基準信号発生手段Aとして、制御電圧発生器15及び電
圧制御発振器16で構成することにより、簡単で、かつ
精度の高い基準電気信号S2を発生することができる。
By configuring the reference signal generating means A by the control voltage generator 15 and the voltage controlled oscillator 16, it is possible to generate a simple and highly accurate reference electric signal S2.

測定用レーザ2の発振波長変化の測定手段として、周波
数カウンタなどの周波数測定器14を用いることにより
、正確な測定で、かつ自動測定が可能となる。
By using a frequency measuring device 14 such as a frequency counter as a means for measuring changes in the oscillation wavelength of the measurement laser 2, accurate and automatic measurement becomes possible.

従って、本発明はコヒーレント光通信用分散補償回路の
設計等に広く適用することが可能であり、また測定用光
ファイバの途中に狭帯域光デバイスが挿入された光通信
システムに適用できるという特徴を有し、その効果は極
めて大である。
Therefore, the present invention can be widely applied to the design of dispersion compensation circuits for coherent optical communication, and can also be applied to optical communication systems in which a narrowband optical device is inserted in the middle of an optical fiber for measurement. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施°例としての光ファイバ分散特性
測定方式のブロック図、第2図は従来の光ファイバ分散
特性測定方式のブロック図、第3図は測定用光ファイバ
の伸縮の影響を受けない従来の光ファイバ分散特性測定
方式のブロック図である。 1・・・発振器 2.2−・・・測定用レーザ 2#・・・基準用レーザ 4・・・測定用光ファイバ 5.5a、5b、5c・・・光受信器 6・・・位相比較器 7・・・光分波器 8.8a、8b・・・外部変[5 9・・・光分岐器 10・・・モニタ用レーザ 11・・・スペクトラム・アナライザ 12・・・光波長計 13・・・光合成器 14・・・周波数測定器 15−・・制御電圧発生器 16・・・電圧制御発振器 17・・・制御回路 20・・・光ヘテロダイン検波のモニタ部A・・・基準
信号発生手段 り、Da、Db・・・復調電気信号 SC・・・中間周波電気信号 fO・・・周波数 Fa−Fh、F′、F“・・・光ファイバLO・・・モ
ニタ光信号 Ll、L2・・・測定用光信号 L3.L4・・・基準光信号 し・・・ビート信号 Sa・・・変TATi気信号 Sb、82・・・基準電気信号 S、S4・・・出力電気信号 Sl・・・制御電圧値信号 S3・・・発振波長検出電気信号 Sb・・・調整電気信号
Fig. 1 is a block diagram of an optical fiber dispersion characteristic measurement method as an example of implementing the present invention, Fig. 2 is a block diagram of a conventional optical fiber dispersion characteristic measurement method, and Fig. 3 is the effect of expansion and contraction of the optical fiber for measurement. 1 is a block diagram of a conventional optical fiber dispersion characteristic measurement method that does not undergo 1...Oscillator 2.2-...Measurement laser 2#...Reference laser 4...Measurement optical fiber 5.5a, 5b, 5c...Optical receiver 6...Phase comparison Device 7... Optical splitter 8.8a, 8b... External converter [5 9... Optical splitter 10... Monitoring laser 11... Spectrum analyzer 12... Optical wavelength meter 13 ... Optical combiner 14 ... Frequency measuring device 15 - ... Control voltage generator 16 ... Voltage control oscillator 17 ... Control circuit 20 ... Monitor part A of optical heterodyne detection ... Reference signal generation Means, Da, Db... Demodulated electrical signal SC... Intermediate frequency electrical signal fO... Frequency Fa-Fh, F', F"... Optical fiber LO... Monitor optical signal Ll, L2. ...Measurement optical signal L3.L4...Reference optical signal...Beat signal Sa...Variable TATi signal Sb, 82...Reference electrical signal S, S4...Output electrical signal Sl...・Control voltage value signal S3...Oscillation wavelength detection electrical signal Sb...Adjustment electrical signal

Claims (1)

【特許請求の範囲】 1、測定用レーザから出力された測定用信号光を外部変
調器で変調して測定用光ファイバに入射し、該測定用光
ファイバの出力端から出射された該測定用信号光を光受
信器で測定電気信号に変換した後、該測定電気信号と基
準電気信号との位相差及び前記測定用信号光の発振波長
変化から分散特性を測定する光ファイバ分散特性測定方
式において、前記光受信器側に配置されて前記基準電気
信号を発生する基準信号発生手段を有し、 発振周波数が一定にされている前記測定用信号光を前記
測定用光ファイバに入射し、前記光受信器で変換された
測定電気信号と、前記基準信号発生手段から発生された
前記基準電気信号とを位相比較器で比較して位相差が等
しくなるように初期設定した後、前記測定用信号光を掃
引して前記測定用光ファイバの分散特性を測定するよう
に構成したことを特徴とする光ファイバ分散特性測定方
式。 2、前記基準信号発生手段が、制御電圧発生器及び電圧
制御発振器で構成されていることを特徴とする請求項1
記載の光ファイバ分散特性測定方式。 3、前記測定用信号光の発振波長変化を測定する手段が
、周波数測定器であることを特徴とする請求項1記載の
光ファイバ分散特性測定方式。
[Scope of Claims] 1. The measurement signal light output from the measurement laser is modulated by an external modulator and enters the measurement optical fiber, and the measurement signal light is emitted from the output end of the measurement optical fiber. In an optical fiber dispersion characteristic measurement method in which a signal light is converted into a measurement electrical signal by an optical receiver, and then the dispersion characteristics are measured from the phase difference between the measurement electrical signal and a reference electrical signal and the change in the oscillation wavelength of the measurement signal light. , comprising a reference signal generating means disposed on the optical receiver side to generate the reference electrical signal, the measurement signal light having a constant oscillation frequency is incident on the measurement optical fiber, and the measurement signal light is The measurement electrical signal converted by the receiver and the reference electrical signal generated from the reference signal generation means are compared with a phase comparator to initialize the phase difference so that they are equal, and then the measurement signal light is An optical fiber dispersion characteristic measuring method, characterized in that the dispersion characteristic of the optical fiber for measurement is measured by sweeping the dispersion characteristic of the measuring optical fiber. 2. Claim 1, wherein the reference signal generating means is comprised of a control voltage generator and a voltage controlled oscillator.
Optical fiber dispersion characteristics measurement method described. 3. The optical fiber dispersion characteristic measuring method according to claim 1, wherein the means for measuring the change in the oscillation wavelength of the measurement signal light is a frequency measuring device.
JP2042359A 1990-02-26 1990-02-26 Optical fiber dispersion characteristics measurement method Expired - Lifetime JP2617599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042359A JP2617599B2 (en) 1990-02-26 1990-02-26 Optical fiber dispersion characteristics measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042359A JP2617599B2 (en) 1990-02-26 1990-02-26 Optical fiber dispersion characteristics measurement method

Publications (2)

Publication Number Publication Date
JPH03246439A true JPH03246439A (en) 1991-11-01
JP2617599B2 JP2617599B2 (en) 1997-06-04

Family

ID=12633841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042359A Expired - Lifetime JP2617599B2 (en) 1990-02-26 1990-02-26 Optical fiber dispersion characteristics measurement method

Country Status (1)

Country Link
JP (1) JP2617599B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613023A (en) * 1984-06-18 1986-01-09 Nippon Telegr & Teleph Corp <Ntt> Measuring device of wavelength dispersion of optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613023A (en) * 1984-06-18 1986-01-09 Nippon Telegr & Teleph Corp <Ntt> Measuring device of wavelength dispersion of optical fiber

Also Published As

Publication number Publication date
JP2617599B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH079386B2 (en) Optical fiber dispersion characteristics measurement method
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
US6385217B1 (en) Compact wavelength-independent wavelength-locker for absolute wavelength stability of a laser diode
JP3306819B2 (en) Optical pulse tester
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
US6590666B2 (en) Method and system for optical spectrum analysis with non-uniform sweep rate correction
JP3496878B2 (en) Chromatic dispersion and loss wavelength dependence measuring device
JPH03246439A (en) System for measuring dispersion characteristic of optical fiber
JPS62159928A (en) Frequency response measuring instrument for optical reception system
JP2939482B2 (en) Apparatus and method for measuring characteristics of optical phase modulator
JP3317656B2 (en) Optical component chromatic dispersion measuring device
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JP3252880B2 (en) Dynamic characteristic measuring device for wavelength tunable element
JP3317655B2 (en) Wavelength dispersion measuring device for optical components using mode-locked ring laser
JPH11304656A (en) Wavelength dispersion measuring method and device
JPH0716982Y2 (en) Optical frequency change measuring device
JP2000284192A (en) Light frequency grid generating device
JPH0854586A (en) Light source for optical frequency sweeping
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPH0429029A (en) Measuring instrument for optical phase modulation characteristic
JPH05273077A (en) Measuring device of light phase modulation characteristics
JP2790836B2 (en) Optical phase modulation characteristics measurement device
JPH05273049A (en) Phase variation measuring apparatus
JPH02284045A (en) Detection of concentration and pressure of gas with tunable etalon utilized therefor
JP3211850B2 (en) Optical fiber chromatic dispersion measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term