JPH03246414A - Oscillation angle coordinate transforming device - Google Patents

Oscillation angle coordinate transforming device

Info

Publication number
JPH03246414A
JPH03246414A JP41067490A JP41067490A JPH03246414A JP H03246414 A JPH03246414 A JP H03246414A JP 41067490 A JP41067490 A JP 41067490A JP 41067490 A JP41067490 A JP 41067490A JP H03246414 A JPH03246414 A JP H03246414A
Authority
JP
Japan
Prior art keywords
angle
oscillation
orthogonal
line
tanpsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41067490A
Other languages
Japanese (ja)
Other versions
JPH0553364B2 (en
Inventor
Takao Yamaguchi
山口 隆男
Michiko Matsuda
松田 三知子
Kazuaki Tabata
和明 田畑
Yasuhide Morishima
盛島 保秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP41067490A priority Critical patent/JPH03246414A/en
Publication of JPH03246414A publication Critical patent/JPH03246414A/en
Publication of JPH0553364B2 publication Critical patent/JPH0553364B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To convert the angles of oscillation of two orthogonal axes into angles of oscillation of other two orthogonal axes by finding orthogonal coordinates of a position for which the three-axial coordinates of a deck surface are turned by a certain angle and calculating the angle of crisscrossed oscillation at the position. CONSTITUTION:The values of the angles chi and psi of oscillation of the two standard orthogonal aces of a table T are transformed by groove cam computers G1 and G2 into tanchi and tanpsi, which are inputted to receivers 159 and 158 and a cosine computer A1. The computer A1 puts levers 29a and 30a in motion corresponding to the tanchi and tanpsi about rotary disks 27a and 28a and a lead-in shaft 3A1 gives rotary disks 32a and 33a an angle thetad of rotation (swivel angle of table S). At this time, members 34a-37a are put in motion proportional to tanchi and costhetad, tanchi and sinthetad, tanpsi and costhetad, and tanpsi and sinthetad. Those values are added by differential gears 41a and 40a according to a specific expres sion, so that a shaft 4A1 is put in motion proportional to tanchi1, i.e. the tangent of the lateral oscillation angle and a shaft 5A1 is put in motion proportional to tanpsi1, i.e. the tangent of the longitudinal oscillation angle.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

本発明は、船舶の如き動揺体の方位管制された動揺安定
装置等に適用される動揺角座標変換装置に関する。 [0002]
TECHNICAL FIELD The present invention relates to a sway angle coordinate conversion device that is applied to a sway stabilizing device for a sway body such as a ship whose azimuth is controlled. [0002]

【従来の技術】[Conventional technology]

船舶等の動揺体上に装備した照準望遠鏡、テレビカメラ
等の光学装置がその動揺に抗して連続的に目標物を捕捉
できるようにするには、これらの装置の俯仰、旋回機構
を動揺に伴って修正駆動することが必要となる。 [0003]
In order to enable optical devices such as sighting telescopes and television cameras installed on moving bodies such as ships to continuously capture targets against the shaking, it is necessary to adjust the elevation and rotation mechanisms of these devices to avoid shaking. Accordingly, corrective driving is required. [0003]

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、これまでかような方位管制された動揺安定装
置は実用されていなかった。 [0004] したがって、本発明の目的は、実用に適する方位管制さ
れた動揺安定装置等に適用される座標変換装置の提供に
ある。 [0005]
However, until now, such an azimuth-controlled vibration stabilization device had not been put into practical use. [0004] Accordingly, an object of the present invention is to provide a coordinate conversion device that is suitable for practical use and is applied to an azimuth-controlled vibration stabilizing device. [0005]

【課題を解決するための手段】[Means to solve the problem]

本発明は、動揺体の床面上の任意直交2軸に関する動揺
角を、この2軸に対し任意角度をなす他の直交2軸に関
する動揺角に変換するようにしたものである。 [0006]
The present invention is configured to convert the swing angle of the moving body with respect to two arbitrary orthogonal axes on the floor surface into the swing angle with respect to two other orthogonal axes forming arbitrary angles with respect to these two axes. [0006]

【実施例】【Example】

本発明の詳細な説明 まず、図11図2を用いて、本発明の動揺角座標変換装
置の原理について説明する。 [0007] 図1は本発明の取扱う動揺角の座標変換装置に関する説
明図である。図2は該装置の関連機器の機能と動揺、傾
斜との関係に関する説明図である。 [0008] 又動揺、傾斜を生ずる床面に船舶、車輌の甲板面のよう
な動的のものと、建物地盤等の静的なものとがあるが、
図12図2はその代表例として船の甲板面(D面)をと
り上げる。従って図2の関連機器は入力センサとして振
子型電子傾斜計、出力機器として旋回俯仰盤に搭載され
た光学機器の光軸OTをもっている。 [0009] 図1において甲板面(D面)が水平面(H面)に対し図
の如き体勢になったとする。0面上の直交○−XYZ座
標系においてOXを船の縦軸(首尾軸)oYを横軸(正
横軸) ○Zをマスト軸とする。OX線がD面に直交す
る面内にてoY線を軸として回転し、4面上のOX′線
と一致したとし、それまでの角度をψとし、これを船の
縦動揺角(ピッチ角)という。又床上のoY線がOX線
を軸として回転し、水平線上の○Y′線に一致したとし
、それまでの角度をχとし、これを横動揺角(ロール角
)という。 [0010] 図2は図1のOX、oY軸と同一のOX線、oY線がψ
、χの動揺角をもった動揺り面を紙面に一致させて投影
した平面図である。従って図1の水平面上の○X/、○
Y′線はox、oyと投影線が一致する。搭載機器の振
子針はピッチ計p、ロール計rで示されたそれぞれ側面
図も示しである。この場合ピッチ計及びロール計の振子
指針は、ピッチ計はY−Y’軸を軸心としてY−Y’軸
を含む甲板面に直交する面内にて回転し、ロール計はx
−x’軸を軸心とシテX−X′軸を含み甲板面に直交す
る面内にて回転するので結局p、rの側面図はp、rの
指針目盛面を示すことになり、それぞれの指針はそれぞ
れの目盛面への動力線の投影W′ に一致し、ピッチ計
はピッチ角ψを示しロール計はロール角χを示すことに
なる。又光軸○Tをもつ旋回俯仰盤はTにて示され旋回
台は床面に平行面内で旋回し、旋回台上でトラニオンに
支承される光軸○Tは旋回台、従って甲板面に直交した
面内にて俯仰する。D面が水平である場合光軸OT線が
水平面を指向し視野中央に水平線が一致する位置を仰角
0位置にセットする。図2にては旋回俯仰盤はOX線に
旋回台基線を一致させ仰角0の場合である。図にはその
場合の望遠鏡視野を示しである。ピッチ角ψの今の場合
には水平線は視野中央より偏位していて偏差はピッチ角
ψに相当している。動揺角χ、ψの状態のまま旋回俯仰
盤を旋回してOYの方位に光軸を一致させれば視野の中
央よりの偏位水平線はロール角χに相当する。従って前
者の場合にはピッチ計の出力ψにてOTの俯仰角を修正
すれば光軸は水平線を指向し視野中央に水平線が一致し
、後者の場合にはロール計の出力でχ動揺の修正が出来
る訳である。この関係は船の標準直交2軸XX’ 、 
YY’以外の任意の方向にもその方向の動揺角が求まれ
ば同様にその方向に旋回した旋回俯仰盤の光軸の動揺を
修正出来る訳である。 [0011] 一方動揺面は直交2軸の動揺角によって決定されるので
D面とH面の傾斜による相対姿勢関係が一定であれば任
意の方向の直交2軸に関する動揺角よりこれと任意の角
度をもつ他の直交2軸に関する動揺角を決定しうる訳で
ある。
Detailed Description of the Present Invention First, the principle of the oscillation angle coordinate conversion device of the present invention will be explained using FIGS. 11 and 2. [0007] FIG. 1 is an explanatory diagram of a oscillation angle coordinate conversion device handled by the present invention. FIG. 2 is an explanatory diagram regarding the relationship between the functions of related equipment of the device and the oscillation and inclination. [0008] Floor surfaces that cause shaking and tilting include dynamic ones such as the deck surfaces of ships and vehicles, and static ones such as the ground of buildings.
Figure 12 Figure 2 takes up the deck surface (D surface) of a ship as a typical example. Therefore, the related equipment shown in FIG. 2 has a pendulum-type electronic inclinometer as an input sensor, and an optical axis OT of an optical device mounted on the turning/elevating board as an output device. [0009] In FIG. 1, it is assumed that the deck surface (D surface) is in the position shown in the figure with respect to the horizontal surface (H surface). In the orthogonal ○-XYZ coordinate system on plane 0, OX is the vertical axis (tail axis) of the ship, oY is the horizontal axis (normal horizontal axis), and ○Z is the mast axis. Assume that the OX line rotates around the oY line in a plane perpendicular to the D plane and coincides with the OX' line on the fourth plane.The angle until then is ψ, and this is the ship's pitch angle (pitch angle). ). Also, suppose that the oY line on the floor rotates around the OX line and coincides with the oY' line on the horizon, and the angle up to that point is χ, which is called the lateral oscillation angle (roll angle). [0010] In FIG. 2, the OX line and oY line, which are the same as the OX and oY axes in FIG.
, χ is a plan view in which a oscillating surface having an oscillating angle of χ is projected so as to match the plane of the paper. Therefore, ○X/, ○ on the horizontal plane in Figure 1
The projection line of the Y' line coincides with ox and oy. The pendulum needle of the onboard equipment is also shown in side view, indicated by a pitch meter p and a roll meter r. In this case, the pitch meter and the roll meter's pendulum pointers rotate in a plane perpendicular to the deck surface including the Y-Y' axis, with the pitch meter as the center of rotation, and the roll meter rotates at x
Since the -x' axis is rotated in a plane that includes the axis center and the X-X' axis and is perpendicular to the deck surface, the side views of p and r will eventually show the pointer scale plane of p and r, respectively. The pointers coincide with the projection W' of the power lines onto the respective scale planes, the pitch meter shows the pitch angle ψ, and the roll meter shows the roll angle χ. In addition, a rotating elevation platform with an optical axis ○T is indicated by T, and the swivel base rotates in a plane parallel to the floor surface. Look down in a perpendicular plane. When the D plane is horizontal, the optical axis OT line points toward the horizontal plane, and the position where the horizontal line coincides with the center of the visual field is set as the zero elevation angle position. In FIG. 2, the swivel table base line is aligned with the OX line and the elevation angle is 0. The figure shows the telescope field of view in that case. In this case of pitch angle ψ, the horizontal line is deviated from the center of the field of view, and the deviation corresponds to the pitch angle ψ. If the turning/elevating plate is rotated with the swing angles χ and ψ to align the optical axis with the direction OY, the horizontal line deviated from the center of the field of view corresponds to the roll angle χ. Therefore, in the former case, if the elevation angle of the OT is corrected using the output ψ of the pitch meter, the optical axis will point to the horizon and the horizontal line will coincide with the center of the field of view, and in the latter case, the output of the roll meter will correct the χ oscillation. This is why it is possible. This relationship is based on the ship's two standard orthogonal axes XX',
If the oscillation angle in any direction other than YY' is determined, the oscillation of the optical axis of the rotating elevation/elevation board that has turned in that direction can be similarly corrected. [0011] On the other hand, since the oscillation plane is determined by the oscillation angle of two orthogonal axes, if the relative posture relationship due to the inclination of the D plane and the H plane is constant, then the oscillation angle with respect to the two orthogonal axes in any direction is determined by the oscillation angle between this and the two orthogonal axes. Therefore, it is possible to determine the oscillation angle with respect to the other two orthogonal axes.

【0012】 次にこの関係の解析について述べる。 [0013] ここで、甲板面上で○−XYZ座標がσだけ旋回した位
置にて直交座標を○X、OY としてこの位置における
動揺角をχ1.ψ1とする。σχψを与えて1 χ1.ψ1を算出する装置を動揺角座標変換装置という
。 [0014] 図において、水平面上の○X′線の甲板面〇−XYZの
3軸に対する方向余弦はcosψ、  0.−5inψ
であり、○X′線の方向余弦はCO8ψ、  0.−5
inψでありOY’線の方向余弦は0.cosχ、 s
inχであるので水平面はこの両頁線を含むのでこの面
は、 [0015]
Next, an analysis of this relationship will be described. [0013] Here, at a position where the ○-XYZ coordinates have rotated by σ on the deck surface, the orthogonal coordinates are ○X, OY, and the swing angle at this position is χ1. Let ψ1. Given σχψ, 1 χ1. The device that calculates ψ1 is called a oscillation angle coordinate conversion device. [0014] In the figure, the direction cosine of the line ○X' on the horizontal plane with respect to the three axes of the deck surface ○-XYZ is cosψ, 0. -5inψ
The direction cosine of the ○X' line is CO8ψ, 0. -5
inψ and the direction cosine of the OY' line is 0. cosχ, s
Since inχ, the horizontal plane includes both page lines, so this plane is [0015]

【数1】 X C05(i) 一5inψ 0 にて示されこれより水平面の方程式は、[Math 1] X C05(i) 15inψ 0 From this, the equation of the horizontal plane is

【数2】 し、11jψ しan χ y −二、−τ O となる。 [0016] 次に動揺角χ1の算出のため平面ZOY1の方程式を求
めれば、
[Formula 2] and 11jψ, an χ y −2, −τ O . [0016] Next, if we find the equation of the plane ZOY1 to calculate the swing angle χ1, we get

【数3】 CI:’)S σ、  ° y、−’−゛s、;in 
6 +   ’i’   ・、。 となる。 [0017] 又○Y′1は平面ZOY1と水平面の交線であるのでO
Y’線の式は(数2)式及び(数3)式より求められ、
[Formula 3] CI:')S σ, ° y, -'-゛s,;in
6 + 'i' ・,. becomes. [0017] Also, ○Y'1 is the intersection line of the plane ZOY1 and the horizontal plane, so O
The equation of Y' line is obtained from equation (2) and equation (3),

【数4】 × t+ となる。 [0018][Math 4] × t+ becomes. [0018]

【数5】 X となる。 [0019] 又直線○Y1の方程式は、[Math 5] X becomes. [0019] Also, the equation of the straight line ○Y1 is

【数6】 \ ■ であるので直線○Y1 交角として求められ、[Math 6] \ ■ Therefore, the straight line ○Y1 It is found as the intersection angle,

【数7】 とOY′ との間の角χ1 は (数5)式と (数6)式との となる。 これを整理して[Math 7] and OY′ The angle χ1 between teeth (Math. 5) and (Math. 6) becomes. sort this out

【数8】 i、;3nχ[Math. 8] i,;3nχ

【 一’−’tanχ COSσ ■ 一二tanψ S I rlσ1 となる。 [00201 【数9】 S1nσ1 −COS σ 〜” 0X′1を水平面とZOX1面との交線として求める。 [0021][ 1'-'tanχ COSσ ■ 12 tanψ SI rlσ1 becomes. [00201 [Math. 9] S1nσ1 -COS σ ~” Find 0X'1 as the intersection line between the horizontal plane and the ZOX1 plane. [0021]

【数101 又、直線OX1は 【数11】 \・1 直線OX1と○X’ 1とのなす角ψ1は[Number 101 Also, the straight line OX1 is [Math. 11] \・1 The angle ψ1 between the straight line OX1 and ○X’1 is

【数12】 これより[Math. 12] Than this

【数13】 Lanψ1 °Lcsnψ’ C086I−f、arl
χ’ Sjn 6 H[0022] (数13)式により図1の場合○X−0Y線の傾斜角ψ
。 χよりOX−〇Yと 任意の角度σをもつ0X1−OY1線傾斜角ψ1.χ1
が算出できた。従って図2の旋回俯仰盤の水平望遠鏡は
甲板面のどの位置にもってきても首尾軸よりの回転角度
が知られていれば常にその任意の動揺角が算出出来るの
で動揺修正が行い得る。 [0023] ここで今迄は水平照準望遠鏡の光軸○Tの動揺修正を扱
ってきたが、これを光軸OTを仮想光軸に持ち、俯仰軸
に支えられたテーブルにおきかえることが出来る。この
テーブルは俯仰軸よりψ1の修正駆動を与えられるので
、動揺に拘らず仮想光軸を水平線に指向した水平盤とな
る。 [0024] 又動揺角座標変換装置の出力はχ1.ψ1の直交2方向
が取り出せる力面照準望遠鏡ではその中の1ケしか利用
できないが後出の第1の実施例で示すダブルジンバル型
水平盤を回転台の上に載荷した型式のものではその前後
左右の両軸にχ1、ψ1の動揺修正を適用すれば、その
面はステーブルプラットフォーム水平盤となり船用には
利用の途が大きい型式となる。 [0025] 以上は動的な用途として船舶をあげたが、静的な場合も
車輌の荷重の平衡装備のための傾斜測定、建物の床面の
傾斜、道路面の勾配測定等にはこの直交2軸傾斜計によ
る全方向傾斜方式が利用できる。又この場合最大傾斜面
の方向と最大傾斜角の大きさを必要とされることが多い
。これは図1のり、H両面の交線0M線の床面の主線O
X線となす角度α及び0M線に直交する方向の最大傾斜
角Φ の■ 算出である。これは(数13)式より誘導できる。 [0026] 最大傾斜角は
[Formula 13] Lanψ1 °Lcsnψ' C086I-f, arl
χ' Sjn 6 H[0022] According to formula (13), in the case of Fig. 1○The inclination angle ψ of the X-0Y line
. 0X1-OY1 line inclination angle ψ1. which has an arbitrary angle σ with OX-〇Y from χ. χ1
was calculated. Therefore, no matter where the horizontal telescope of the swinging/elevating board shown in Fig. 2 is placed at any position on the deck surface, as long as the rotation angle from the coccyx is known, any swing angle can always be calculated, and swing correction can be performed. [0023] Up until now, we have been dealing with the correction of the oscillation of the optical axis ○T of a horizontal sighting telescope, but this can be replaced with a table that has the optical axis OT as a virtual optical axis and is supported by the elevation axis. Since this table is given a correction drive of ψ1 from the elevation axis, it becomes a horizontal table with the virtual optical axis directed toward the horizon regardless of the oscillation. [0024] Also, the output of the oscillation angle coordinate conversion device is χ1. With a force plane sighting telescope that can take out two orthogonal directions of ψ1, only one of them can be used, but with a type that has a double gimbal horizontal plate mounted on a rotary table as shown in the first embodiment below, it can be used in both the front and rear directions. If the oscillation corrections of χ1 and ψ1 are applied to both the left and right axes, that surface becomes a stable platform horizontal plate, and it becomes a type that has many uses for ships. [0025] Although ships have been mentioned above as a dynamic application, this orthogonal method can also be used in static applications, such as measuring inclinations for balancing the load of vehicles, measuring the slopes of building floors, and measuring the slopes of roads. Omnidirectional tilting method with two-axis tiltmeter can be used. In this case, the direction of the maximum slope and the size of the maximum slope are often required. This is the main line O on the floor surface of the intersection line 0M on both sides of the glue and H in Figure 1.
This is the calculation of the angle α with respect to the X-ray and the maximum inclination angle Φ in the direction perpendicular to the 0M line. This can be derived from equation (13). [0026] The maximum inclination angle is

【数14】 jan2 φ 、、  −″ jan2 z  + t
an2ψこれより
[Formula 14] jan2 φ ,, −″ jan2 z + t
an2ψ from this

【数15】 φrl= jan−” (t、an2ψ+tan2z 
)0M線と主線○Xとのなす角αは
[Formula 15] φrl= jan−” (t, an2ψ+tan2z
) The angle α between the 0M line and the main line ○X is

【数17】 t2+r+ χ= tanψH5irlrJこれより[Math. 17] t2+r+ χ= tanψH5irlrJFrom this

【数18】 後述する数19.数20により全方向連続計測と(数1
4)〜(数18)式によるΦ 、αの計測を切換えて行
うことの出来る全方向型傾斜計は、後出第2の実施例で
述べられている。 [0027] 第1の実施例 本発明の動揺角変換装置の第1の実施例として、ダブル
ジンバル安定盤の動揺修正に適用した例を図3を参照し
て説明する。 [0028] 船体の動揺シミュレーションにスコルビイスキイテーブ
ル(複合動揺試験台)に搭載したモデル船体S上のダブ
ルジンバル型安定盤Tの動揺修正に本発明の機械式動揺
角座標変換算定具Pを用いる実施例である。この場合対
象となるモデル船体の振揺周期が低いため機械式算定具
の応答で充分であり、むしろ対比される電気アナログ式
算定具に比して精度の安定度より見て優れていると考え
る。 [0029] モデル船体Sには主軸x−x’ 直交2軸の動揺角測定
にピッチ計pロール計rを取りつける。安定盤Tは外周
壁■の底面が船体台となり、全体が船体Sの床上で旋回
する。船体Sの床面の座標0−XY、安定盤の旋回台の
座標を〇−ξηとし、初めに双方の直交z軸が一致して
いたとすると図示の状態は安定盤Tがσ角だけ旋回して
○−ξηが船体の座標○−X1Y1に合致した状態を示
す。旋回は床上のモータ10がコンパスrの方位角θ6
を受は安定盤に歯車結合で回動を与えその旋回角θ6は
又歯車結合で発信器38に伝えられる。 [0030] 安定盤Tはダブルジンバル構造をもち外周壁1はξ−ξ
′軸にて外環部2を支承し外周部のモータA2により外
環部に回動を与える。外環部のξ−ξ′軸に直交する軸
にて内環部を支え、外環部上のモータtにより内環部を
駆動する。内環部は水平安定台をもっている。 [0031] 試験は方位管制はシミュレーションにてモーター0に類
似方位信号θ6を与え安定盤Tを旋回する。同時にテー
ブルSに与えられた複合移動をピッチ計p。 ロール計rにて検出、これを動揺角座標変換算定点Pに
送る。又発信器38よりは類似方位信号θ6がPに方位
信号を送る。Pにては主軸x−x’ の直交2軸動揺角
ψ、χを旋回角θ による安定盤Tの示す旋回したX 
I  X i  軸方向の縦横動揺角ψ1.χ1に変換
しこれをテーブルSの受信器39.40に送る。該39
.40のψ 、χ 信号により制御モータA2.tは内
外環を制御し内環部の1 安定盤を常に指北(擬似)且つ水平に保持する。 [0032] 次にPによる動揺角座標変換算定具機器を説明する。算
定具P内に設けられたモーター3.12はテーブルTよ
り得られたTの標準直交2軸動揺角χ、ψを又モーター
1はSの旋回角θ6をそれぞれ受信して回転する。 [0033] χ、ψの値は溝カム計算器G1.O2の作用によりta
nχ、 tanψに換算される。この計算器G1.O2
は既知の構造をもつもので、動揺角χ及びψに応じて回
転する軸IG 及びIG2は、分岐軸13a及び13b
を経てウオーム19a及び19b1ウオーム車21a及
び21bを回転し、溝曲線付き回転体23a及び23b
並びに溝に嵌合して滑動する尖端をもつ動揺腕25a及
び25bを経て、軸15a及び15bをtanχ−χ及
びtanψ−ψに比例して回転する。これらの導出値は
軸11a及びllbのχ及びψの値とそれぞれ差動歯車
17a及び17bで加算され、それぞれtanχ及びt
anψの値に換算される。 [0034] これらの値は、受信器159及び158に導かれると共
に、軸IA1及び2A1を介して正余弦計算器A に導
入される。計算器A1は、軸IA1及び2A1のほかに
更に1つの導入軸3A1をもち、この軸はモーター1よ
り旋回角θ6の値を導入する。計算器A1は、公知の構
造をもち(数13)式を機構化するものである。すなわ
ち、回転盤27a及び28aに対し、それぞれの中心を
通過して摺動するレバー29a及び30aにtanχ及
びtanψに相当する運動を与え、軸3A1はθ6なる
回転角を回転盤32a及び33aに与える。そのとき、
互いに直交する摺動のみが許され且つそれぞれ摺動方向
に直角な溝をもつ部材34a。 35a及び36a、37aは、それぞれの直交溝の交点
に嵌合するレバー29a及び30aのピン38a及び3
9aにより、tanχ’ cosθd、tanχ・Si
nθd及びtanψ・ COSθ tanψ・5ino
dに比例する運動を行なう。したがって、d。 それらの値を差動同車41a及び40aで所定の式に従
って加算すれば、軸4A1はtanχ1すなわち横動揺
角の正接に比例した運動を行ない、軸5A1はtanψ
1すなわち縦動揺角の正接に比例した運動を行なう。 [0035] 第2の実施例 次に、本発明の第2の実施例として、直交2軸傾斜計に
適用した例を、図4゜図5を参照して説明する。 [0036] 床面の直交2軸に傾斜計を取り付ければそれと任意の角
度をもった他の直交2軸方向の縦横傾斜を電子的に測定
できる。このような構成の直交2軸傾斜計を図4に示す
。 [0037] これは床面にセットされるセンサユニットと可搬型のコ
ンピュータユニットより形成される。センサユニットの
外筐は箱型にて内部に縦横傾斜型をもち、傾斜計は電池
内蔵の小型電子式のものを使用し筐体表面に0〜36o
°表示の方位盤をもつ。 [0038] コンピュータユニットは外面にO〜360°方位盤をも
った方位角設定用のポテンショメータと設定された直交
2方向の傾斜と方位を表示する4チヤンネルのディジタ
ル表示盤をもつ。内蔵マイクロコンピュータはセンサユ
ニットよりの縦横2信号をうける。又ポテンショメータ
よりの方位信号も入力される。コンピュータユニットは
任意の位置に取付けできる可搬型で携帯用も可能で小型
化されている。 [0039] この構成の時はコンピュータユニットとセンサユニット
とは傾斜計出力と結合されているがセンサユニットの方
位盤はコンピュータユニットのポテンショメータの方位
盤とは相互の目盛りは精密に較正一致させであるカミ相
互の位置や姿勢は無関係であり又電気的にも結合はない
。従ってセンサユニットを図1に示すD面(床面)のX
−X’、Y−Y’の方位にセットすればコンピュータユ
ニットは方位、位置は自由に測定に便なる姿勢にて、ポ
テンショメータ61回転を与えればコンピュータにより
X軸、Y軸とσ の角度をもつX1軸、Y1軸方向の各
画斜角を(数13)式により発生しこれを各軸傾斜と方
位をディジタル表示する。 [0040] 上記は連続した床面上の方位方向の傾斜測定するモード
1の場合であるがすでに述べた如く図1に示すり、H面
の交切線MM’迄の位置及び最大傾斜角は(数13)式
、(数14)式、(数15)式で示されたモード2に切
り換えることにより縦横の表示盤が一方は最大傾斜角も
他方が零値がそれぞれの方位面と対応して表示される。 [0041] 図5にて、モード1及びモード2のコンピュータプログ
ラムについて解説する。モード1にては傾斜角χψは関
数変換プログラムFT  を介してtanχ、  ja
nψに変換され、ポテンショメータよりの入力σ1と共
に動揺角座標変換プログラムRPTにて
[Equation 18] Equation 19, which will be described later. Continuous measurement in all directions and (Math. 1
An omnidirectional inclinometer that can switch between measuring Φ and α using equations 4) to (18) is described in the second embodiment below. [0027] First Embodiment As a first embodiment of the oscillation angle conversion device of the present invention, an example applied to oscillation correction of a double gimbal stabilizing plate will be described with reference to FIG. [0028] Mechanical sway angle coordinate conversion calculation tool P of the present invention is used to correct the sway of a double gimbal type stable plate T on a model hull S mounted on a Scorbysky table (compound sway test stand) for ship sway simulation. This is an example. In this case, since the shaking period of the target model hull is low, the response of the mechanical calculation tool is sufficient, and in fact, it is considered to be superior in terms of accuracy and stability compared to the comparable electric analog calculation tool. . [0029] A pitch meter p and a roll meter r are attached to the model hull S to measure the swing angle of two orthogonal axes, ie, the main axis x-x'. The bottom surface of the outer circumferential wall (2) of the stable plate T serves as a hull platform, and the entire body rotates on the floor of the hull S. If the coordinates of the floor surface of the hull S are 0-XY and the coordinates of the rotating base of the stable plate are 〇-ξη, and the orthogonal z-axes of both sides coincide at the beginning, the state shown in the figure is that the stable plate T rotates by an angle of σ. This shows a state where ○-ξη matches the hull coordinates ○-X1Y1. For turning, the motor 10 on the floor moves to the azimuth angle θ6 of the compass r.
The receiver gives rotation to the stable plate through a gear connection, and its turning angle θ6 is also transmitted to the transmitter 38 through a gear connection. [0030] The stable plate T has a double gimbal structure, and the outer peripheral wall 1 is ξ-ξ
The outer ring part 2 is supported by the 'shaft, and rotation is applied to the outer ring part by a motor A2 on the outer periphery. The inner ring part is supported by an axis perpendicular to the ξ-ξ' axis of the outer ring part, and the inner ring part is driven by a motor t on the outer ring part. The inner ring has a horizontal stabilizer. [0031] In the test, the azimuth control gives a similar azimuth signal θ6 to the motor 0 and turns around the stable plate T in the simulation. At the same time, the compound movement given to table S is measured by pitch meter p. It is detected by the roll meter r and sent to the oscillation angle coordinate conversion calculation point P. Further, the transmitter 38 sends a similar orientation signal θ6 to P. At P, the orthogonal two-axis swing angles ψ and χ of the main axis
I X i Axial vertical and horizontal swing angle ψ1. χ1 and sends it to the table S receiver 39.40. 39
.. 40 ψ, χ signals control motor A2. t controls the inner and outer rings and keeps the inner ring part 1 stable plate always pointing north (pseudo) and horizontally. [0032] Next, the oscillation angle coordinate conversion calculation device using P will be explained. The motor 3.12 provided in the calculation tool P receives and rotates the standard orthogonal two-axis swing angles χ and ψ of T obtained from the table T, and the motor 1 receives the turning angle θ6 of S, respectively. [0033] The values of χ and ψ are determined by the groove cam calculator G1. Due to the action of O2, ta
It is converted into nχ, tanψ. This calculator G1. O2
have a known structure, and the axes IG and IG2, which rotate according to the swing angles χ and ψ, are branched axes 13a and 13b.
The worms 19a and 19b1 are rotated through the worm wheels 21a and 21b, and the grooved curved rotating bodies 23a and 23b are rotated.
and the shafts 15a and 15b are rotated in proportion to tan χ-χ and tan ψ-ψ via rocker arms 25a and 25b with pointed tips that fit into the grooves and slide. These derived values are added to the values of χ and ψ of the axes 11a and llb at the differential gears 17a and 17b, respectively, to obtain tanχ and t, respectively.
It is converted to the value of anψ. [0034] These values are directed to receivers 159 and 158 and are introduced into sine and cosine calculator A 1 via axes IA1 and 2A1. In addition to the axes IA1 and 2A1, the calculator A1 also has one introduction axis 3A1, which introduces the value of the rotation angle θ6 from the motor 1. The calculator A1 has a known structure and mechanizes the equation (13). That is, the levers 29a and 30a sliding through the centers of the rotating discs 27a and 28a are given movements corresponding to tanχ and tanψ, and the shaft 3A1 is giving a rotation angle of θ6 to the rotating discs 32a and 33a. . then,
A member 34a that is allowed to slide only orthogonally to each other and has grooves that are perpendicular to the sliding direction. 35a, 36a, and 37a are the pins 38a and 3 of the levers 29a and 30a that fit into the intersections of the respective orthogonal grooves.
9a, tanχ' cosθd, tanχ・Si
nθd and tanψ・COSθ tanψ・5ino
performs a movement proportional to d. Therefore, d. If these values are added according to a predetermined formula in the differential gears 41a and 40a, the shaft 4A1 moves in proportion to tanχ1, that is, the tangent of the lateral vibration angle, and the shaft 5A1 moves in proportion to tanψ
1, that is, the movement is proportional to the tangent of the vertical oscillation angle. [0035] Second Embodiment Next, as a second embodiment of the present invention, an example applied to an orthogonal two-axis inclinometer will be described with reference to FIGS. 4 and 5. [0036] By attaching an inclinometer to the two orthogonal axes of the floor surface, it is possible to electronically measure the vertical and horizontal inclinations in the directions of the other orthogonal two axes at arbitrary angles. FIG. 4 shows an orthogonal two-axis inclinometer with such a configuration. [0037] This is formed by a sensor unit set on the floor and a portable computer unit. The outer casing of the sensor unit is box-shaped, with vertical and horizontal inclinations inside, and the inclinometer is a small electronic type with a built-in battery.
It has a compass that shows °. [0038] The computer unit has a potentiometer for setting the azimuth angle having an 0 to 360° azimuth dial on its outer surface, and a 4-channel digital display panel that displays the set inclination and azimuth in two orthogonal directions. The built-in microcomputer receives two vertical and horizontal signals from the sensor unit. A direction signal from a potentiometer is also input. The computer unit is portable, portable, and compact enough to be installed in any location. [0039] In this configuration, the computer unit and the sensor unit are connected to the inclinometer output, and the azimuth dial of the sensor unit and the azimuth dial of the potentiometer of the computer unit are precisely calibrated and matched. The positions and postures of the blades are unrelated, and there is no electrical connection between them. Therefore, the sensor unit is
-X', Y-Y', the computer unit can freely set the orientation and position in a posture convenient for measurement, and if the potentiometer is rotated 61 times, the computer will make an angle of σ with the X and Y axes. The image inclination angles in the X1-axis and Y1-axis directions are generated using equation (13), and the inclinations and orientations of each axis are digitally displayed. [0040] The above is the case of mode 1, which measures the inclination in the azimuth direction on a continuous floor surface. As already mentioned, as shown in FIG. 1, the position and maximum inclination angle of the H plane to the intersection line MM' are ( By switching to mode 2 shown by Equation (13), Equation (14), and Equation (15), the vertical and horizontal display panels will show that the maximum inclination angle on one side and the zero value on the other side correspond to each azimuth plane. Is displayed. [0041] With reference to FIG. 5, computer programs for mode 1 and mode 2 will be explained. In mode 1, the slope angle χψ is calculated as tanχ, ja through the function conversion program FT.
It is converted to nψ, and the oscillation angle coordinate conversion program RPT is used together with the input σ1 from the potentiometer.

【数19】 L、]1)ψ、  ”−tanψ 00Sj7 I゛−
22Jr χ ’ :’:1n 61
[Formula 19] L,]1)ψ, ”-tanψ 00Sj7 I゛-
22Jr χ ':':1n 61

【数20】 ta+1χ1  ”tanχ’ coSL5. −+−
tanψ°Sinσ1の演算が行われtanχ 及びt
anψ1に変換され、又σは座標変換プログラムCT 
によりY 軸の方向90°−σが求められ、χ1.ψ1
.σ、90°−σの1 4出力が表示器に表示される。以上がモード1であるが
モード2に切り換えれば入力χ、ψのtanχ、  t
anψへの変換はモード1と同様にプログラムF T 
1によるがその出力はモード2では一方は最大値算定プ
ログラムFΦ Tにより(数15)式の演算が行われて
最大傾斜角Φ が算出され他方は主軸OX線と交切線○
M線との交角α算定プログラムFαTにより(数18)
式の演算が行われα値が算出されΦ 、αは座標変換プ
ログラムCT2により0M線とOY線の交角90一αと
ともに4出力とな′リモート1の表示に切換わって表示
器に出力される。 [0042] モード1.モード2の測定を通じてコンピュータユニッ
トの姿勢には全く配慮する必要がないので測定が迅速且
つ精密に行われる。 [0043] 又、図4に示す如くコンピュータの方位角表示に対応す
るセンサユニットの方位目盛りの方位線の実際に示す方
向と実物方位とは恰も実物にあてがって測る「のぎす」
やアングルゲージ級の程度で対応している。従ってこの
測定機は建築現物や道路勾配、傾斜測定現場等に能率よ
く使用できる。 [0044]
[Formula 20] ta+1χ1 "tanχ' coSL5. -+-
The calculation of tanψ°Sinσ1 is performed and tanχ and t
anψ1, and σ is the coordinate transformation program CT
The direction 90°-σ of the Y axis is determined by χ1. ψ1
.. 14 outputs of σ, 90°-σ are displayed on the display. The above is mode 1, but if you switch to mode 2, tanχ of input χ, ψ, t
Conversion to anψ is performed using the program F T as in mode 1.
1, but in mode 2, the maximum inclination angle Φ is calculated by calculating the formula (15) using the maximum value calculation program FΦT, and the other is the output from the main axis OX line and the intersecting line ○
By the intersection angle α calculation program FαT with the M line (Equation 18)
The formula is calculated and the α value is calculated, Φ, and α becomes 4 outputs along with the intersection angle 90-α of the 0M line and the OY line by the coordinate conversion program CT2.The display is switched to the remote 1 display and output to the display. . [0042] Mode 1. Since there is no need to take the attitude of the computer unit into account during measurement in mode 2, the measurement can be performed quickly and accurately. [0043] Furthermore, as shown in FIG. 4, the direction actually indicated by the azimuth line on the azimuth scale of the sensor unit corresponding to the azimuth display of the computer and the actual azimuth are exactly the same as the ``nogisu'' that is measured by applying it to the actual object.
It corresponds to the level of angle gauge. Therefore, this measuring device can be efficiently used for measuring actual buildings, road slopes, slope measurements, etc. [0044]

【発明の効果】【Effect of the invention】

本発明によると、以下の各効果が得られる。 [0045] (1)算定原理が正確にして省略がない。 [0046] (2)プログラムが簡単である。 [0047] (3)動的用途としては舶用の動揺修正に用いられる。 刻々に変動する動揺に応答性がよく追従する。 [0048] (4)静的用途としては船体や車体の積荷の影響テスト
には正確な測定が求められる。 [0049] (5)また、上述例の他に、工場の床面や建築、建設、
土木等の作業所及び道路工事における傾斜、勾配の設定
に好適である。
According to the present invention, the following effects can be obtained. [0045] (1) The calculation principle is accurate and there are no omissions. [0046] (2) The program is simple. [0047] (3) As a dynamic application, it is used to correct the oscillation of ships. It responds well to the ever-changing vibrations. [0048] (4) For static applications, accurate measurements are required for testing the effects of cargo on ship and vehicle bodies. [0049] (5) In addition to the above-mentioned examples, factory floors, architecture, construction,
Suitable for setting slopes and slopes in civil engineering work sites and road construction.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】 本発明の動揺角座標変換装置の説明に供する路線図であ
る。
FIG. 1 is a route map for explaining the oscillation angle coordinate conversion device of the present invention.

【図2】 本発明の動揺角座標変換装置の原理図である。[Figure 2] FIG. 2 is a principle diagram of the oscillation angle coordinate conversion device of the present invention.

【図3】 本発明の第1の実施例の構成図である。[Figure 3] FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図4】 本発明の第2の実施例の構成図である。[Figure 4] It is a block diagram of the 2nd Example of this invention.

【図5】 本発明の第2の実施例の要部を示す構成図である。[Figure 5] It is a block diagram which shows the principal part of the 2nd Example of this invention.

【符号の説明】[Explanation of symbols]

P 動揺角座標変換算定具 p ピッチ計 r コンノマス S 船体 T 安定盤 t モータ P Sway angle coordinate conversion calculation tool p Pitch meter r Connomous S Hull T Stable board t Motor

【書類名】【Document name】

【図1】 図面[Figure 1] drawing

【図2】[Figure 2]

【図3】[Figure 3]

【図4】[Figure 4]

【図5】[Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】動揺体の床面上の任意直交2軸に関する動
揺角を該2軸に対し、任意角度をなす他の直交2軸に関
する動揺角に変換する動揺角座標変換装置。
1. A oscillation angle coordinate conversion device for converting a oscillation angle about two arbitrary orthogonal axes on a floor surface of a moving body into a oscillation angle about two other orthogonal axes forming an arbitrary angle with respect to the two axes.
JP41067490A 1990-12-14 1990-12-14 Oscillation angle coordinate transforming device Granted JPH03246414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41067490A JPH03246414A (en) 1990-12-14 1990-12-14 Oscillation angle coordinate transforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41067490A JPH03246414A (en) 1990-12-14 1990-12-14 Oscillation angle coordinate transforming device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17542983A Division JPS6067814A (en) 1983-09-22 1983-09-22 Azimuth controlled oscillation stabilizer

Publications (2)

Publication Number Publication Date
JPH03246414A true JPH03246414A (en) 1991-11-01
JPH0553364B2 JPH0553364B2 (en) 1993-08-09

Family

ID=18519795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41067490A Granted JPH03246414A (en) 1990-12-14 1990-12-14 Oscillation angle coordinate transforming device

Country Status (1)

Country Link
JP (1) JPH03246414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591345A (en) * 1992-03-27 1997-01-07 Stichting Energieonderzoek Centrum Nederland Membrane for separating off small molecules and method for the production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591345A (en) * 1992-03-27 1997-01-07 Stichting Energieonderzoek Centrum Nederland Membrane for separating off small molecules and method for the production thereof

Also Published As

Publication number Publication date
JPH0553364B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
US8826550B2 (en) Geographically north-referenced azimuth determination
US5369889A (en) Single gyro northfinder
CN102278989B (en) Multifunctional aerial remote sensing triaxial inertially stabilized platform system
CA1330455C (en) Electronic tilt measuring system
JPS5890212A (en) Bearing reference and land navigation system
CN106052682A (en) Mixed inertial navigation system and navigation method
JPH11211474A (en) Attitude angle detecting device
CN205317213U (en) Measuring device is investigated on spot to real estate unit towards room ground is integrative
RU2550592C1 (en) Stabiliser gyrocompass
JPH03246414A (en) Oscillation angle coordinate transforming device
RU2339002C1 (en) Method of evaluation of navigation parameters of operated mobile objects and related device for implementation thereof
RU2572403C1 (en) Method of inertial navigation and device for its realisation
US20170097228A1 (en) Measurement Apparatus to Locate an Orientation With Respect to a Surface
WO2021012635A1 (en) Gyroscope information-based inertial navigation method
US3249326A (en) Electronic celestial navigation control
RU2062985C1 (en) Gyro horizon compass for mobile object
US3349630A (en) Drift compensation computer
KR880000774A (en) Method and apparatus for quickly measuring azimuth using strap-down gyroscope
RU2213937C1 (en) Ground gyroscopic system ( variants )
US3310986A (en) Three axis navigational apparatus
RU2571199C1 (en) Stabilised gyrocompass system
US3545092A (en) Method for aligning a navigation system
US20170097235A1 (en) Measurement Apparatus to Locate an Orientation With Respect to a Surface
Sotak Testing the coarse alignment algorithm using rotation platform
US3470751A (en) Gyroscope having means for preventing gimbal lock errors