JPH0324622B2 - - Google Patents

Info

Publication number
JPH0324622B2
JPH0324622B2 JP57095802A JP9580282A JPH0324622B2 JP H0324622 B2 JPH0324622 B2 JP H0324622B2 JP 57095802 A JP57095802 A JP 57095802A JP 9580282 A JP9580282 A JP 9580282A JP H0324622 B2 JPH0324622 B2 JP H0324622B2
Authority
JP
Japan
Prior art keywords
oxygen
solid electrolyte
molten steel
stability
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57095802A
Other languages
Japanese (ja)
Other versions
JPS58213247A (en
Inventor
Naonori Morya
Hajime Nakamura
Takashi Fujimoto
Teruaki Kajikawa
Hiroaki Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP57095802A priority Critical patent/JPS58213247A/en
Publication of JPS58213247A publication Critical patent/JPS58213247A/en
Publication of JPH0324622B2 publication Critical patent/JPH0324622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジルコニア系固体電解質を用いて溶鋼
中の酸素活量値を測定する酸素プローブにおい
て、固体電解質厚みを調整することにより応答性
と安定性を向上させた酸素プローブに関する。 鋼材などにおいては近年材質に関する要求が高
まり、また省エネルギー、省力化および歩留向上
等の観点から連鋳化比率が増大するに伴い、製鋼
工程における溶鋼管理が従来に増して一層重要視
されるようになつてきている。溶鋼管理において
最も重要な指針を与えるものの一つは溶鋼および
溶融スラグ中の酸素活量値であり、一般にその測
定の成否が製鋼プロセスに影響を与えることはよ
く知られている。 そのため従来より溶鋼や溶融スラグ等溶体中の
酸素活量値を、電解質としてジルコニア系固体電
解質を用いて酸素濃淡電池の原理を応用して測定
する酸素プローブが開発され、市販されている。 この酸素プローブの検出端は通常耐火物により
保護されているが、高温の溶体に直接浸漬するた
め、耐熱上その浸漬時間には限界が存在する。こ
のため酸素プローブにより酸素活量値を正確に測
定するには、酸素プローブの発生する起電力(以
下emfという)が浸漬許容時間(te)内に安定
し、かつその安定した状態に保持されるものでな
ければならない。 しかしながら従来の酸素プローブでは溶体に浸
漬後emfが安定するまでに長い時間を要したり、
あるいは所定の安定域保持時間が得られないこと
がしばしば観察され、応答性あるいは安定性に問
題があつた。 例えば応答性の悪い酸素プローブで測定した場
合、浸漬許容時間teの制限からemfが安定する前
に溶体から引上げなければならないため、emfカ
ーブは第1図aに示すように安定域に達しない。
また安定性の悪いものは第1図bに示す如く、変
動をくり返したり、明確な平衡部が得られなかつ
たりして安定域がなく、精度よい測定ができな
い。 従来の酸素プローブにおけるこのような応答性
や安定性の欠如はAlキルド溶鋼の如く、低酸素
活量値を測定しなければならない溶体の場合に顕
著に認められ、安定した測定は不可能であつた。 一般に浸漬許容時間teを長くするには酸素プロ
ーブの外装や耐火物の補強をすればよいのである
が、補強を加えることは価格上昇につながり、一
回限りの消耗品である酸素プローブにとつては著
しく不利となる。また浸漬許容時間teを長くする
ことは製鋼や精錬現場での高熱作業を長びかせる
ことにもなり、作業的にも不利である。一方安定
性は酸素プローブの本質に起因する問題であり、
その解決には新たな酸素プローブの開発を必要と
する。 このように従来の酸素プローブは実用上種々の
問題を有するのにもかかわらず、本発明者らの知
る限りでは、その問題点に関する報告例はない。 そこで本発明者らは酸素プローブのemf応答性
や安定性に最も影響を与える固体電解質に着目
し、その厚みについて種々検討を行つた結果、固
体電解質の厚みを0.5mm以上、1.0mm未満にすると
emfカーブの応答時間は短くなり、かつ波形も安
定することを見出した。 すなわち本発明はジルコニア系固体電解質を用
いた酸素プローブにおいて、固体電解質厚みを
0.5mm以上、1.0未満にすることにより従来の酸素
プローブの応答性あるいは安定性の欠如を解消し
たものである。 本発明において対象とするジルコニア系固体電
解質としては代表的なものを挙げればZrO2
MgO系、ZrO2−CaO系、ZrO2−Y2O3系および
それらの複合安定化型(例えばZrO2−MgO−
CaO系)などである。 これらの固体電解質を酸素プローブに用いて溶
体中の酸素活量値を測定するとemfカーブの応答
性や安定性はその厚みの影響を著しく受け、厚み
が1.0mm以上になると、基準極物質への熱伝達が
遅れ、基準極内が一定の平衡酸素分圧になるまで
に時間がかかるようになる。その結果応答時間が
長くなり、酸素プローブの浸漬許容時間を超えて
しまう。一方電解質厚みが0.5mmより薄くなると
応答時間は短くなるが、電解質を直接透過する酸
素の量が無視できなくなり、その結果emfカーブ
の波形は不安定となるとともに、測定値自体も酸
素透過の誤差を含んだ虚の値となる。 以下実施例により本発明を具体的に説明する。 実施例 1 第2図は本実施例において溶鋼中の酸素活量値
測定に用いた酸素プローブの断面および底面を示
したもので、1は固体電解質であるZrO2
8.1mol%MgOチユーブ、2はこのチユーブに充
填した基準極物質で、CrとCr2O3を1550℃以上の
温度で焼結後粉砕したものを0.1〜0.3g充填して
ある。3は基準極リート線のMo線、4はアルミ
ナ粉、5は溶鋼側電極である鉄リング、6は溶鋼
測温用熱電対、7はスラグ防止用鉄製キヤツプ、
8はこれらのセンサー部を支持する耐火物ボデ
イ、9は耐火物スリーブ、10は紙スリーブであ
る。 第1表はこの酸素プローブを90t取鍋中の低炭
素Alキルド溶鋼(1600±10℃)中に浸漬して、
そのemfカーブより応答時間と波形の安定性を判
断し、それらを固体電解質の厚みとの関係におい
てまとめたものである。なお応答時間の判断は第
3図に示すように溶鋼中への酸素プローブ浸漬開
始から波形が安定するまでの時間を測定すること
により行い、波形の安定性は同一電位に保たれる
安定域保持時間の有無およびその長短により判断
し、電解質寸法毎に20本の酸素プローブの測定値
を平均した。
The present invention relates to an oxygen probe that measures the oxygen activity value in molten steel using a zirconia-based solid electrolyte, and which has improved responsiveness and stability by adjusting the thickness of the solid electrolyte. In recent years, demands regarding materials such as steel have increased, and as the ratio of continuous casting increases from the perspectives of energy saving, labor saving, and yield improvement, molten steel management in the steelmaking process is becoming more important than ever. I'm getting used to it. One of the most important guidelines for molten steel management is the oxygen activity value in molten steel and molten slag, and it is well known that the success or failure of this measurement generally affects the steelmaking process. For this reason, oxygen probes have been developed and commercially available that measure the oxygen activity value in solutions such as molten steel and molten slag using a zirconia-based solid electrolyte as an electrolyte and applying the principle of an oxygen concentration battery. The detection end of this oxygen probe is usually protected by a refractory, but because it is directly immersed in a high-temperature solution, there is a limit to the immersion time due to heat resistance. Therefore, in order to accurately measure the oxygen activity value using an oxygen probe, the electromotive force (hereinafter referred to as emf) generated by the oxygen probe must be stabilized within the allowable immersion time (te) and maintained in that stable state. It has to be something. However, with conventional oxygen probes, it takes a long time for the emf to stabilize after being immersed in the solution.
Alternatively, it was often observed that a predetermined stability range retention time could not be obtained, resulting in problems with response or stability. For example, when measuring with an oxygen probe with poor response, the emf curve does not reach the stable region as shown in Figure 1a, because it must be pulled out of the solution before the emf stabilizes due to the limit on the allowable immersion time te.
In addition, as shown in FIG. 1b, if the stability is poor, there may be repeated fluctuations or a clear equilibrium region may not be obtained, so there is no stable region, and accurate measurement cannot be performed. This lack of responsiveness and stability in conventional oxygen probes is particularly noticeable in solutions where low oxygen activity values must be measured, such as Al-killed molten steel, and stable measurements are impossible. Ta. Generally, the allowable immersion time te can be increased by reinforcing the oxygen probe's exterior or refractories, but adding reinforcement leads to an increase in price and is a disadvantage for oxygen probes, which are one-time consumables. will be at a significant disadvantage. Furthermore, increasing the allowable immersion time te also prolongs high-temperature work at steelmaking and refining sites, which is disadvantageous in terms of work. On the other hand, stability is a problem due to the nature of oxygen probes.
The solution requires the development of a new oxygen probe. Although conventional oxygen probes have various practical problems as described above, to the best of the present inventors' knowledge, there are no reports regarding these problems. Therefore, the present inventors focused on the solid electrolyte that has the most influence on the emf response and stability of the oxygen probe, and conducted various studies regarding its thickness. As a result, the inventors found that the thickness of the solid electrolyte should be set to 0.5 mm or more and less than 1.0 mm.
We found that the response time of the emf curve became shorter and the waveform became more stable. In other words, the present invention improves the thickness of the solid electrolyte in an oxygen probe using a zirconia solid electrolyte.
By setting the diameter to 0.5 mm or more and less than 1.0, the lack of responsiveness or stability of conventional oxygen probes has been overcome. A typical example of the zirconia solid electrolyte targeted in the present invention is ZrO 2
MgO-based, ZrO 2 -CaO-based, ZrO 2 -Y 2 O 3- based and their composite stabilized types (e.g. ZrO 2 -MgO-
CaO type), etc. When measuring the oxygen activity value in a solution using these solid electrolytes as oxygen probes, the response and stability of the emf curve are significantly affected by its thickness, and when the thickness is 1.0 mm or more, Heat transfer is delayed, and it takes time for the interior of the reference electrode to reach a constant equilibrium oxygen partial pressure. As a result, the response time becomes longer and the permissible immersion time of the oxygen probe is exceeded. On the other hand, when the electrolyte thickness becomes thinner than 0.5 mm, the response time becomes shorter, but the amount of oxygen that directly passes through the electrolyte cannot be ignored, and as a result, the waveform of the emf curve becomes unstable, and the measured value itself has an error in oxygen transmission. It becomes an imaginary value containing . The present invention will be specifically explained below using Examples. Example 1 Figure 2 shows the cross section and bottom surface of the oxygen probe used to measure the oxygen activity value in molten steel in this example .
8.1 mol% MgO tube 2 is a reference electrode material filled in this tube, which is filled with 0.1 to 0.3 g of Cr and Cr 2 O 3 sintered at a temperature of 1550° C. or higher and then ground. 3 is a Mo wire as a reference electrode wire, 4 is alumina powder, 5 is an iron ring that is an electrode on the molten steel side, 6 is a thermocouple for measuring the temperature of molten steel, 7 is an iron cap for preventing slag,
8 is a refractory body that supports these sensor parts, 9 is a refractory sleeve, and 10 is a paper sleeve. Table 1 shows this oxygen probe immersed in low carbon Al-killed molten steel (1600±10℃) in a 90t ladle.
The response time and waveform stability were determined from the emf curve, and these were summarized in relation to the thickness of the solid electrolyte. As shown in Figure 3, the response time is determined by measuring the time from the start of immersion of the oxygen probe into the molten steel until the waveform becomes stable. The measured values of 20 oxygen probes were averaged for each electrolyte size, judging by the presence or absence of time and its length.

【表】【table】

【表】 固体電解質厚みを0.5mm以下にすると応答時間
は短くなるが波形の安定性が悪くなる。第4図は
本発明内外のemfカーブ波形を示したもので、(a)
はNo.4の場合、(b)はNo.6の場合である。 一方固体電解質厚みを1.0mm以上にすると波形
の安定性はよいが、応答時間は9.1秒以上と長く
なる。一般に酸素プローブの場合、その許容浸漬
時間teは浸漬溶鋼温度により異なるが、補強を加
えない通常の酸素プローブでは溶鋼温度1600℃で
約9秒である。しかもemfカーブが安定域に達し
ているかどうかを確認するにはemfカーブがほぼ
同一電位に約1.5秒間保たれていないと確認でき
ないため、emfカーブは浸漬開始から7.5秒以内
に安定域に達しなければならない。すなわち応答
時間は7.5秒以内でなければならず、応答時間が
9.1秒以上となる電解質厚み1.0mm以上では測定が
不可能となる。 実施例 2 厚みを実施例1と同様に変化させ内径2mmまた
は4mmの固体電解質を用いて実施例1と同一構造
の酸素プローブを作成し、これを実施例1と同一
条件で溶鋼中に浸漬して、固体電解質厚みの変化
による応答時間、安定性を調査した。なお、調査
は、実施例1の場合と同様に、各固体電解質寸法
毎に20本の酸素プローブを作成して、各寸法毎に
測定値を平均した。第2表、第3表にこの結果を
示す。安定性の評価は実施例1と同じである。
[Table] When the solid electrolyte thickness is 0.5 mm or less, the response time becomes shorter, but the waveform stability deteriorates. Figure 4 shows emf curve waveforms inside and outside the present invention, (a)
is for No. 4, and (b) is for No. 6. On the other hand, when the solid electrolyte thickness is 1.0 mm or more, the waveform stability is good, but the response time is longer, at 9.1 seconds or more. In general, in the case of oxygen probes, the permissible immersion time te varies depending on the immersed molten steel temperature, but in the case of a normal oxygen probe without reinforcement, it is about 9 seconds at a molten steel temperature of 1600°C. Moreover, in order to confirm whether the emf curve has reached the stable range, the emf curve must be kept at almost the same potential for about 1.5 seconds, so the emf curve must reach the stable range within 7.5 seconds from the start of immersion. Must be. That is, the response time must be within 7.5 seconds, and the response time must be within 7.5 seconds.
If the electrolyte thickness is 1.0 mm or more and the time is 9.1 seconds or more, measurement becomes impossible. Example 2 An oxygen probe with the same structure as in Example 1 was created using a solid electrolyte with an inner diameter of 2 mm or 4 mm, with the thickness changed in the same manner as in Example 1, and it was immersed in molten steel under the same conditions as in Example 1. We investigated the response time and stability due to changes in solid electrolyte thickness. In addition, in the investigation, as in the case of Example 1, 20 oxygen probes were created for each solid electrolyte size, and the measured values were averaged for each size. Tables 2 and 3 show the results. The stability evaluation was the same as in Example 1.

【表】【table】

【表】【table】

【表】 以上の如く、本発明の場合固体電解質厚みを
0.5mm以上、1.0mm未満にすることにより応答性と
安定性を向上させることができるので、外装や耐
火物の補強は不要であり、かつ価格も安価であ
る。また応答性の向上により作業時間も短くなる
ので作業は容易となる。
[Table] As shown above, in the case of the present invention, the solid electrolyte thickness is
Responsiveness and stability can be improved by setting the diameter to 0.5 mm or more and less than 1.0 mm, so there is no need to reinforce the exterior or refractories, and the price is also low. In addition, the improved responsiveness shortens the working time, making the work easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素プローブにより溶鋼中の酸
素活量を測定した場合によくみられるemfカーブ
を示したもので、(a)は応答性の悪い場合、(b)は安
定性の悪い場合を示している。第2図は本発明の
実施例に用いた酸素プローブを示すもので、(a)は
断面図、(b)はキヤツプ底面を除去した場合の(a)の
底面図である。第3図は酸素プローブのemfカー
ブにおける応答時間、安定域保持時間および許容
浸漬時間teの関係を示したものである。第4図は
実施例における本発明内外のemfカーブを示した
もので、(a)はNo.4の場合を、(b)はNo.6の場合を示
している。 1…固体電解質であるZrO2−8.1mol%MgOチ
ユーブ、2…基準極物質(Cr/Cr2O3混合焼結粉
末)、3…Mo線、4…アルミナ粉、5…溶鋼側
電極(鉄リング)、6…溶鋼測温用熱電対、7…
スラグ防止用鉄製キヤツプ、8…耐火物ボデイ、
9…耐火物スリーブ、10…紙スリーブ。
Figure 1 shows emf curves that are often seen when measuring oxygen activity in molten steel with a conventional oxygen probe. (a) shows cases where response is poor, and (b) shows cases where stability is poor. It shows. FIG. 2 shows an oxygen probe used in an embodiment of the present invention, in which (a) is a sectional view and (b) is a bottom view of (a) with the bottom surface of the cap removed. FIG. 3 shows the relationship among the response time, stability range retention time, and allowable immersion time te in the emf curve of the oxygen probe. FIG. 4 shows emf curves inside and outside the present invention in Examples, where (a) shows the case of No. 4, and (b) shows the case of No. 6. 1... ZrO2-8.1mol %MgO tube which is a solid electrolyte, 2...Reference electrode material (Cr/ Cr2O3 mixed sintered powder), 3...Mo wire, 4 ...Alumina powder, 5... Molten steel side electrode (iron) ring), 6...Thermocouple for measuring temperature of molten steel, 7...
Slag prevention iron cap, 8... refractory body,
9...Refractory sleeve, 10...Paper sleeve.

Claims (1)

【特許請求の範囲】[Claims] 1 固体電解質としてジルコニア系固体電解質を
用いて溶鋼中の酸素活量値を測定する酸素プロー
ブにおいて、固体電解質厚みを0.5mm以上、1.0mm
未満としたことを特徴とする酸素プローブ。
1 In an oxygen probe that measures the oxygen activity value in molten steel using a zirconia solid electrolyte as the solid electrolyte, the solid electrolyte thickness is 0.5 mm or more and 1.0 mm.
An oxygen probe characterized in that:
JP57095802A 1982-06-04 1982-06-04 Oxygen probe Granted JPS58213247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095802A JPS58213247A (en) 1982-06-04 1982-06-04 Oxygen probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095802A JPS58213247A (en) 1982-06-04 1982-06-04 Oxygen probe

Publications (2)

Publication Number Publication Date
JPS58213247A JPS58213247A (en) 1983-12-12
JPH0324622B2 true JPH0324622B2 (en) 1991-04-03

Family

ID=14147558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095802A Granted JPS58213247A (en) 1982-06-04 1982-06-04 Oxygen probe

Country Status (1)

Country Link
JP (1) JPS58213247A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504989A (en) * 2017-08-16 2017-12-22 钟祥市中原电子有限责任公司 A kind of molten steel Determining oxygen probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141596A (en) * 1974-08-02 1976-04-07 Noranda Mines Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141596A (en) * 1974-08-02 1976-04-07 Noranda Mines Ltd

Also Published As

Publication number Publication date
JPS58213247A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
JP4814559B2 (en) Container for molten metal, use of the container and method for determining the interface layer
JPS6126610B2 (en)
US6156174A (en) Immersion sensor for measuring an electrochemical activity
JPH0324622B2 (en)
GB1512965A (en) Indication of levels in receptacles
JP4399927B2 (en) Apparatus and method for measuring oxygen partial pressure in slag
JPS6367655B2 (en)
JPS63191056A (en) Apparatus for measuring concentration of silicon in molten metal
JPH044212Y2 (en)
JPH0222901B2 (en)
US3932135A (en) Method and apparatus for the determination of the oxygen content of metallic baths
JPS5935805Y2 (en) Oxygen concentration detection element in molten metal
JPH0464419B2 (en)
JPH0112191Y2 (en)
JPS6117952A (en) Oxygen probe
JPS63273055A (en) Probe for measuring density of impurity element in molten iron
JPH032850Y2 (en)
De et al. Zirconia Based Plug Type Oxygen Sensors
KR910008652B1 (en) Method apparatus and prove for measuring the activity of a solute element in molton met
JPH0628687Y2 (en) Continuous oxygen concentration measuring device
JPH0257866B2 (en)
EP0450090A4 (en) Method of and device for measuring oxygen activity in slag and consumable type crucible used for said device
JPH0750062B2 (en) Sensor for measuring silicon concentration in molten metal −
JPH0249470B2 (en)
JPS6188139A (en) Continuous measuring method of dissolved oxygen in molten metal