JPH0324609B2 - - Google Patents

Info

Publication number
JPH0324609B2
JPH0324609B2 JP56101995A JP10199581A JPH0324609B2 JP H0324609 B2 JPH0324609 B2 JP H0324609B2 JP 56101995 A JP56101995 A JP 56101995A JP 10199581 A JP10199581 A JP 10199581A JP H0324609 B2 JPH0324609 B2 JP H0324609B2
Authority
JP
Japan
Prior art keywords
phase difference
signal
circuit
phase change
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56101995A
Other languages
Japanese (ja)
Other versions
JPS582752A (en
Inventor
Shinichi Amamya
Tadahiko Yanajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56101995A priority Critical patent/JPS582752A/en
Publication of JPS582752A publication Critical patent/JPS582752A/en
Publication of JPH0324609B2 publication Critical patent/JPH0324609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は、超音波パルスを送出し、被測定物か
らの反射波を受信し、ドプラ効果により反射波が
受けた位相変化量を検出して被測定物の流速を測
定する超音波流速計に関する。
Detailed Description of the Invention The present invention transmits ultrasonic pulses, receives reflected waves from an object to be measured, detects the amount of phase change received by the reflected waves due to the Doppler effect, and calculates the flow velocity of the object to be measured. This article relates to an ultrasonic current meter for measurement.

従来のパルス法による超音波流速計では、検出
しうる流速の限界vnaxは超音波送信中心周波数
fc、超音波送信繰り返し周波数fr、流体音速Cに
より一義的に vnax=fr・C/4fc と定まつてしまう。vnaxを大にするにはfrを大に
し、fcを小にすればよいが反射波は次のパルスを
送出する迄に戻つていなければならないから、fr
を大にすることには限界がある。また信号処理の
関係上超音波パルスの送信繰り返し周波数frは常
に規則正しくなければならず、例えば超音波パル
スの送信を途中で1回休む等という不規則な動作
はなし得ないという問題があつた。
In the conventional pulse method ultrasonic anemometer, the detectable flow velocity limit v nax is the ultrasonic transmission center frequency.
fc, ultrasonic transmission repetition frequency f r , and fluid sound velocity C, it is uniquely determined as v nax = f r ·C/4fc. To increase v nax , increase f r and decrease f c , but the reflected wave must return before sending out the next pulse, so f r
There is a limit to how big it can be. Further, due to signal processing, the transmission repetition frequency f r of ultrasonic pulses must always be regular, and there is a problem in that irregular operations such as stopping transmission of ultrasonic pulses once in the middle are not possible.

本発明は、被測定物の速度が慣性のために急激
には変化しないという事実に着目し、離散的に得
られるドプラ信号相互間の位相変化量から次の位
相変化量を予測するつまりデータ補間することで
計測可能な最高流速を引き上げ(補間すれば実効
的にfrを大にしたことになる)また不規則な超音
波パルスの送信を可能とするものである。即ち本
発明の超音波流速計は、間欠的に受信される超音
波信号の各位相変化量を測定し流体の速度を測定
する超音波流速計において、測定された流体の速
度から次に測定される流体の速度の上限及び下限
の速度を予測し、予測された速度範囲で、該次の
流体の速度を測定することを特徴とする。尚、予
測位相変化量を求める際に、単に修正位相変化量
を用いるだけでなく、反射波の振幅で重みづけを
行えばさらに精度の良い予測を行うことができ
る。また、各データ間の位相変化量が±π以内に
なるように、データを補間発生する回路を付加す
ることによつて、従来と同じ型の解析回路を用い
ることができる。以下図示の実施例を参照しなが
らこれを詳細に説明する。
The present invention focuses on the fact that the speed of an object under test does not change rapidly due to inertia, and uses data interpolation to predict the next amount of phase change from the amount of phase change between Doppler signals obtained discretely. By doing this, the maximum measurable flow velocity can be increased (if interpolated, f r has effectively been increased), and it is also possible to transmit irregular ultrasonic pulses. That is, the ultrasonic anemometer of the present invention measures the velocity of a fluid by measuring the amount of phase change of an intermittently received ultrasonic signal. The method is characterized in that the upper and lower limits of the velocity of the next fluid are predicted, and the velocity of the next fluid is measured within the predicted velocity range. In addition, when calculating the predicted phase change amount, more accurate prediction can be achieved by not only using the corrected phase change amount but also weighting with the amplitude of the reflected wave. Further, by adding a circuit that interpolates and generates data so that the amount of phase change between each data is within ±π, the same type of analysis circuit as the conventional one can be used. This will be explained in detail below with reference to the illustrated embodiments.

第1図は本発明の一実施例を示す概略ブロツク
図である。本例の超音波流速計では、送信器1及
びトランスジユーサ2によつて繰返し送出される
超音波パルスは被測定物(図示せず)で反射し、
その反射波が同一のトランスジユーサ2(これは
異なるトランジユーサでもよい)で受信され、受
信器3で増幅される。増幅された信号Rは直交検
波型の検波器4で検波され、直交座標系のドプラ
信号X,Yとなる。第2図はこの検出器4の回路
例で、41a,41bは掛算器、42a,42b
は遮断周波数が約fcのローパスフイルタ、43
a,43bは測定ポイントを指示するサンプリン
グ信号Sで動作するサンプリングホールド回路、
44a,44bは静止物体(血流速測定の場合は
血管など)からの反射波(固定波)を除去するハ
イパスフイルタである。このフイルタ44a,4
4bは静止物体のない場合は省略できる。検出器
4の出力X,Yは拡張データ作成回路5に導びか
れ、ここで解析器6に対する拡張データ(後述す
る)に変換される。尚、7は各部を制御するコン
トローラである。
FIG. 1 is a schematic block diagram showing one embodiment of the present invention. In the ultrasonic current meter of this example, the ultrasonic pulses repeatedly sent out by the transmitter 1 and the transducer 2 are reflected by the object to be measured (not shown),
The reflected wave is received by the same transducer 2 (this may be a different transducer) and amplified by the receiver 3. The amplified signal R is detected by an orthogonal detection type detector 4, and becomes Doppler signals X and Y in an orthogonal coordinate system. FIG. 2 shows an example of the circuit of this detector 4, in which 41a and 41b are multipliers, 42a and 42b
is a low-pass filter with a cutoff frequency of approximately f c , 43
a, 43b are sampling and holding circuits operated by a sampling signal S indicating a measurement point;
44a and 44b are high-pass filters that remove reflected waves (fixed waves) from stationary objects (such as blood vessels in the case of blood flow velocity measurement). This filter 44a, 4
4b can be omitted if there is no stationary object. The outputs X and Y of the detector 4 are led to an extended data creation circuit 5, where they are converted into extended data (described later) for the analyzer 6. Note that 7 is a controller that controls each part.

第3図は拡張データ作成回路5の具体例で、5
1は検波器4の出力X,Yを振幅rおよび位相θ
に座標変換する(re j〓=X+jYの関係からr、θ
を求める)座標変換回路である。離散的に得られ
る各ドプラ信号の位相θは順次位相変化検出回路
52に導びかれ、ここで一時記憶されて前回θi-1
と今回θiとの位相差Δθiが求められる。つまりΔθi
=θi−θi-1であり、以下これを実測位相変化量と
呼ぶ。位相差シフト回路53はΔθiにnπを加算し
て修正位相変化量Δθ′iを求めるもので、そのn値
は位相変化予測回路54からの予測位相変化量wi
により次式が満足される様に選択する。
FIG. 3 shows a specific example of the extended data creation circuit 5.
1 is the output X, Y of the detector 4 with amplitude r and phase θ
(From the relationship r e j 〓=X+jY, r, θ
) is a coordinate conversion circuit. The phase θ of each Doppler signal obtained discretely is sequentially led to the phase change detection circuit 52, where it is temporarily stored and compared to the previous θ i-1
The phase difference Δθ i between this time and θ i is found. In other words, Δθ i
= θ i −θ i-1 , which will hereinafter be referred to as the measured phase change amount. The phase difference shift circuit 53 adds nπ to Δθ i to obtain the corrected phase change amount Δθ′ i , and the n value is the predicted phase change amount w i from the phase change prediction circuit 54.
Select so that the following equation is satisfied.

wi+π>Δθi+nπ>wi−π ……(1) n=0、±1、±2…… Δθ′i=Δθi+nπ ……(2) nは(1)式を満足する値 予測位相変化量wiは下式に示す様に前回の予測
位相変化量wi-1と前回の修正位相変化量Δθ′i-1
適当比で加えたものである。
w i +π>Δθ i +nπ>w i −π …(1) n=0, ±1, ±2…… Δθ′ i =Δθ i +nπ …(2) n is a value that satisfies equation (1) The predicted phase change amount w i is the sum of the previous predicted phase change amount w i-1 and the previous corrected phase change amount Δθ' i-1 in an appropriate ratio, as shown in the following equation.

wi=a・wi-1+b(Δθ′i-1−wi-1)……(3) a≧0、b>0(定数) ラツチ532にラツチされた修正位相変化量Δθ′i
は位相変化予測回路54に供給される。位相変化
予測回路54は修正位相変化量Δθ′iから次の変化
量が何れの位相変化量となるかを予測し、次式で
示す予測位相変化量wiを出力する。
w i =a・w i-1 +b (Δθ′ i-1 −w i-1 )……(3) a≧0, b>0 (constant) Corrected phase change amount Δθ′ i latched in latch 532
is supplied to the phase change prediction circuit 54. The phase change prediction circuit 54 predicts which phase change amount will be the next amount of change from the corrected amount of phase change Δθ′ i , and outputs the predicted amount of phase change w i expressed by the following equation.

wi=a・wi-1+b(Δθ′i-1−wi-1)……(4) 但し、a,bはa≧0、b>0の定数、iは整
数であり、wi-1は予測位相変化量wiを得たタイミ
ングの直前のタイミングで得た予測位相変化量、
Δθ′i-1は、修正位相変化量Δθ′iの直前のタイミン
グで得た修正位相変化量である。
w i =a・w i-1 +b(Δθ′ i-1 −w i-1 )……(4) However, a, b are constants of a≧0, b>0, i is an integer, and w i-1 is the predicted phase change amount obtained at the timing immediately before the timing when the predicted phase change amount w i was obtained,
Δθ′ i−1 is the corrected phase change amount obtained at the timing immediately before the corrected phase change amount Δθ′ i .

また、位相変化予測回路54中、541は定数
発生部であり、上記定数bに対応する定数b1〜bo
を各々発生するもの、543はスイツチであり、
上記定数bとして定数b1〜boの内選択された何れ
か一方の定数を出力するもの、547は定数発生
部であり上記定数aを発生するもの、549はタ
ツプであり単位となるタイミングだけ入力を遅ら
せるものである。
Further, in the phase change prediction circuit 54, 541 is a constant generator, which generates constants b 1 to b o corresponding to the constant b.
543 is a switch that generates each of
One that outputs one of the constants b 1 to b o as the constant b, 547 is a constant generator that generates the constant a, and 549 is a tap that only serves as a unit timing. It delays input.

動作を説明すれば、タツプ549により単位タ
イミングだけ遅延された予測位相変化量wi-1と、
修正位相変化量Δθ′iとが減算器544に供給され
る。減算器544においてはこれら位相変化量か
ら値「Δθ′i−wi-1」を演算し出力する。乗算器5
45にはこの演算出力「Δθi−wi-1」と定数bと
が供給されており、上記第(1)式の右辺第2項に相
当する演算出力「b(Δθ′i-1−wi-1)」を加算器5
48に出力する。
To explain the operation, the predicted phase change amount w i-1 delayed by the unit timing by the tap 549,
The corrected phase change amount Δθ′ i is supplied to a subtracter 544. The subtracter 544 calculates and outputs the value "Δθ' i -w i-1 " from these phase change amounts. Multiplier 5
This calculation output “Δθ i −w i-1 ” and constant b are supplied to 45, and the calculation output “b(Δθ′ i-1 − w i-1 )” to adder 5
48.

一方定数発生部547より発生される定数a
と、予測位相変化量wi-1とは乗算器546にて乗
算され、上記第(1)式の右辺第1項に相当する出力
を加算器548に出力する。これにより加算器5
48は予測位相変化量wiを作成出力する。
On the other hand, the constant a generated by the constant generator 547
and the predicted phase change amount w i-1 are multiplied by a multiplier 546, and an output corresponding to the first term on the right side of the above equation (1) is outputted to an adder 548. As a result, adder 5
48 generates and outputs the predicted phase change amount w i .

第5図はa=0.8、b=0.3としてΔθ′i-1が20か
ら100にステツプ状に変化した場合(本発明では
かゝる変化は予定していないが)のwiの算出例で
ある。a,bの値でwiの追従性が決定され、a,
bが共に1に近いほど追従性は良くなる。しか
し、追従性が良くなるとノイズに対して誤動作し
やすくなる。誤動作をするにはbを工夫すると良
い。即ち、振幅rが大きいほどθの情報は信頼で
きるので、bを定数とせず第6図の様に振幅情報
rでbの値を変化させると良い。第3図で振幅情
報rを位相変化予測回路54に導びいているのは
この点を考慮したもので、bを定数としておく場
合にはその経路は不要である。
Figure 5 shows an example of calculating w i when Δθ′ i-1 changes stepwise from 20 to 100 (although such a change is not planned in the present invention) with a=0.8 and b=0.3. be. The followability of w i is determined by the values of a and b, and a,
The closer both b are to 1, the better the followability becomes. However, the better the followability, the more likely it will malfunction due to noise. To prevent malfunctions, it is best to devise a method for b. That is, the larger the amplitude r is, the more reliable the information on θ is, so it is preferable to change the value of b with the amplitude information r, as shown in FIG. 6, instead of making b a constant. The reason why the amplitude information r is guided to the phase change prediction circuit 54 in FIG. 3 is to take this point into consideration, and if b is set as a constant, this path is unnecessary.

第4図は修正位相変化量θ′iの変化を示したもの
で、予相位相変化量範囲はwi+πを上限とし、wi
−πを下限とする幅2πの斜線領域である。これ
ら上限値及び下限値は、各々コンパレータ53
6,537にて加算器531の出力値Δθi+nπと
比較される。コンパレータ536は出力値Δθi
nπと上限値wi+πとを比較し、出力値Δθi+nπが
上限値wi+πより小さい時レベル“1”の信号
を、またコンパレータ537は出力値Δθi+nπと
下限値wi−πとを比較し、出力値Δθi+nπが下限
値wi−πより大きい時レベル“1”の信号を、
各々その条件がとれない場合はレベル“0”の信
号を発生する。
Figure 4 shows the change in the corrected phase change amount θ′ i , with the upper limit of the prephase phase change range being w i +π, and w i
This is a hatched area with a width of 2π with −π as the lower limit. These upper limit values and lower limit values are determined by the comparator 53.
6,537, it is compared with the output value Δθ i +nπ of the adder 531. The comparator 536 outputs the output value Δθ i +
nπ is compared with the upper limit value w i +π, and when the output value Δθ i +nπ is smaller than the upper limit value w i +π, the comparator 537 outputs a level “1 signal. When the output value Δθ i +nπ is larger than the lower limit value w i −π, the level “1” signal is
If each condition cannot be met, a signal of level "0" is generated.

ゲート回路538は両コンパレータ536,5
37の内いずれか一方からのみレベル“1”信号
が得られる時、カウンタ539を+1カウントア
ツプさせるためのパルスを出力する。またゲート
回路538は両コンパレータ536,537の両
方からレベル“1”信号が得られる時、ラツチ回
路532に加算器531の出力値をラツチさせる
ためのパルスを出力する。
The gate circuit 538 has both comparators 536,5
When a level "1" signal is obtained from only one of the counters 37, a pulse is output for incrementing the counter 539 by one. Furthermore, when a level "1" signal is obtained from both comparators 536 and 537, gate circuit 538 outputs a pulse for causing latch circuit 532 to latch the output value of adder 531.

カウンタ539は図示されない制御部よりリセ
ツトされると、一定値−m(例えば−2)となり、
(尚、リセツトタイミングは、ラツチ532に値
がラツチされた直後に設定される)ゲート回路5
38からのパルス信号をカウントする。このカウ
ンタのカウント値と、定数発生部533からの定
数πとが乗算器530にて乗算され、その乗算値
が実測位相変化量Δθiの補正量として、加算器5
31に供給される。
When the counter 539 is reset by a control unit (not shown), it becomes a constant value -m (for example, -2),
(The reset timing is set immediately after the value is latched in the latch 532.) Gate circuit 5
Count the pulse signals from 38. The count value of this counter and the constant π from the constant generator 533 are multiplied by the multiplier 530, and the multiplied value is used as the correction amount for the measured phase change amount Δθ i by the adder 5.
31.

従つてラツチ回路532にラツチされる補正位
相変化量は、次式を満足することとなる。
Therefore, the corrected phase change amount latched by the latch circuit 532 satisfies the following equation.

wi+π>Δθi+nπ>wi−π n=、±1、±2…… なお区間Iではwi+π≦2πとするためにwi
+πに固定している。また区間では実測位相変
化量Δθiが斜線領域外(点線で示す)であるので、
これに+2πを加算して修正位相変化量Δθ′iを求め
ている。
w i +π>Δθ i +nπ>w i −π n=, ±1, ±2... In interval I, w i =
It is fixed at +π. Also, in the section, the measured phase change amount Δθ i is outside the shaded area (indicated by the dotted line), so
+2π is added to this to obtain the corrected phase change amount Δθ′ i .

以上は、超音波の送信繰り返し周期が一定の場
合であるが、繰り返しが一定でない時は(1)、(2)式
をそれぞれ(5)、(6)式に変更する。
The above is a case where the transmission repetition period of ultrasonic waves is constant, but when the repetition is not constant, equations (1) and (2) are changed to equations (5) and (6), respectively.

Tiwi+π>Δθi+nπ>Tiwi−π ……(5) wi=awi+b(Δθ′i-1/Ti-1−wi-1) ……(6) なおTiは下式に示される値である。 T i w i +π>Δθ i +nπ>T i w i −π …(5) w i =aw i +b(Δθ′ i-1 /T i-1 −w i-1 ) …(6) T i is a value shown in the following formula.

Ti=ti−ti-1/ΔtS ここでtiはi番目の超音波パルスを送信した時
刻を示す。またΔtSは平均繰り返し緒間又は最大
時間又は最小時間のいずれかを計算がしやすいよ
うに用いるものであるから、ΔtS=1でも良い。
T i =t i −t i-1 /Δt S where t i indicates the time at which the i-th ultrasonic pulse was transmitted. Further, since Δt S uses either the average repeat interval, the maximum time, or the minimum time for ease of calculation, Δt S =1 may be used.

かくして拡張データ作成回路5で得られた修正
位相変化量Δθ′iは±πを越えることがあるので、
解析器6はこのデータを解析して流速を算出でき
るものでなければならないが、第7図に示す回路
を拡張データ作成回路5の後段に設ければ、解析
器6は通常のドプラ解析回路でよい。この補助回
路8は振幅補間回路81、位相変化量補間回路8
2、位相差加算回路83、座標変換回路84から
なる。座標変換回路84はr、θ極座標をXY直
交座標に変換するものである。振幅補間回路81
および位相変化量補間回路82はそれぞれ第8図
aおよびbの様にデータ補間を行う。Dは実デー
タ、Hは補間データである。本例では各実データ
の間に補間データを1つ加えているが、位相変化
量を±π内から±2π内へ拡張すると、サンプリ
ングがナイキスト間隔で行なわれるには本例のよ
うにする必要がある。位相差加算回路83は補間
回路82の出力(これもΔθ′iとする)を次式で積
算し、θ′iを求める。
In this way, the corrected phase change amount Δθ′ i obtained by the extended data creation circuit 5 may exceed ±π, so
The analyzer 6 must be able to analyze this data and calculate the flow velocity, but if the circuit shown in FIG. good. This auxiliary circuit 8 includes an amplitude interpolation circuit 81 and a phase change amount interpolation circuit 8.
2, a phase difference addition circuit 83, and a coordinate conversion circuit 84. The coordinate conversion circuit 84 converts r, θ polar coordinates into XY orthogonal coordinates. Amplitude interpolation circuit 81
The phase change amount interpolation circuit 82 performs data interpolation as shown in FIGS. 8a and 8b, respectively. D is real data and H is interpolated data. In this example, one interpolated data is added between each actual data, but if the phase change is expanded from within ±π to within ±2π, it is necessary to do as in this example in order to perform sampling at the Nyquist interval. There is. The phase difference addition circuit 83 integrates the output of the interpolation circuit 82 (also assumed to be Δθ′ i ) using the following equation to obtain θ′ i .

θ′i=θ′i-1+A・Δθ′i A=1/(N+1) 但し、i=1,2,3……であり、またNは実
データD間の補間データHの数、従つて第8図で
はA=1/2である。実際には加算値が±π以内な
らば解析可能であるから、|A|≦1/(N+1)
であればNは任意に設定できる。なお、超音波パ
ルスの繰り返し周期が一定でない場合は、Δθ′i
Ti・Δθ′iとして補間データを一定間隔T0ごとに求
め、適当に掛け算を行い位相変化量が±πの内に
入るようにした後、加算を行なう。
θ' i = θ' i-1 +A・Δθ' i A=1/(N+1) However, i=1, 2, 3..., and N is the number of interpolated data H between the actual data D, Therefore, in Fig. 8, A=1/2. Actually, analysis is possible if the added value is within ±π, so |A|≦1/(N+1)
If so, N can be set arbitrarily. Note that if the repetition period of the ultrasonic pulse is not constant, Δθ′ i should be
Interpolated data is obtained as T i ·Δθ′ i at regular intervals T 0 , and after appropriate multiplication is performed so that the amount of phase change is within ±π, addition is performed.

第9図は上記補間データ作成回路によつて作成
された各種データで、aは第8図と同様の中間デ
ータ(DとDの間に入るH)作成例である。bは
実データDの1/4が欠落した場合の補間例、cは
不規則に発生するデータを規則的なデータに変換
する作成例で、D′は実データである。これらの
うち実データDと補助データHは解析データに用
いるが、不規則実データD′は用いない。欠落デ
ータは例えば超音波送受器を複数組用いてそれぞ
れの系で測定を行なう場合、送信タイミングが両
者重なる場合があるので一方は休止させる等の場
合に生じる。
FIG. 9 shows various data created by the interpolation data creation circuit, and a is an example of creating intermediate data (H between D and D) similar to that in FIG. b is an example of interpolation when 1/4 of the actual data D is missing, c is an example of creation in which irregularly generated data is converted to regular data, and D' is the actual data. Of these, the actual data D and the auxiliary data H are used as analysis data, but the irregular actual data D' is not used. Missing data may occur, for example, when a plurality of ultrasonic transceivers are used to perform measurements in each system, and the transmission timings of both systems may overlap, so one is suspended.

前述した第3図および第7図の機能ブロツクは
必ずしも所定のハードウエアに対応させる必要は
なく、実際には多くの演算がマイクロプロセツサ
によりソフトで処理され得る。
The functional blocks shown in FIGS. 3 and 7 described above do not necessarily have to correspond to predetermined hardware; in fact, many operations can be processed by software using a microprocessor.

以上述べたように本発明によれば、検出しうる
最大流速vnaxを引き上げることができるので、高
速で移動する被測定物の速度計測に都合が良く、
また超音波の送信タイミングに対する制限が少な
くなるので、送信タイミングが不規則になる超音
波流速計に適用して効果大なるものがある。
As described above, according to the present invention, it is possible to increase the maximum detectable flow velocity v nax , which is convenient for measuring the speed of objects to be measured that move at high speed.
Furthermore, since there are fewer restrictions on the transmission timing of ultrasonic waves, it can be applied to ultrasonic current meters where the transmission timing is irregular, which is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略ブロツク
図、第2図は直交型検波器の具体例を示すブロツ
ク図、第3図は拡張データ作成回路の具体例を示
すブロツク図、第4図は修正位相変化量の説明
図、第5図は予測位相変化量の説明図、第6図は
予測位相変化量の振幅情報による重みづけの説明
図、第7図は補間データ作成回路を示すブロツク
図、第8図および第9図は各種データ補間の説明
図である。 図中、1は超音波送信器、3は受信器、4は検
波器、5は拡張データ作成回路、6は解析器、8
は補間データ作成回路である。
FIG. 1 is a schematic block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a specific example of a quadrature detector, FIG. 3 is a block diagram showing a specific example of an extended data creation circuit, and FIG. The figure is an explanatory diagram of the corrected phase change amount, FIG. 5 is an explanatory diagram of the predicted phase change amount, FIG. 6 is an explanatory diagram of weighting of the predicted phase change amount by amplitude information, and FIG. 7 is an illustration of the interpolation data creation circuit. The block diagrams, FIGS. 8 and 9, are explanatory diagrams of various data interpolations. In the figure, 1 is an ultrasonic transmitter, 3 is a receiver, 4 is a detector, 5 is an extended data creation circuit, 6 is an analyzer, and 8
is an interpolation data generation circuit.

Claims (1)

【特許請求の範囲】 1 超音波パルスを、間欠的に送受する送受信回
路1,2,3と、 該送受信回路の受信信号を直交検波する検波回
路4と、 前記検波回路4の出力をサンプリングするアナ
ログ/デジタル変換器43a,43bと、 前記A/D変換器51により離散化された隣接
する受信データの実測位相差Δθiを検出する実測
位相差検出器52と、 現在の離散信号より前の離散信号との位相差を
予測し位相差予測信号Wiを出力する位相差予測
回路54と、 前記実測位相差検出器の出力である位相差信号
Δθiと位相差予測信号Wiから修正位相変化量Δθ′i
を求める修正位相変化量決定回路53を有し、 前記位相差予測回路54は、現在の離散信号よ
りも前の離散信号で予測された予測位相差信号
Wi-1と修正位相変化量決定回路53から出力さ
れた現在の離散信号の前の修正位相変化量Δθ′i-1
から、現在の離散信号の位相差Wiを予測する位
相差予測回路54であるとともに、 前記修正位相変化量決定回路53は、前記実測
位相差検出器52の出力である位相差信号Δθi
nπ(n≧0、nは整数)の位相差を加えた信号
Δθi+nπが、前記位相差予測回路から求められた
本離散信号の位相差予測信号Wiから予め決めら
れた±πずれた位相内に入る様なnを決定し、前
記決定されたnπを加えた信号Δθi+nπを修正位相
変化量Δθ′iとして求める修正位相変化量決定回路
53であり、前記修正位相変化量Δθ′iから流体の
速度を求めることを特徴とする超音波流速計。
[Claims] 1. Transmitting/receiving circuits 1, 2, and 3 that intermittently transmit and receive ultrasonic pulses; a detection circuit 4 that orthogonally detects the received signal of the transmitting/receiving circuit; and sampling the output of the detection circuit 4. Analog/digital converters 43a, 43b; a measured phase difference detector 52 for detecting the measured phase difference Δθ i of adjacent received data discretized by the A/D converter 51; a phase difference prediction circuit 54 which predicts the phase difference with the discrete signal and outputs a phase difference prediction signal W i ; and a modified phase from the phase difference signal Δθ i which is the output of the measured phase difference detector and the phase difference prediction signal W i . Amount of change Δθ′ i
The phase difference prediction circuit 54 includes a corrected phase change amount determination circuit 53 for determining a predicted phase difference signal predicted by a discrete signal previous to the current discrete signal.
W i-1 and the previous corrected phase change amount Δθ′ i-1 of the current discrete signal output from the corrected phase change amount determination circuit 53
A phase difference prediction circuit 54 predicts the current phase difference W i of the discrete signal from
The signal Δθ i +nπ obtained by adding a phase difference of nπ (n≧0, n is an integer) is shifted by a predetermined ±π from the phase difference predicted signal W i of the discrete signal obtained from the phase difference prediction circuit. This is a modified phase change amount determination circuit 53 which determines n such that it falls within the phase, and obtains a signal Δθ i +nπ obtained by adding the determined nπ as a modified phase change amount Δθ′ i , and the modified phase change amount Δθ′ An ultrasonic current meter characterized by determining the velocity of a fluid from i .
JP56101995A 1981-06-30 1981-06-30 Ultrasonic current meter Granted JPS582752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101995A JPS582752A (en) 1981-06-30 1981-06-30 Ultrasonic current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101995A JPS582752A (en) 1981-06-30 1981-06-30 Ultrasonic current meter

Publications (2)

Publication Number Publication Date
JPS582752A JPS582752A (en) 1983-01-08
JPH0324609B2 true JPH0324609B2 (en) 1991-04-03

Family

ID=14315401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101995A Granted JPS582752A (en) 1981-06-30 1981-06-30 Ultrasonic current meter

Country Status (1)

Country Link
JP (1) JPS582752A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876370B2 (en) * 1998-11-10 2007-01-31 バブコック日立株式会社 Acoustic flow velocity measuring device

Also Published As

Publication number Publication date
JPS582752A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
JP4135056B2 (en) Ultrasonic flow meter
JP2637439B2 (en) Fluid distribution detector
JP2544342B2 (en) Ultrasonic Doppler diagnostic device
JPS6122907B2 (en)
US20210003436A1 (en) Time-of-flight generating circuit and chip, flow meter and method of the same
JP2836989B2 (en) Doppler velocimeter
US5111825A (en) Ultrasonic Doppler flow meter
US4905206A (en) Ultrasonic doppler flow meter
JP2840864B2 (en) Pulse Doppler measurement device
JP2019023577A (en) System and method for moving target detection
US5065764A (en) Ultrasonic doppler blood flow velocity detection apparatus
JP2011180077A (en) Calculating device and flow meter equipped with calculating device
US4884448A (en) Ultrasonic doppler meter
JP4520552B2 (en) Method and apparatus for measuring the flow velocity of a fluid flow
JP4129547B2 (en) Means for improving accuracy of earthquake displacement calculation
JPH0324609B2 (en)
JP3969703B2 (en) Received signal processing apparatus and distance measuring apparatus
CA2197935C (en) Ultrasonic continuous wave doppler blood flow-meter
JP2714067B2 (en) Pulse Doppler measurement device
US5216639A (en) Method for processing a doppler signal
EP0474867B1 (en) Method of processing doppler signal
JP2594994B2 (en) Pulse Doppler measurement device
JP2714042B2 (en) Pulse Doppler measurement device
JP2811208B2 (en) Pulse Doppler measurement device
JPH0226497B2 (en)