JPH0324598Y2 - - Google Patents

Info

Publication number
JPH0324598Y2
JPH0324598Y2 JP1984067230U JP6723084U JPH0324598Y2 JP H0324598 Y2 JPH0324598 Y2 JP H0324598Y2 JP 1984067230 U JP1984067230 U JP 1984067230U JP 6723084 U JP6723084 U JP 6723084U JP H0324598 Y2 JPH0324598 Y2 JP H0324598Y2
Authority
JP
Japan
Prior art keywords
variable resistor
resistance value
series
current
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984067230U
Other languages
Japanese (ja)
Other versions
JPS60181370U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6723084U priority Critical patent/JPS60181370U/en
Publication of JPS60181370U publication Critical patent/JPS60181370U/en
Application granted granted Critical
Publication of JPH0324598Y2 publication Critical patent/JPH0324598Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、地中埋設金属管等の絶縁部におけ
るボンド電流調整器に関するものである。 地中に埋設された金属管等は電鉄等の付近にお
いてはその迷走電流による腐食、いわゆる電食が
発生し大きな問題になつている。この電食を防止
する手段として種々のものが考えられているが、
その一手段として、流入電流を軽減するために埋
設管等をある長さごとに絶縁接続することが行わ
れている。 しかしながら、絶縁接続すると絶縁個所付近の
流入電流が増大し、かえつて局部的な危険性が増
すおそれがあるため、この絶縁接続部または管相
互接続部にボンド電流を流しこれを調整すること
が実施されている。 従来、地中埋設金属管路の管相互ボンドまたは
絶縁フランジの電流調整は第1図aに示すごとく
グランデイングセル、また第1図bに示すごとく
ダイオードを利用している。絶縁継手の保護は、
グランデイングセルによるものにおいては流電陽
極間の短絡電流により、ダイオードによるものに
おいてはシリコンダイオードによる電流通過によ
つて為されているが、これらのものにおいてはボ
ンド電流の制御は全く不可能である。 ボンド電流の調整手段にはこの他にトランジス
タ、トライアツクまたはSCR(サイリスタ)を利
用したものがある。しかし、絶縁部等における管
相互抵抗は第1表に示すごとく管接地抵抗(管路
長、管路漏れ抵抗により決定される)により、
0.1Ω程度の微小抵抗から2Ω以上と場所や周囲
環境により大きく異なり、上記したごとくの従来
のボンド電流調整法においては、管対地電位に応
じてボンド電流を充分に最適な値に調整すること
は不可能であつた。 この考案は、上記した従来のボンド電流調整に
おける問題点を解決するためになされたものであ
つて、第2図に示される通り、地中埋設金属管の
絶縁接続部に設けられるボンド電流調整器を、抵
抗値の小さい可変抵抗器VR1と抵抗値の大きい
可変抵抗器VR2とを直列接続し、前記抵抗値の
小さい可変抵抗器をシヨツトキーバリヤーダイオ
ードDを介して2次側金属管LPに直列接続し、
一方前記抵抗値の大きい可変抵抗器をシヤント抵
抗SHおよび主スイツチSWを介して1次側金属
管MPに直列接続し、かつサージアブソーバー
TNRを前記2次側金属管と主スイツチ間に並列
接続し、さらに前記シヨツトキーバリヤーダイオ
ードの両端間、および前記2つの直列接続の可変
抵抗器の両端間のそれぞれに短絡用スイツチ
SW1,SW2を接続した構成とすることにより、任
意のボンド電流に調整可能にした点に特徴を有す
るものである。 上記の抵抗値の小さい可変抵抗器は管路相互抵
抗が小さい個所に対応するものであり、また抵抗
値の大きい可変抵抗器は管路相互抵抗が大きい個
所に対応するものである。 以下、この考案の実施例を図面に基づいて説明
する。 第2図は本考案に係るボンド電流調整器の実施
例を示したものであり、VR1は管相互抵抗の
This invention relates to a bond current regulator in an insulating part of an underground metal pipe or the like. Metal pipes and the like buried underground are corroded by stray currents near electric railways, etc., causing corrosion, so-called electrolytic corrosion, which has become a serious problem. Various methods have been considered to prevent this electrolytic corrosion, but
One way to do this is to insulate and connect buried pipes and the like at intervals of a certain length in order to reduce the inflow current. However, insulated connections may increase the inflow current near the insulated points, which may even increase the local danger, so it is recommended to adjust this by flowing a bond current through the insulated connections or pipe interconnections. has been done. Conventionally, current regulation of pipe-to-pipe bonds or insulating flanges of underground metal conduits utilizes grounding cells as shown in FIG. 1a and diodes as shown in FIG. 1b. Protection of insulated joints is
In the case of a grounding cell, this is done by a short-circuit current between the current anodes, and in the case of a diode, this is done by passing current through a silicon diode, but in these cases, it is completely impossible to control the bond current. . Other means for adjusting the bond current include those using transistors, triacs, or SCRs (thyristors). However, as shown in Table 1, the mutual resistance of pipes in insulation parts, etc. is determined by the pipe grounding resistance (determined by pipe length and pipe leakage resistance).
The resistance varies greatly depending on the location and surrounding environment, ranging from a minute resistance of about 0.1Ω to more than 2Ω, and with the conventional bond current adjustment method described above, it is difficult to adjust the bond current to a fully optimal value according to the pipe-to-ground potential. It was impossible. This idea was made in order to solve the problems in the conventional bond current adjustment described above. A variable resistor VR1 with a small resistance value and a variable resistor VR2 with a large resistance value are connected in series, and the variable resistor with a small resistance value is connected to the secondary metal pipe LP via a shot key barrier diode D. Connect in series,
On the other hand, the variable resistor with a large resistance value is connected in series to the primary metal pipe MP via a shunt resistor SH and a main switch SW, and a surge absorber is connected in series to the primary metal pipe MP.
A TNR is connected in parallel between the secondary metal tube and the main switch, and a shorting switch is connected between both ends of the shot key barrier diode and between both ends of the two series-connected variable resistors.
The feature is that by having a configuration in which SW 1 and SW 2 are connected, it is possible to adjust the bond current to any desired value. The above variable resistor with a small resistance value corresponds to a location where the mutual resistance of the pipe line is small, and the variable resistor with a large resistance value corresponds to a location where the mutual resistance of the pipe line is large. Hereinafter, embodiments of this invention will be described based on the drawings. Figure 2 shows an embodiment of the bond current regulator according to the present invention, where VR1 is the tube mutual resistance.

【表】 小さい個所に対応するところの0〜1Ωの可変抵
抗器、VR2は管相互抵抗の大きい個所に対応す
る0〜5Ωの可変抵抗器であり、これらは図示さ
れるごとく直列に接続されている。SWは主スイ
ツチ、SW1とSW2は短絡用スイツチ、TNRは
サージアブソーバー、SHはシヤント抵抗、TB
1とTB2は端子台であり、LPは2次側、MPは
1次側を示している。そして、Dは1次側から2
次側への逆流を防止するシヨツトキーバリヤーダ
イオードである。 次に本考案の作用について説明する。 ボンド電流の調整時においては主スイツチSW
を閉じ、通常は短絡用スイツチSW1,SW2を
開いておく。そして、1次〜2次間の管相互抵抗
が大きい場合には、抵抗値が大なる可変抵抗器
VR2により一旦粗抵抗調整を行い、微調整を抵
抗値の小さい可変抵抗器VR1により行うことに
よつてボンド電流を精密にかつ広範囲に調節でき
るわけである。 また、管相互抵抗が小さい場合には可変抵抗器
VR2を0Ωとし、抵抗値の小さい可変抵抗器
VR1によつて抵抗調整を行うことによりボンド
電流を正確に調整することができる。 さらに、シヨツトキーバリヤーダイオードDに
は、シリコンダイオード等のダイオードに比し
て、低い電圧(堰層電圧:0.25〜0.3V)で電流が
流れ始めるので、管相互抵抗が高い場合や管相互
電位差が低い場合などにもボンド電流の流れが容
易となることから、効率良いボンド電流調整を可
能にする作用がある。また、ガバナー分解作業時
などにおける火花事故防止のため、外電等を
OFFとすると共に短絡用スイツチSW1,SW2
により絶縁短絡を行う。なお、サージアブソーバ
ーは異常電圧(サージ電圧)が生じたときに可変
抵抗器VR1,VR2やダイオードDを保護する
ために挿入したものである。 第3図は本考案によるボンド電流調整の態様を
示すためのボンド電圧Vとボンド電流Iとの間の
特性図であり、可変抵抗器VR1,VR2の値を
増加させることにより特性直線は矢印の向きに変
化し、ボンド電流を任意に調整できることが示さ
れている。 そして、第4図及び第5図はそれぞれ管路相互
抵抗が大(Rp=2.4Ω)及び小(Rp=0.1Ω)の
場合のボンド電流(IBond)対電圧V間の特性図
を示したものであり、これからボンド電流
(IBond)が広範囲にかつ精密に調整可能である
のがわかる。なお、直接ボンド時(R=0Ω)の
特性図をも破線で示してある。また第4図及び第
5図における「Rp」は絶縁部短絡時の管相互抵
抗である。 第6図はガバナー外壁取付用に製作した本考案
の実施例外観を示した図である。この図に示され
るごとく抵抗値の小さい可変抵抗器VR1のつま
みは大なるものを使用して精密に調節できるよう
にしてある。 上述したごとく、本考案によれば、絶縁部にお
ける管相互抵抗は場所により、0.1Ωから2Ωと
相当異なるにもかかわらず、任意に広範囲かつ精
密にボンド電流調整を容易に行うことができるの
である。また、本考案は通常のボンド電流調整値
(平均1〜5A)では前述した従来のボンド電流調
整器にくらべ、極めて安価に製造可能であるなど
の優れた利点を有するものであり、産業上きわめ
て有用なものである。
[Table] VR2 is a variable resistor of 0 to 1 Ω that corresponds to a small point, and VR2 is a variable resistor of 0 to 5 Ω that corresponds to a point of large tube mutual resistance.These are connected in series as shown in the figure. There is. SW is the main switch, SW1 and SW2 are short-circuit switches, TNR is a surge absorber, SH is a shunt resistor, TB
1 and TB2 are terminal blocks, LP indicates the secondary side, and MP indicates the primary side. And D is 2 from the primary side.
This is a shot key barrier diode that prevents backflow to the next side. Next, the operation of the present invention will be explained. When adjusting the bond current, use the main switch SW.
Close the switch, and normally leave the short-circuit switches SW1 and SW2 open. If the mutual resistance between the primary and secondary tubes is large, a variable resistor with a large resistance value is used.
The bond current can be adjusted precisely and over a wide range by once making a rough resistance adjustment using VR2 and then making a fine adjustment using the variable resistor VR1 having a small resistance value. Also, if the tube mutual resistance is small, a variable resistor can be used.
VR2 is 0Ω, variable resistor with small resistance value
By adjusting the resistance using VR1, the bond current can be adjusted accurately. Furthermore, current begins to flow through the shot key barrier diode D at a lower voltage (weir layer voltage: 0.25 to 0.3V) compared to diodes such as silicon diodes, so if the tube mutual resistance is high or the tube mutual potential difference Since the bond current flows easily even when the bond current is low, it has the effect of enabling efficient bond current adjustment. In addition, to prevent spark accidents when disassembling the governor, etc., disconnect external power, etc.
Turn off and short circuit switches SW1 and SW2
Performs an insulation short circuit. Note that the surge absorber is inserted to protect the variable resistors VR1 and VR2 and the diode D when an abnormal voltage (surge voltage) occurs. FIG. 3 is a characteristic diagram between bond voltage V and bond current I to show the mode of bond current adjustment according to the present invention, and by increasing the values of variable resistors VR1 and VR2, the characteristic line changes as shown by the arrow. It has been shown that the bond current can be adjusted arbitrarily. Figures 4 and 5 show the characteristics of bond current (IBond) versus voltage V when the mutual resistance of the pipes is large (Rp = 2.4Ω) and small (Rp = 0.1Ω), respectively. It can be seen from this that the bond current (IBond) can be adjusted over a wide range and precisely. Note that the characteristic diagram when directly bonded (R=0Ω) is also shown by a broken line. Moreover, "Rp" in FIGS. 4 and 5 is the tube mutual resistance when the insulation part is short-circuited. FIG. 6 is a diagram showing the external appearance of an embodiment of the present invention manufactured for mounting the governor on an outer wall. As shown in this figure, the knob of the variable resistor VR1, which has a small resistance value, is set to a large one so that it can be precisely adjusted. As mentioned above, according to the present invention, even though the tube mutual resistance in the insulating section varies considerably from 0.1Ω to 2Ω depending on the location, bond current adjustment can be easily performed over a wide range and precisely. . In addition, the present invention has excellent advantages such as being able to be manufactured at an extremely low cost compared to the conventional bond current regulator mentioned above at a normal bond current adjustment value (1 to 5 A on average), and is extremely useful in industry. It is useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボンド電流調整器の従来例で、第1図
aはグランデイングセルによるもの、第1図bは
ダイオードによるもの、第2図は本考案に係るボ
ンド電流調整器、第3図は本考案に係る可変抵抗
器によりボンド電流調整をする際のボンド電流・
電圧間の特性図、第4図は管相互抵抗が大なると
きのボンド電流・電圧間の特性図、第5図は管相
互抵抗が小なるときのボンド電流・電圧間の特性
図、第6図は本考案に係るガバナー外壁取付用の
ボンド電流調整器の外観図である。 図面において、VR1……抵抗値小なる可変抵
抗器、VR2……抵抗値大なる可変抵抗器、SW
……主スイツチ、SW1,SW2……短絡用スイ
ツチ、D……ダイオード、SH……シヤント抵抗、
TB1,TB2……端子台。
Fig. 1 shows a conventional example of a bond current regulator, Fig. 1a shows one using a grounding cell, Fig. 1b shows one using a diode, Fig. 2 shows a bond current regulator according to the present invention, and Fig. 3 shows one using a diode. When adjusting the bond current using the variable resistor according to the present invention,
Figure 4 is the characteristic diagram between bond current and voltage when the tube mutual resistance is large. Figure 5 is the characteristic diagram between bond current and voltage when the tube mutual resistance is small. Figure 6 is the characteristic diagram between bond current and voltage when the tube mutual resistance is small. The figure is an external view of the bonded current regulator for mounting on the outer wall of the governor according to the present invention. In the drawing, VR1...variable resistor with small resistance value, VR2...variable resistor with large resistance value, SW
...Main switch, SW1, SW2...Short circuit switch, D...Diode, SH...Shunt resistor,
TB1, TB2...Terminal block.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 抵抗値の小さい可変抵抗器VR1と抵抗値の大
きい可変抵抗器VR2とを直列接続し、前記抵抗
値の小さい可変抵抗器をシヨツトキーバリヤーダ
イオードDを介して2次側金属管LPに直列接続
し、一方前記抵抗値の大きい可変抵抗器をシヤン
ト抵抗SHおよび主スイツチSWを介して1次側
金属管MPに直列接続し、かつサージアブソーバ
ーTNRを前記2次側金属管と主スイツチ間に並
列接続し、さらに前記シヨツトキーバリヤーダイ
オードの両端間、および前記2つの直列接続の可
変抵抗器の両端間のそれぞれに短絡用スイツチ
SW1,SW2を接続してなることを特徴とする地中
埋設金属管の絶縁接続部に設けられるボンド電流
調整器。
A variable resistor VR1 with a small resistance value and a variable resistor VR2 with a large resistance value are connected in series, and the variable resistor with a small resistance value is connected in series with the secondary side metal pipe LP via a shot key barrier diode D. On the other hand, the variable resistor with a large resistance value is connected in series to the primary metal pipe MP via the shunt resistor SH and the main switch SW, and the surge absorber TNR is connected in parallel between the secondary metal pipe and the main switch. A shorting switch is connected between both ends of the shot key barrier diode and between both ends of the two series-connected variable resistors.
A bond current regulator installed at an insulated connection part of an underground metal pipe, characterized by connecting SW 1 and SW 2 .
JP6723084U 1984-05-09 1984-05-09 Bonded current regulator installed at the insulated connection of underground metal pipes Granted JPS60181370U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6723084U JPS60181370U (en) 1984-05-09 1984-05-09 Bonded current regulator installed at the insulated connection of underground metal pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6723084U JPS60181370U (en) 1984-05-09 1984-05-09 Bonded current regulator installed at the insulated connection of underground metal pipes

Publications (2)

Publication Number Publication Date
JPS60181370U JPS60181370U (en) 1985-12-02
JPH0324598Y2 true JPH0324598Y2 (en) 1991-05-29

Family

ID=30600859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6723084U Granted JPS60181370U (en) 1984-05-09 1984-05-09 Bonded current regulator installed at the insulated connection of underground metal pipes

Country Status (1)

Country Link
JP (1) JPS60181370U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159464B2 (en) * 2008-06-23 2013-03-06 東京瓦斯株式会社 Cathodic protection system and cathodic protection method for buried pipeline

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128588A (en) * 1979-03-27 1980-10-04 Osaka Gas Co Ltd Electric corrosion-proof bond for metal buried underground

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128588A (en) * 1979-03-27 1980-10-04 Osaka Gas Co Ltd Electric corrosion-proof bond for metal buried underground

Also Published As

Publication number Publication date
JPS60181370U (en) 1985-12-02

Similar Documents

Publication Publication Date Title
EP3156874B1 (en) Voltage-clamping circuit
WO2021227267A1 (en) On-line ice-melting apparatus
CN105576786A (en) Vehicle charger
CN106207925A (en) A kind of distribution network line ice melting system and de-icing method thereof
WO2021227268A1 (en) On-line ice-melting apparatus
JPH0324598Y2 (en)
CN109444672A (en) One kind automatically tracking line selection device for low current and selection method
CN110112717A (en) A kind of half-wave power transmission line protection method based on wave property impedance
JPH0247836Y2 (en)
JPS6030542Y2 (en) Insulation joint protection device
CN106605285A (en) Current interrupting device
JPS604996Y2 (en) Electrolytic protection device for buried pipe insulation joints
JPH0145803B2 (en)
RU2260891C2 (en) Device for resistive grounding of high-voltage line neutral (alternatives)
JPS604999Y2 (en) Insulation joint protection device
JP2686071B2 (en) Neutral wire open phase detection circuit breaker
JPH09258837A (en) Secondary voltage restricting circuit of power source ct
US4184938A (en) Apparatus for reducing electrolytic interference with metal structures
JPS6242484Y2 (en)
JPS6113517A (en) Vacuum breaker
JPS5929446B2 (en) Electrolytic corrosion prevention device for DC electric railways
GB1589241A (en) Method for reducing adverse electrolytic effects on a buried metal structure
SU599703A1 (en) Device for protecting earth stake of glazed frost melting device by direct current
JPH09292100A (en) Electromagnetic induction voltage reducing method for pipe line
Hansson et al. Practical design of counterpoise for transmission-line lightning protection