JPH0324584A - Manufacture of roughened electrifying roller - Google Patents

Manufacture of roughened electrifying roller

Info

Publication number
JPH0324584A
JPH0324584A JP15834689A JP15834689A JPH0324584A JP H0324584 A JPH0324584 A JP H0324584A JP 15834689 A JP15834689 A JP 15834689A JP 15834689 A JP15834689 A JP 15834689A JP H0324584 A JPH0324584 A JP H0324584A
Authority
JP
Japan
Prior art keywords
charging roller
abrasive
roughening
charging
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15834689A
Other languages
Japanese (ja)
Inventor
Shunkai Sako
酒匂 春海
Noriko Hirayama
典子 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15834689A priority Critical patent/JPH0324584A/en
Publication of JPH0324584A publication Critical patent/JPH0324584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To evenly perform roughening an electrifying roller by selecting the grain size of an abrasive within a specific range and using a side with a bigger grain size for first step roughening and using a side with a smaller grain size for second step roughening. CONSTITUTION:Roughening the surface of a prime electrifying roller 11 is performed by making use of the belt-like abrasive 12. The abrasive whose grain size is 0.01-100mum is selected. The abrasive on the side with a rough grain size is used for the first step roughening and the abrasive on the side with a fine grain size is used for the second step roughening. Hereby, roughening is performed by interchanging the belt-like abrasive 12 or moving the electrifying roller 11 to another device. Thus, such an even roughening state as that the maximum, average and minimum values of the grain size are within the range of 0.3-5.0nun based on the measuring method of JIS is obtained in a short time and electrification uneveness if prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真装置に用いられる帯電ローラーに関す
るものである。 [従来の技術] これまで、電子写真感光体で用いる光導電材料として、
セレン、硫化カドミウム、酸化亜鉛などの無機光導電性
材料が知られている。これらの光導電性材料は、数多く
の利点、例えば暗所で適当な電位に帯電できること,暗
所で電荷の逸散が少ないこと、あるいは光照射によって
速やかに電荷を逸散できるなどの利点をもっている反面
、各種の欠点を有している.例えば、セレン系感光体で
は、温度、湿度、ごみ、圧力などの要因で容易に結晶化
が進み、特に雰囲気温度が40℃を越えると結晶化が著
しく成り、帯電性の低下や画像に白い斑点が発生すると
いった欠点がある。 硫化カドミウム系感光体は、多湿の環境下で安定した感
度が得られない点や酸化亜鉛系感光体ではローズベンガ
ルに代表される増感色素による増感効果を必要としてい
るが、このような増感色素が帯電による帯電劣化や露光
光による光褪色を生じるため長期にわたって安定した画
像を与えることができない欠点を有している. 一方、特定の有機化合物が光導電性を示すことが発見さ
れてきた。たとえばボリーN−ビニル力ルバゾール、ポ
リビニルアントラセンなどの有機光導電性ボリマー、カ
ルバゾール、アントラセン、ビラゾリン類、オキサジア
ゾール類、ヒドラゾン類、ボリアリールアルカン類など
の低分子の有機光導電体のばかフタロシアニン顔料、ア
ゾ顔料、シアニン染料、多環キノン顔料、ベリレン系顔
料、インジゴ染料、チオインジゴ染料あるいはスクエア
リック酸メチン染料などの有機顔料や染料が知られてい
る。特に光導電性を有する有機顔料や染料は無機材料に
比べて合成が容易で、しかも適当な波長域に光導電性を
示す化合物を選択できるバリエーションが拡大されたこ
となどから、数多く提案がされている.例えば米国特許
第4123270号、同第4251613号、同第42
51614号、同第4256821号、同第42606
72号、同第4268596号、同第4278747号
、同第4293628号明細書などに開示されているよ
うに、電荷発生層と電荷輸送層に機能分離した感光層に
おける電荷発生物質として光導電性を示すジスアゾ顔料
を用いた電子写真感光体などが知られている. このような電子写真感光体を用いた電子写真プロセスに
おける帯電プロセスは、従来より殆ど金属ワイヤーに高
電圧(DC5〜8 kV)を印加し発生するコロナによ
り帯電を行なっている。しかし、この方法ではコロナ発
生時にオゾンやNO.等のコロナ生成物により感光体表
面を変質させ画像ボケや劣化を進行させたり、ワイヤー
の汚れが画像品質に影響し、画像白抜けや黒スジを生じ
る等の問題があった。 一方、電力的にも感光体に向かう電流は、その5〜30
%にすぎず、殆どがシールド板に流れ、帯電手段として
は効率の悪いものであった。 こうした欠点を補うために従来から直接帯電させる方法
が研究され多数提案されている(特開昭57−1782
67、56−104351,58−40566、58−
139156、58−150975公報等)。 これ等、直接帯電用部材の形状としてはローラー、ブラ
シ(磁気ブラシも含む)、ブレード、ベルトなどの形状
があり、電子写真装置の仕様、形態にあわせて選択が可
能である。 しかし、ローラー帯電法においてはコロナ帯電と異なり
、帯電部材と感光体ドラムが直接接触するため、感光体
ドラムと帯電ローラーがはりつきやすいという問題と、
帯電にムラがおこりやすいという問題があった. 帯電ローラーを用いた直接帯電法では、感光体ドラムと
帯電ローラーの距離が一定となった時に、放電が起こり
ドラムに電圧が印加される。よって帯電ローラーの表面
が平坦であるために感光体ドラム表面の凸凹や傷の影響
を受けて帯電が不均一となることが多かった。 又、帯電ローラーの表面が平坦であると繰り返し画像出
しを行っているうちにトナーが帯電ローラーに付着して
、画像に地汚れを生じやすかった. [発明が解決しようとする課題] 本発明の第1の目的は、帯電ローラーを用いた電子写真
装置において、帯電の不均一による画像の白地部の汚れ
や帯電ローラー上へのトナーの付着による画像の地汚れ
等が無く,安定して高画質のコピー画像を供給すること
のできる電子写真装置の帯電ローラーを提供することに
ある。 上記の目的は帯電ローラーの表面に、その十点法による
最大面粗さ、平均面粗さ及び最小面粗さの全てが0.3
μm以上5.0μm以下である凸凹を設けることにより
達成されることを既に本発明者は提案している。しかし
、その表面の粗面化状態の制御は難かしく、まだ改善の
余地を残しており、それが帯電ムラの原因となっている
と推測された。 従って本発明の第2の目的は、帯電ローラーの粗面化を
均一に行なうことであり、その目的は、粗面化に使用す
る帯状研磨材の研磨粒度の粗いもので初めに粗面化し、
次いで粒度の細かいもので粗面化することにより達成で
きる。 [課題を解決するための手段] 以下本発明を更に詳しく説明する。 本発明で使われる帯電ローラーの材質としては、アルミ
ニウム、鉄、銅等の金属、ポリアセチレン、ボリビロー
ル、ポリチオフェン等の導電性高分子材にカーボン、金
属等を分敗させて、導電性処理したゴムや,人工繊維又
はポリカーボネート、ポリビニルアセテート、ポリエス
テル等の絶縁性物質の表面を金属や他の導電性物質によ
ってコートしたものなどを用いることができる。これら
導電性部材の体積抵抗値としては、lO0〜1()lx
Ω・CIl1、最適には10”〜1010Ω・CII1
の範囲である. 帯電ローラーの表面が粗面化されていない状態で、帯電
ローラーと感光体ドラムを用いて画像出しを行うと帯電
ローラーと感光体ドラムがはりつきやすく、又、帯電ロ
ーラーにトナーが付着する確率も高い。又、帯電ローラ
ーの表面が平坦であるために、放電の際に感光体ドラム
上の欠陥(凸凹や傷)を拾いやすく、帯電ムラが起こり
やすい。 以上の理由から帯電ローラーの表面をあらかじめ粗面化
することが必要である。 この粗面化の方法としては、機械研磨が優れており、そ
のうちでも、帯状研磨材を用いる方法が更に好ましい.
その理由は、サンドブラスト法等の場合には、研磨材が
帯電ローラーに埋め込まれ易く、帯電ムラの原因になる
のに対して、帯状研磨材の場合には、この埋め込みがほ
とんど無いためである。 しかし、これまでの粗面化方法では帯電ローラーを均一
に粗面化することが難かしく、それによって帯電時に均
一な帯電が行なわれにくいという現象が依然として解消
されていなかった。 本発明者等は、素帯電ローラー表面の粗面化について鋭
意検討を重ねた結果、次記する本発明に到達した.すな
わち、帯状研磨材を用いて素帯電ローラーの表面を粗面
化する方法におい゜C.最初に粒度の粗い側の研磨材で
第一段粗面化し、次いで粒度の細かい側の研磨材で第二
段粗面化することによって、JIS規格BO60 1で
定義される十点平均粗さ(R,)の測定法で表して、そ
の最大値、平均値及び最小値(本明細書においては、こ
れ等をそれぞれ最大面粗さ、平均面粗さ及び最小面粗さ
と言う)がいずれも0.3〜5.0μmの範囲内に入る
均一な粗面状態が短時間で得られ、帯電ムラを防止でき
ることを見出した。 即ち、本発明は帯状研磨材を用いて素帯電ローラーの表
面を粗面化する方法において、研磨材として粒度0. 
01= 100μmのものを選び、第一段粗面化を粒度
の粗い側の研磨材で行ない、第二段粗面化を粒度の細か
い側の研磨材で行なうことを特徴とする。 帯状研磨材を用いて素帯電ローラーの表面を粗面化する
方法において、粒度の細かい側の研磨材による粗面化で
は帯電ローラーの表面は均一に粗面化されるものの、粗
面化に長時間を要し、また粒度の粗い側の研磨材による
粗面化では、粗面化は短時間でできるものの、粗面化状
態が不均一になるという両者の欠点を補うために、まず
初めに粒度の粗い側の研磨材で粗面化し、次いで粒度の
細かい側の研磨材で粗面化して表面の均一化を図ること
が本発明の本質である。 本発明の表面粗面化帯電ローラーの製造方法の実施に当
たっては、例示として第2図に模式的に断面図で示した
装置を用いることができる。素帯電ローラーl1を時計
回り又は反時計回りに回転させる.一方、帯状研磨材1
2を送り出しローラー13から繰り出しながら、該研磨
材を帯電ローラーに圧接している弾性体製押さえローラ
ーl4を経由して巻き取りローラー15へ向けて矢印1
6の向きに移動させる.この際に帯状研磨材12は押さ
えローラーl4の当接位置で素帯電ローラー11の表面
を摺擦する。本発明方法においてはこの帯電ローラー1
1の表面を最初に粒度の粗い側の帯状研磨材12で粗面
化し、次いでこの研磨材を粒度の細かい側の帯状研磨材
と取り換えて粗面化するか、又は粒度の細かい側の帯状
研磨材を備えた別の装置に帯電ローラーを移して粗面化
する. 本発明方法の実施に用いる帯状研磨材としては酸化アル
ミニウム、シリコンカーバイト、酸化クローム、ダイヤ
モンド等の微粒子をポリエステル等のフィルムに塗布・
固定したものがある。 本発明の粗面化帯電ローラーは複写機だけでなく、レー
ザープリンター、LEDプリンターCRTプリンター、
電子写真式製版システムなど電子写真応用分野に用いる
ことができる。 [実施例] 以下に本発明を具体例にて詳細に説明する。 実施例1 複写機(キヤノン製NP−3525)を第1図に示すよ
うに改造した.lは該複写機用感光体、2は直接帯電を
行なうところの帯電ローラー、3は画像露光、4は現像
器、5は転写紙の給紙ローラーと給紙ガイド、6は転写
帯電器、7は分離帯電器、8は定着器(不図示)に転写
紙を送る搬送部、9はクリーナー 10は前露光光源、
100は帯電部材2に電圧を印加する電源装置である.
2の帯電ローラーは以下の方法で製造した.クロロブレ
ンゴム
[Industrial Application Field] The present invention relates to a charging roller used in an electrophotographic apparatus. [Prior Art] Until now, as photoconductive materials used in electrophotographic photoreceptors,
Inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide are known. These photoconductive materials have many advantages, such as being able to be charged to an appropriate potential in the dark, having little charge dissipation in the dark, and being able to quickly dissipate charge when irradiated with light. On the other hand, it has various drawbacks. For example, in selenium-based photoreceptors, crystallization easily progresses due to factors such as temperature, humidity, dust, and pressure. Especially when the ambient temperature exceeds 40°C, crystallization becomes significant, resulting in decreased charging performance and white spots on images. There are drawbacks such as the occurrence of Cadmium sulfide photoreceptors do not provide stable sensitivity in humid environments, and zinc oxide photoreceptors require the sensitizing effect of sensitizing dyes such as rose bengal. It has the disadvantage that it cannot provide stable images over a long period of time because the sensitive dye deteriorates due to charging and photofading due to exposure light. On the other hand, it has been discovered that certain organic compounds exhibit photoconductivity. For example, organic photoconductive polymers such as boly-N-vinyl rubber, polyvinylanthracene, and low-molecular organic photoconductor phthalocyanine pigments such as carbazole, anthracene, birazolines, oxadiazoles, hydrazones, and polyarylalkanes. Organic pigments and dyes such as , azo pigments, cyanine dyes, polycyclic quinone pigments, berylene pigments, indigo dyes, thioindigo dyes, and methine squaric acid dyes are known. In particular, many proposals have been made for photoconductive organic pigments and dyes, which are easier to synthesize than inorganic materials, and the variety of compounds that exhibit photoconductivity in an appropriate wavelength range has been expanded. There is. For example, U.S. Patent Nos. 4,123,270, 4,251,613, and 42
No. 51614, No. 4256821, No. 42606
As disclosed in Japanese Patent No. 72, No. 4268596, No. 4278747, and No. 4293628, photoconductivity is used as a charge-generating substance in a photosensitive layer that is functionally separated into a charge-generating layer and a charge-transporting layer. Electrophotographic photoreceptors using disazo pigments are known. In the charging process in an electrophotographic process using such an electrophotographic photoreceptor, charging is conventionally carried out using corona generated by applying a high voltage (DC 5 to 8 kV) to a metal wire. However, with this method, ozone and NO. There have been problems such as corona products such as these altering the surface of the photoreceptor, leading to image blurring and deterioration, and wire stains affecting image quality, resulting in white spots and black streaks in the image. On the other hand, in terms of power, the current flowing to the photoreceptor is 5 to 30
%, and most of it flowed to the shield plate, making it inefficient as a charging means. In order to compensate for these drawbacks, many methods of direct charging have been researched and proposed (Japanese Patent Laid-Open No. 1782-1782).
67, 56-104351, 58-40566, 58-
139156, 58-150975, etc.). The shapes of these direct charging members include rollers, brushes (including magnetic brushes), blades, and belts, which can be selected according to the specifications and form of the electrophotographic apparatus. However, unlike corona charging, in the roller charging method, the charging member and the photoreceptor drum come into direct contact, so there is a problem that the photoreceptor drum and the charging roller tend to stick together.
There was a problem that uneven charging was likely to occur. In the direct charging method using a charging roller, when the distance between the photoreceptor drum and the charging roller becomes constant, discharge occurs and voltage is applied to the drum. Therefore, since the surface of the charging roller is flat, charging is often uneven due to the influence of unevenness or scratches on the surface of the photoreceptor drum. In addition, if the surface of the charging roller was flat, toner would adhere to the charging roller during repeated image formation, which would easily cause background smudges on the image. [Problems to be Solved by the Invention] A first object of the present invention is to provide an electrophotographic apparatus using a charging roller, in which stains on the white background of an image due to uneven charging and toner adhesion on the charging roller occur. An object of the present invention is to provide a charging roller for an electrophotographic device that can stably supply high-quality copy images without background smudges or the like. The above purpose is to ensure that the surface of the charging roller has a maximum surface roughness, an average surface roughness, and a minimum surface roughness of 0.3 according to the ten-point method.
The present inventor has already proposed that this can be achieved by providing unevenness with a size of .mu.m or more and 5.0 .mu.m or less. However, it is difficult to control the roughened state of the surface, and there is still room for improvement, which is presumed to be the cause of uneven charging. Therefore, a second object of the present invention is to uniformly roughen the surface of a charging roller, and the purpose is to first roughen the surface by using a band-shaped abrasive material with coarse abrasive grains to be used for surface roughening.
This can be achieved by then roughening the surface with fine particles. [Means for Solving the Problems] The present invention will be described in more detail below. Materials for the charging roller used in the present invention include metals such as aluminum, iron, and copper, and conductive polymer materials such as polyacetylene, bolivirol, and polythiophene, which are treated with conductive rubber by dissolving carbon, metal, etc. , artificial fibers, or materials in which the surface of an insulating material such as polycarbonate, polyvinyl acetate, or polyester is coated with metal or other conductive material can be used. The volume resistance value of these conductive members is lO0~1()lx
Ω・CII1, optimally 10”~1010Ω・CII1
The range is . If the charging roller and photoreceptor drum are used to produce an image when the surface of the charging roller is not roughened, the charging roller and photoreceptor drum tend to stick together, and there is also a high probability that toner will adhere to the charging roller. . Further, since the surface of the charging roller is flat, it is easy to pick up defects (unevenness and scratches) on the photoreceptor drum during discharge, and uneven charging is likely to occur. For the above reasons, it is necessary to roughen the surface of the charging roller in advance. Mechanical polishing is an excellent method for roughening the surface, and among these methods, a method using a band-shaped abrasive is more preferable.
The reason for this is that in the case of a sandblasting method or the like, the abrasive material is likely to be embedded in the charging roller, causing uneven charging, whereas in the case of a band-shaped abrasive material, this embedding is almost absent. However, with the conventional surface roughening methods, it is difficult to uniformly roughen the surface of the charging roller, and as a result, the phenomenon that uniform charging is difficult to perform during charging has not yet been resolved. The inventors of the present invention have conducted intensive studies on roughening the surface of the charging roller, and as a result, have arrived at the present invention as described below. That is, in a method of roughening the surface of a raw charging roller using a belt-shaped abrasive material, C. First, the surface is roughened in the first stage using an abrasive with a coarser grain size, and then the surface is roughened in a second stage with an abrasive with a finer grain size. R,), and its maximum value, average value, and minimum value (in this specification, these are referred to as maximum surface roughness, average surface roughness, and minimum surface roughness, respectively) are all 0. It has been found that a uniform rough surface condition within the range of .3 to 5.0 μm can be obtained in a short time, and uneven charging can be prevented. That is, the present invention provides a method for roughening the surface of a raw charging roller using a band-shaped abrasive material, in which the abrasive material has a particle size of 0.
01 = 100 μm is selected, and the first stage roughening is performed using an abrasive with a coarser grain size, and the second stage roughening is performed with an abrasive with a finer grain size. In the method of roughening the surface of the charging roller using a band-shaped abrasive, the surface of the charging roller is roughened uniformly by using a finer-grained abrasive, but the roughening takes a long time. In order to compensate for the disadvantages of both methods, which take time and roughen the surface using coarse-grained abrasives, the surface can be roughened in a short time, but the roughened state becomes uneven. The essence of the present invention is to roughen the surface using an abrasive with a coarser grain size, and then roughen it with an abrasive with a finer grain size to make the surface uniform. In implementing the method for manufacturing a surface-roughened charging roller of the present invention, an apparatus schematically shown in cross section in FIG. 2 can be used as an example. Rotate the elementary charging roller l1 clockwise or counterclockwise. On the other hand, the belt-shaped abrasive material 1
2 from the delivery roller 13, the abrasive material is directed toward the take-up roller 15 via the elastic pressing roller l4 that is in pressure contact with the charging roller.
Move in direction 6. At this time, the band-shaped abrasive material 12 rubs the surface of the raw charging roller 11 at the contact position of the presser roller l4. In the method of the present invention, this charging roller 1
1 is first roughened with a band-shaped abrasive material 12 having a coarser grain size, and then this abrasive material is replaced with a belt-like abrasive material 12 having a finer grain size to roughen the surface, or by polishing a belt-like material having a finer grain size. The charged roller is transferred to another device equipped with the material and the surface is roughened. The belt-shaped abrasive material used in the method of the present invention includes fine particles of aluminum oxide, silicon carbide, chromium oxide, diamond, etc., coated on a film of polyester, etc.
There is something fixed. The roughened charging roller of the present invention can be used not only in copying machines but also in laser printers, LED printers, CRT printers,
It can be used in electrophotographic application fields such as electrophotographic plate making systems. [Example] The present invention will be explained in detail below using specific examples. Example 1 A copying machine (NP-3525 manufactured by Canon) was modified as shown in Figure 1. 1 is a photoconductor for the copying machine, 2 is a charging roller that performs direct charging, 3 is an image exposure device, 4 is a developing device, 5 is a transfer paper feed roller and paper feed guide, 6 is a transfer charger, 7 8 is a separation charger, 8 is a conveyance unit that sends the transfer paper to a fixing device (not shown), 9 is a cleaner, 10 is a pre-exposure light source,
100 is a power supply device that applies voltage to the charging member 2.
Charging roller No. 2 was manufactured using the following method. chloroprene rubber

【商品名デンカクロロブレンM−30電気化学工
業■製]100重量部に導電性カーボン〔商品名コンダ
クテックス900コロンビアンケミカル社製】5重量部
を溶融混練し、得られる塊の中心にステンレス軸を通し
て成型し、帯電ローラーとした. その帯電ローラー表面の平均面粗さ(R2)は0.2μ
mであり、最小面粗さ及び最大面粗さはそれぞれ0、O
LLm及び0.3μmであった.この素帯電ローラーを
第2図に示す装置を用いて、研磨材粒度940μmの帯
状研磨材(住友スリーエム社製、商品名ラッピングフィ
ルム# 2000)にて30秒間粗面化し、次に帯状粒
度0.5μmの研磨材(住友スリーエム社製、商品名ラ
ッピングフィルム# 10000)にて30秒間粗面化
した。この帯電ローラー表面の平均面粗さ(R2)は1
.0μmであり、最小面粗さ及び最大面粗さはそれぞれ
0.8μ讃及び1.2μmであった。この粗面化帯電ロ
ーラーを前述の改造した複写機に設置して通紙耐久を行
なったところ、5000枚まで何ら問題が発生しなかっ
た。これを実施例1としてその結果を表1に示す. 尚、帯電露光条件は帯電ローラーに直流電圧一750V
と交流ピーク間電圧1500Vを重畳させ、像露光量3
.0ルックス・秒、前露光量10ルックス・秒で行なっ
た. 実施例2 実施例1に用いた素帯電ローラーの上に、ローラー保護
層を次の方法で作成した以外には、実施例1と同様の方
法で帯電ローラーを作成した.ローラー保護層としては
、メトキシメチル化ナイロン[商品名トレジンEF30
T帝国化学■製]10重量部とメタノール90重量部を
帯電ローラー基層の上に浸漬塗工し、乾燥後膜厚を10
0μmとした。 この帯電ローラー表面の平均面粗さ(R2)は0.2μ
膳あり、最小面粗さ及び最大面粗さはそれぞれQ.O 
ItII1, 0.3μ信であった.゛保護層付帯電ロ
ーラーを用いて実施例1と同様の方法で粗面化したとこ
ろ、この粗面化帯電ローラー表面の平均面粗さ(Rl)
は1.2μmであり、最小面粗さ及び最大面粗さはそれ
ぞれ0.9μm及び1.4μ雷であった。 そしてこの粗面化帯電ローラーを実施例1と同様の装置
及び条件で通紙耐久を行・なったところ、5000枚ま
で何ら問題が発生しなかった。これを実施例2としてそ
の結果を表1に示す。 実施例3 実施例1において、素帯電ローラーを研磨材粒度l2.
0μ履の帯状研磨材(住友スリーエム社製、商品名ラッ
ピングフィルム#1200)にて20秒間粗面化し、次
に研磨材粒度0.3μmの帯状研磨材(住友スリーエム
社製、商品名ラッピングフィルム# 15000)にて
40秒間粗面化した以外には同様の装置に帯電ローラー
を設置し、帯電露光条件を用いて同様に実験を行なった
ところ、通紙5000枚まで何ら問題が発生しなかった
。この粗面化された帯電ローラーの表面の平均面粗さ(
R.)は1,0μmであり、最小面粗さ及び最大面粗さ
はそれぞれO、8μm及び1.2μしであった。これを
実施例3としてその結果を表1に示す。 実施例4 実施例1において、素帯電ローラーを研磨材粒度8.0
μmの帯状研磨材(富士写真フィルム社製,商品名ラッ
ピングテープC−2000)にて30秒間粗面化し、次
に研磨材粒度0.3μmの帯状研磨材(富士写真フィル
ム社製、商品名ラッピングテーブM−10000)にて
30秒間粗面化した以外には同様の装置に帯電ローラー
を設置し、帯電露光条件を用いて同様に実験を行なった
ところ、通紙5000枚まで何ら問題が発生しなかった
。この粗面化された帯電ローラーの表面の平均面粗さ(
R2)は0.9μmであり、最小面粗さ及び最大面粗さ
はそれぞれ0.7μm及び1.1μmであった。これを
実施例4としてその結果を表1に示す。 比較例1 実施例1と同様の累帯電ローラーを作成し、粗面化しな
いままで実施例lと同様の装置及び条件で通紙耐久を行
なったところ、通紙lO枚程度から帯電ローラーと感光
体ドラムとのはりつきに起因する横すじが画像上に表わ
れはじめた。これを比較例lとしてその結果を表1に示
す。 比較例2 実施例2と同様の素帯電ローラーを作成し、粗面化しな
いままで実施例2と同様の装置及び条件で通紙耐久を行
なったところ、通紙10枚程度から帯電ローラーと感光
体ドラムとのはりつきに起因する横すじが画像上に表わ
れはじめた。これを比較例2としてその結果を表1に示
す。 比較例3及び4 実施例1において、素帯電ローラーを研磨材粒度9.0
μmの帯状研磨材(住友スリーエム社製、商品名ラッピ
ングフィルム# 20001にてそれぞれ30秒間及び
60秒間粗面化する以外は同様の装置に帯電ローラーを
設置し、同様な帯電露光条件にて同様に実験を行なった
。この粗面化された帯電ローラー表面の平均面粗さ(R
2)はそれぞれ0.7μm及び1.0μ踵であったが、
最小面粗さ及び最大面粗さはそれぞれ0.1μm及び6
.0μm並びに0.1μ醜及び7,5μmであり、何れ
も通紙耐久の初朋から、放電ムラによる画像ムラ、白地
部の汚れが発生していた。これ等を比較例3及び4とし
て、その結果を表1に示す。 比較例5及び6 実施例1において、素帯電ローラーを研磨材粒度3、0
μmの帯状研磨材(住友スリーエム社製、商品名ラッピ
ングフィルム# 4000)にてそれぞれ30秒間及び
60秒間粗面化する以外は同様の装置に帯電ローラーを
設置し、同様な帯電露光条件にで同様に実験を行なった
。この粗面化された帯電ローラー表面の平均面粗さ(R
z)はそれぞれ0.3μm及び0.8μmであったが、
最小面粗さ及び最大面粗さはそれぞれ0.ltLm及び
2.0μm並びに0.1μm及び4.0LLII1であ
り、いずれも通紙耐久50枚程度から帯電ローラーと感
光体ドラムとのはりつきに起因する横すじが画像上に表
われはじめた。これ等を比較例5及び6として、その結
果を表1に示す。 比較例7及び8 実施例1において、帯電ローラーを研磨材の粒度0,5
μmの帯状研磨材(富士写真フィルム社製、商品名ラッ
ピングテーブK−8000)にてそれぞれ30秒間及び
60秒間粗面化する以外は同様の装置に帯電ローラーを
設置し、同様な帯電露光条件にて同様に実験を行なった
。この粗面化された帯電ローラー表面の平均面粗さ(R
Z)はそれぞれ0.1 μ厘及び0.2μ信であり、最
小面粗さ及び最大面粗さはそれぞれ0.0μm及び0,
3μm並びに0.0ILm及び0.6μmであり、いず
れも通紙耐久20枚程度から帯電ローラーと感光体ドラ
ムとのはりつきに起因する横すじが画像上に表われはじ
めた。これ等を比較例7及び8として、その結果を表1
に示す。 比較例9及び10 実施例1において,素帯電ローラーを研磨材粒度0.5
μmの帯状研磨材(住友スリーエム社製、商品名ラッご
ングフィルム#10000)にて30秒間粗面化し、次
に研磨材粒度9.0μmの帯状研磨材(住友スリーエム
社製、商品名ラッピングフィルム# 2000)にて3
0秒間粗面化した。 この帯電ローラー表面の平均面粗さ(R2)は0.7μ
mであったが、最小面粗さ及び最大面粗さはそれぞれ0
.1μm及び6.0μmであり、通紙耐久初期から、放
電ムラによる画像ムラ、白地部の汚れが発生した.また
、50枚程度から帯電ローラーと感光体ドラムとのはり
つきに起因する横すじが画像上に現われはじめた。これ
を比較例9として、その結果を表1に示す。 また実施例lにおいて、素帯電ローラーを研磨材粒度0
.3μmの帯状研磨材(住友スリーエム社製、商品名ラ
ッピングフィルム# 15000)にて40秒間粗面化
し、次に研磨材粒度l2.0μmの帯状研磨材(住友ス
リーエム社製、商品名ラッピングフィルム# 1200
)にて20秒間粗面化した。この帯電ローラー表面の平
均面粗さ(R2)は1.3μmであったが、最小面粗さ
及び最大面粗さはそれぞれ0.2μ窮及び8.5μ禦で
あり、通紙耐久初期から放電ムラによる画像ムラ、白地
部の汚れが発生した。また、70枚程度から帯電ローラ
ーと感光体ドラムとのはりつきに起因する横すじが画像
上に表われはじめた。これを比較例10として、その結
果を表1に示す。 以上、表1から明らかなように、2種類の粒度の格段に
異なる研磨材を用い、しかも粒度の粗い研磨材で第一粗
面化処理してから、粒度の細かい研磨材で第二粗面化処
理することにより、粗面化工程に要する時間を単一粗面
化によるよりも大巾に短縮できるばかりでなく、画像ム
ラや地汚れ、および感光体ドラムとのはりつきによる横
すじ等の殆ど無い良好な画像を得ることが出来る。 尚、本発明による粗面化帯電ローラーは、一次帯電部材
としてだけでなく、転写帯電、分離帯電等、帯電用部材
のいずれとしても用いることが可能である. [発明の効果] 本発明の方法による粗面化帯電ローラーを用いると、帯
電ローラーと感光体ドラムのはりつきや帯電ムラ及びト
ナーの帯電ローラーへの付着による地汚れは実質的に起
こらず、安定した繰り返し画像を得ることができた。
[Product name: Denka Chlorobrene M-30 manufactured by Denki Kagaku Kogyo ■] 100 parts by weight and 5 parts by weight of conductive carbon [Product name: Conductex 900 manufactured by Columbian Chemical Company] are melt-kneaded, and a stainless steel shaft is placed in the center of the resulting mass. It was formed into a charging roller. The average surface roughness (R2) of the charging roller surface is 0.2μ
m, and the minimum surface roughness and maximum surface roughness are 0 and O, respectively.
LLm and 0.3 μm. Using the apparatus shown in FIG. 2, this raw charging roller was roughened for 30 seconds with a band-shaped abrasive material having an abrasive particle size of 940 μm (manufactured by Sumitomo 3M, trade name: Wrapping Film #2000), and then roughened for 30 seconds with a band-like abrasive material having a particle size of 940 μm. The surface was roughened for 30 seconds using a 5 μm abrasive (manufactured by Sumitomo 3M, trade name: Wrapping Film #10000). The average surface roughness (R2) of this charging roller surface is 1
.. The minimum surface roughness and maximum surface roughness were 0.8 μm and 1.2 μm, respectively. When this roughened charging roller was installed in the above-mentioned modified copying machine and subjected to paper passing, no problems occurred up to 5,000 sheets. This is Example 1 and the results are shown in Table 1. In addition, the charging exposure conditions are a DC voltage of -750V on the charging roller.
By superimposing the AC peak-to-peak voltage of 1500 V, the image exposure amount is 3.
.. This was done with a pre-exposure of 0 lux/sec and a pre-exposure of 10 lux/sec. Example 2 A charging roller was prepared in the same manner as in Example 1, except that a roller protective layer was formed on the plain charging roller used in Example 1 using the following method. As the roller protective layer, methoxymethylated nylon [trade name Torezin EF30] is used.
T Teikoku Kagaku ■] 10 parts by weight and 90 parts by weight of methanol were dip coated onto the charging roller base layer, and after drying the film thickness was 10 parts by weight.
It was set to 0 μm. The average surface roughness (R2) of this charging roller surface is 0.2μ
With table, minimum surface roughness and maximum surface roughness are respectively Q. O
ItII1, 0.3μ faith.゛When the charging roller with a protective layer was used to roughen the surface in the same manner as in Example 1, the average surface roughness (Rl) of the surface of the roughened charging roller was
was 1.2 μm, and the minimum surface roughness and maximum surface roughness were 0.9 μm and 1.4 μm, respectively. When this roughened charging roller was subjected to paper feeding durability using the same equipment and conditions as in Example 1, no problems occurred up to 5,000 sheets. This is referred to as Example 2 and the results are shown in Table 1. Example 3 In Example 1, the plain charging roller was used with an abrasive particle size of l2.
The surface was roughened for 20 seconds with a 0 μm abrasive belt (manufactured by Sumitomo 3M, trade name: Wrapping Film #1200), and then a belt-shaped abrasive with an abrasive grain size of 0.3 μm (manufactured by Sumitomo 3M, trade name: Wrapping Film #). 15,000) for 40 seconds, but a charging roller was installed in the same apparatus and a similar experiment was conducted using charging exposure conditions, and no problems occurred until 5,000 sheets were passed. The average surface roughness of the surface of this roughened charging roller (
R. ) was 1.0 μm, and the minimum surface roughness and maximum surface roughness were O, 8 μm, and 1.2 μm, respectively. This is referred to as Example 3 and the results are shown in Table 1. Example 4 In Example 1, the plain charging roller was used with an abrasive particle size of 8.0.
The surface was roughened for 30 seconds with a band-shaped abrasive material having a particle size of 0.3 μm (manufactured by Fuji Photo Film Co., Ltd., trade name Wrapping Tape C-2000), and then a band-shaped abrasive material having an abrasive grain size of 0.3 μm (manufactured by Fuji Photo Film Co., Ltd., trade name Wrapping) was used. When a charging roller was installed in the same device except that the surface was roughened for 30 seconds using a table M-10000) and a similar experiment was conducted using charging exposure conditions, no problems occurred until 5,000 sheets were passed. There wasn't. The average surface roughness of the surface of this roughened charging roller (
R2) was 0.9 μm, and the minimum surface roughness and maximum surface roughness were 0.7 μm and 1.1 μm, respectively. This is referred to as Example 4 and the results are shown in Table 1. Comparative Example 1 A cumulative charging roller similar to that in Example 1 was made, and paper passing durability was carried out under the same equipment and conditions as in Example 1 without roughening. Horizontal streaks due to sticking with the body drum began to appear on the image. This was used as Comparative Example 1 and the results are shown in Table 1. Comparative Example 2 A raw charging roller similar to that in Example 2 was made, and paper passing durability was carried out using the same equipment and conditions as in Example 2 without roughening the surface. As a result, the charging roller and the photosensitive material were separated from about 10 sheets after passing. Horizontal streaks due to sticking with the body drum began to appear on the image. This was treated as Comparative Example 2 and the results are shown in Table 1. Comparative Examples 3 and 4 In Example 1, the plain charging roller was used with an abrasive particle size of 9.0.
A charging roller was installed in the same device, except that the surface was roughened using μm band-shaped abrasive material (manufactured by Sumitomo 3M Co., Ltd., trade name: Wrapping Film #20001 for 30 seconds and 60 seconds, respectively), and the same process was carried out under the same charging exposure conditions. An experiment was conducted.The average surface roughness (R
2) had a heel of 0.7 μm and 1.0 μm, respectively,
The minimum surface roughness and maximum surface roughness are 0.1 μm and 6, respectively.
.. They were 0 μm, 0.1 μm ugly, and 7.5 μm, and in all of them, image unevenness due to discharge unevenness and stains on the white background area occurred from the beginning of paper passing durability. These are referred to as Comparative Examples 3 and 4, and the results are shown in Table 1. Comparative Examples 5 and 6 In Example 1, the plain charging roller was used with abrasive grain sizes of 3 and 0.
A charging roller was installed in the same device, except that the surface was roughened with a μm band-shaped abrasive material (manufactured by Sumitomo 3M, trade name Wrapping Film #4000) for 30 seconds and 60 seconds, respectively, and under the same charging exposure conditions. conducted an experiment. The average surface roughness (R
z) were 0.3 μm and 0.8 μm, respectively,
The minimum surface roughness and maximum surface roughness are each 0. ltLm and 2.0 μm, and 0.1 μm and 4.0LLII1, and in both cases, horizontal streaks due to adhesion between the charging roller and the photoreceptor drum began to appear on the image after about 50 sheets were passed. These are referred to as Comparative Examples 5 and 6, and the results are shown in Table 1. Comparative Examples 7 and 8 In Example 1, the charging roller was
A charging roller was installed in the same device, except that the surface was roughened using a μm band-shaped abrasive material (manufactured by Fuji Photo Film Co., Ltd., trade name: Wrapping Table K-8000) for 30 seconds and 60 seconds, respectively, and under the same charging exposure conditions. A similar experiment was conducted. The average surface roughness (R
Z) are 0.1 μm and 0.2 μm, respectively, and the minimum surface roughness and maximum surface roughness are 0.0 μm and 0,0 μm, respectively.
3 μm, 0.0 ILm, and 0.6 μm, and in each case, horizontal streaks due to sticking between the charging roller and the photoreceptor drum began to appear on the image after about 20 sheets were passed. These are considered as Comparative Examples 7 and 8, and the results are shown in Table 1.
Shown below. Comparative Examples 9 and 10 In Example 1, the plain charging roller was used with an abrasive particle size of 0.5.
The surface was roughened for 30 seconds with a 9.0 μm abrasive strip (manufactured by Sumitomo 3M, trade name: Wrapping Film #10000), and then a belt-shaped abrasive with a grain size of 9.0 μm (manufactured by Sumitomo 3M, trade name: Wrapping Film). #2000) 3
The surface was roughened for 0 seconds. The average surface roughness (R2) of this charging roller surface is 0.7μ
m, but the minimum surface roughness and maximum surface roughness were each 0.
.. 1 .mu.m and 6.0 .mu.m, and image unevenness due to discharge unevenness and stains on the white background area occurred from the beginning of paper feeding durability. Further, after about 50 sheets, horizontal streaks due to adhesion between the charging roller and the photosensitive drum began to appear on the images. This was designated as Comparative Example 9, and the results are shown in Table 1. In addition, in Example 1, the plain charging roller was
.. The surface was roughened for 40 seconds with a 3 μm abrasive strip (manufactured by Sumitomo 3M, trade name: Wrapping Film #15000), and then a strip of abrasive with an abrasive grain size of 12.0 μm (manufactured by Sumitomo 3M, trade name: Wrapping Film #1200).
) for 20 seconds. The average surface roughness (R2) of this charging roller surface was 1.3 μm, but the minimum surface roughness and maximum surface roughness were 0.2 μm and 8.5 μm, respectively. Image unevenness and stains on the white background occurred due to unevenness. Further, from about 70 sheets onwards, horizontal streaks due to adhesion between the charging roller and the photoreceptor drum began to appear on the images. This was designated as Comparative Example 10, and the results are shown in Table 1. As mentioned above, as is clear from Table 1, two types of abrasives with significantly different particle sizes were used, and after the first roughening treatment was performed with a coarse abrasive, the second roughening treatment was performed with a fine abrasive. This process not only greatly reduces the time required for the surface roughening process compared to single roughening, but also eliminates most of the problems such as image unevenness, background smudges, and horizontal streaks caused by sticking to the photoreceptor drum. It is possible to obtain a good image without any problems. The roughened charging roller according to the present invention can be used not only as a primary charging member but also as a charging member for transfer charging, separation charging, etc. [Effects of the Invention] When the roughened charging roller according to the method of the present invention is used, there is substantially no adhesion between the charging roller and the photoreceptor drum, uneven charging, and background smearing due to adhesion of toner to the charging roller, resulting in stable performance. We were able to obtain repeated images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による粗面化帯電ローラーを組込む
複写機の構造図、第2図は本発明方法を実施する装置の
模式的構成図である。 1・・・感光体ドラム 2・・・帯電ローラー 3・・・画像露光 4・・・現像器 5・・・転写紙の給紙ローラーと給紙ガイド6・・・転
写帯電器 7・・・分離帯電器 8・・・定着器(不図示)に転写紙を送る搬送部9・・
・クリーナー 10・・・前露光光源 11・・・帯電ローラー l2・・・帯状研磨材 13・・・送り出しローラー l4・・・押さえローラー l5・・・巻き取りローラー 100・・・電源装置
FIG. 1 is a structural diagram of a copying machine incorporating a roughened charging roller according to the method of the present invention, and FIG. 2 is a schematic diagram of an apparatus for carrying out the method of the present invention. 1... Photoreceptor drum 2... Charging roller 3... Image exposure 4... Developing device 5... Transfer paper feed roller and paper feed guide 6... Transfer charger 7... Separation charger 8... Conveyance section 9 that feeds the transfer paper to the fixing device (not shown)...
-Cleaner 10...Pre-exposure light source 11...Charging roller l2...Band-shaped abrasive material 13...Feeding roller l4...Press roller l5...Take-up roller 100...Power supply device

Claims (1)

【特許請求の範囲】[Claims] (1)帯状研磨材を用いる機械研磨処理によって、帯電
ローラーの表面を粗面化する方法において、粗面化に用
いる研磨材として粒度0.01〜100μmのものを選
び、第一段粗面化には粒度の大きな側の研磨材を用い、
第二段の粗面化には、粒度の小さな側の研磨材を用いる
ことを特徴とする粗面化帯電ローラーの製造方法。
(1) In a method of roughening the surface of a charging roller by mechanical polishing using a belt-shaped abrasive, an abrasive with a particle size of 0.01 to 100 μm is selected as the abrasive used for roughening, and the first stage roughening is performed. Use an abrasive with a large grain size for
A method for producing a roughened charging roller, characterized in that, in the second stage of surface roughening, an abrasive with a smaller particle size is used.
JP15834689A 1989-06-22 1989-06-22 Manufacture of roughened electrifying roller Pending JPH0324584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15834689A JPH0324584A (en) 1989-06-22 1989-06-22 Manufacture of roughened electrifying roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15834689A JPH0324584A (en) 1989-06-22 1989-06-22 Manufacture of roughened electrifying roller

Publications (1)

Publication Number Publication Date
JPH0324584A true JPH0324584A (en) 1991-02-01

Family

ID=15669639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15834689A Pending JPH0324584A (en) 1989-06-22 1989-06-22 Manufacture of roughened electrifying roller

Country Status (1)

Country Link
JP (1) JPH0324584A (en)

Similar Documents

Publication Publication Date Title
JP2584873B2 (en) Electrophotographic equipment
JPH02272594A (en) Image forming device
US5430527A (en) Electrophotographic apparatus having cleaning width larger than charging width
JP3233527B2 (en) Photoreceptor charging method and image forming method
JPH0324584A (en) Manufacture of roughened electrifying roller
JPH0324585A (en) Manufacture of roughened electrifying roller
JP2002148905A (en) Electrophotographic apparatus, process cartridge for electrophotographic apparatus, electrophotographic photoreceptor and method for manufacturing the same
JP3184708B2 (en) Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus
JPH0324586A (en) Manufacture of roughened electrifying roller
JPH036579A (en) Method for roughening surface of electrostatic charging roller
JP2002082464A (en) Image forming device, method for forming image, and process cartridge
JP2002278122A (en) Electrophotographic photoreceptor, method for producing the same and electrophotographic apparatus
JP2634461B2 (en) Method and apparatus for roughening the surface of charging roller
JPH10246997A (en) Electrophotographic device
JPH03234458A (en) Method and device for surface roughening of charged roller surface
JPH0310755A (en) Manufacture of coarsened electrification roller
JPH02148059A (en) Electrophotographic device
JPH0317669A (en) Manufacture of electrifying roller with roughened surface
JPH036577A (en) Method and device for roughening surface of electrostatic charging roller
JP2694745B2 (en) Electrophotographic equipment
JP4990539B2 (en) Image forming apparatus, image forming method, and process cartridge
JPH02272589A (en) Image forming device
JPH02301777A (en) Image forming device
JPH06313972A (en) Electrophotographic sensitive body and electrophotographic device
JP3754630B2 (en) Image carrier and image forming apparatus