JPH0324565B2 - - Google Patents

Info

Publication number
JPH0324565B2
JPH0324565B2 JP60043314A JP4331485A JPH0324565B2 JP H0324565 B2 JPH0324565 B2 JP H0324565B2 JP 60043314 A JP60043314 A JP 60043314A JP 4331485 A JP4331485 A JP 4331485A JP H0324565 B2 JPH0324565 B2 JP H0324565B2
Authority
JP
Japan
Prior art keywords
chamber
intake
valve
engine
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043314A
Other languages
Japanese (ja)
Other versions
JPS61201821A (en
Inventor
Hideo Shiraishi
Katsuhiko Sakamoto
Tetsushi Hosogai
Hirobumi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60043314A priority Critical patent/JPS61201821A/en
Publication of JPS61201821A publication Critical patent/JPS61201821A/en
Publication of JPH0324565B2 publication Critical patent/JPH0324565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多気筒エンジンの吸気装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for a multi-cylinder engine.

〔従来技術〕[Prior art]

最近、車両用エンジンにおいては、エンジンの
出力アツプの観点等から、いわゆる動的効果を利
用して吸気を効率よく供給するようにしたものが
種々開発提案されており、その1例として、従
来、例えば実開昭57−92021号公報に示されるよ
うに、吸気系内における吸気振動の共鳴効果を利
用して吸気を過給するようにしたものがある。即
ち、これは、着火順序の隣り合わない気筒同志の
1つのグループとして各気筒を2つのグループに
分け、各グループに対応した2つのチヤンバと各
気筒とを独立した吸気通路で連通し、かつ各チヤ
ンバに各々上流側吸気通路を連通するとともに、
両チヤンバを直接連通する連通路を設け、通常は
この連通路に設けたバルブを閉じて共鳴による過
給を行なう一方、エンジンの低負荷時はバルブを
開いて共鳴過給を停止し、吸気の共鳴を得るため
に生ずるポンピングロスを低減してエンジンの出
力低下を防止するようにしたものである。
Recently, various development proposals have been made for vehicle engines that utilize so-called dynamic effects to efficiently supply intake air from the perspective of increasing engine output. For example, as shown in Japanese Utility Model Application Publication No. 57-92021, there is a system that supercharges intake air by utilizing the resonance effect of intake air vibration within an intake system. In other words, each cylinder is divided into two groups, with cylinders having non-adjacent ignition orders, and the two chambers corresponding to each group are communicated with each cylinder through an independent intake passage. Each upstream intake passage is connected to the chamber, and
A communication path is provided that directly communicates both chambers, and normally the valve provided in this communication path is closed to perform resonance supercharging, but when the engine is under low load, the valve is opened to stop resonance supercharging and reduce intake air. This is designed to reduce the pumping loss that occurs to obtain resonance, thereby preventing a drop in engine output.

また最近、車両用エンジンにおいては、燃料制
御精度向上の観点等から、燃料供給装置として従
来の気化器に代えて燃料噴射装置が用いられる傾
向にあり、この燃料噴射装置では、吸気量センサ
で吸入空気量を検出し、コントロールユニツトで
この吸入空気量に応じて燃料噴射量を演算し、こ
れに応じた燃料噴射パルスを燃料噴射弁に加えて
燃料を噴射供給させるという方式が採用されてい
る。
Recently, there has been a trend in vehicle engines to use fuel injection devices instead of conventional carburetors as fuel supply devices from the perspective of improving fuel control accuracy. A system is adopted in which the amount of air is detected, the control unit calculates the amount of fuel to be injected according to this amount of intake air, and a corresponding fuel injection pulse is applied to the fuel injection valve to inject and supply fuel.

しかるに上記従来公報記載の装置に燃料噴射装
置を設ける場合、例えば通常一般のようにチヤン
バ上流側に吸気量センサを、チヤンバ下流側に燃
料噴射弁を設け、吸気量センサの出力に応じて燃
料噴射弁からの燃料供給量を制御するようにする
と、エンジンの減速時においてエンジンの回転が
落ち込んだり、エンストが発生したりするという
問題があつた。
However, when a fuel injection device is provided in the device described in the above-mentioned conventional publication, for example, as is usually the case, an intake air amount sensor is provided on the upstream side of the chamber and a fuel injection valve is provided on the downstream side of the chamber, and fuel is injected according to the output of the intake air amount sensor. When the amount of fuel supplied from the valve is controlled, there is a problem in that the engine speed drops or the engine stalls when the engine is decelerated.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、減速時にお
ける運転性の悪化を防止できる多気筒エンジンの
吸気装置を提供せんとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an intake system for a multi-cylinder engine that can prevent deterioration of drivability during deceleration.

〔発明の構成〕[Structure of the invention]

そして本件発明者は、減速時における運転性の
悪化を防止すべく、その発生メカニズムについて
鋭意研究した結果、次のことがその原因になつて
いることを見出した。即ち、上記多気筒エンジン
の吸気装置においては、エンジンの減速時には連
通路のバルブは開かれており、1つの気筒に対す
るチヤンバは大きな容積となつている。このよう
な状態でスロツトル弁が閉じられると、エンジン
回転数はその慣性のためにゆつくりと低下し(第
4図の特性曲線a参照)、吸気量センサで検出さ
れる吸入空気量はスロツトル弁を通過する吸入空
気量(第4図の特性曲線b参照)とほぼ等しいと
考えられ、一方エンジンに実際に吸入される吸入
空気量はチヤンバ内の圧力(第4図の特性曲線c
参照)に比例し、上述のようにチヤンバの容積が
大きいと、その圧力変化はコントロールユニツト
内で燃料供給量の制御に使用される吸入空気量の
相当圧力(第4図の特性曲線d参照)の変化に比
して遅れ、その結果混合気の空燃比は減速時前半
(第4図のA部参照)ではリーン側に、減速時後
半(第4図のB部参照)ではリツチ側にずれ、燃
焼性が悪化して上述のように回転の落ち込み、エ
ンストが発生するものである。
In order to prevent the deterioration of drivability during deceleration, the inventor of the present invention conducted extensive research into the mechanism by which the deterioration occurs, and as a result, discovered that the following causes the deterioration. That is, in the intake system for the multi-cylinder engine, the valve of the communication passage is opened when the engine is decelerating, and the chamber for one cylinder has a large volume. When the throttle valve is closed in this state, the engine speed will slowly decrease due to its inertia (see characteristic curve a in Figure 4), and the intake air amount detected by the intake air amount sensor will be lower than the throttle valve. It is thought that the amount of intake air passing through the chamber (see characteristic curve b in Figure 4) is approximately equal to the amount of intake air that is actually taken into the engine (see characteristic curve c in Figure 4).
(see characteristic curve d in Figure 4), and if the volume of the chamber is large as mentioned above, the pressure change is proportional to the pressure equivalent to the amount of intake air used to control the amount of fuel supplied in the control unit (see characteristic curve d in Figure 4). As a result, the air-fuel ratio of the mixture shifts to the lean side during the first half of deceleration (see section A in Figure 4), and to the rich side during the second half of deceleration (see section B in Figure 4). , the combustibility deteriorates, causing a drop in rotation and engine stalling as described above.

従つて減速時における空燃比変動を抑制するた
めには、減速時には連通路のバルブを閉じ、1つ
の気筒に対するチヤンバの容積を小さくしてチヤ
ンバにおける圧力変化の遅れを小さくすればよい
と考えられる。しかるにこの場合、単に減速時に
連通路のバルブを閉じるようにした場合、吸気通
路の形状等に起因して各グループ間で吸気負圧、
吸気抵抗等にばらつきがあると、吸気分配にばら
つきが生じてグループ間で空燃比のばらつきが生
じ、これが原因となつて不快なエンジン振動が増
大し、これはエンジンの慣性が小さくなる低回転
域において特に懸念される。
Therefore, in order to suppress the air-fuel ratio fluctuation during deceleration, it is considered that the valve of the communication passage should be closed during deceleration, and the volume of the chamber for one cylinder may be reduced to reduce the delay in pressure change in the chamber. However, in this case, if the valve in the communication passage is simply closed during deceleration, the intake negative pressure and
If there are variations in intake resistance, etc., there will be variations in the intake air distribution, resulting in variations in the air-fuel ratio between groups, which will increase unpleasant engine vibrations, which will occur at low engine speeds where the engine's inertia decreases. This is of particular concern.

そこでこの発明は、着火順序の隣り合わない気
筒同志を1つのグループとして複数のグループに
分け、各気筒の吸気通路を各グループ毎にチヤン
バに連結し、各チヤンバを連通する連通路にバル
ブを設け、低負荷時にこのバルブを開くようにし
た多気筒エンジンの吸気装置において、チヤンバ
上流に吸気量センサを設けてその出力に基づいて
チヤンバ下流の燃料噴射弁を制御するとともに、
減速時であつてアイドル回転数より高い所定回転
数以上の領域では上記バルブを強制的に閉じるよ
うにしたものである。
Therefore, this invention divides cylinders that do not have adjacent firing orders into a plurality of groups, connects the intake passage of each cylinder to a chamber for each group, and provides a valve in the communication passage that communicates each chamber. In an intake system for a multi-cylinder engine in which this valve is opened during low load, an intake air amount sensor is provided upstream of the chamber, and a fuel injection valve downstream of the chamber is controlled based on its output.
During deceleration, the valve is forcibly closed when the rotational speed is above a predetermined rotational speed, which is higher than the idle rotational speed.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図ないし第3図の本発明の一実施例による
多気筒エンジンの吸気装置を示す。図において、
1はチヤンバで、該チヤンバ1は隔壁2によつて
第1室3と第2室4とに画成されている。上記第
1室3の底面には点火順序の連続しない第1、第
3、第5の各気筒に延びる吸気マニホールド(吸
気通路)5a,5b,5cの上流端が接続され、
上記第2室4の底面にはこれも点火順序の連続し
ない第2,第4,第6の各気筒に延びる吸気マニ
ホールド(吸気通路)5d,5e,5fの上流端
が接続されている。ここでエンジンは第1、第
2、第3、第4、第5、第6気筒の点火順序でク
ランク角度120°毎に点火されるものとする。
1 shows an intake system for a multi-cylinder engine according to an embodiment of the present invention shown in FIGS. 1 to 3; FIG. In the figure,
1 is a chamber, and the chamber 1 is defined by a partition wall 2 into a first chamber 3 and a second chamber 4. The upstream ends of intake manifolds (intake passages) 5a, 5b, and 5c extending to the first, third, and fifth cylinders in which the firing order is not consecutive are connected to the bottom surface of the first chamber 3,
The bottom surface of the second chamber 4 is connected to the upstream ends of intake manifolds (intake passages) 5d, 5e, and 5f extending to the second, fourth, and sixth cylinders, which are also not sequential in firing order. Here, it is assumed that the engine is ignited at every crank angle of 120° in the ignition order of the first, second, third, fourth, fifth, and sixth cylinders.

また上記チヤンバ1の側面には吸気管6の下流
端に接続されている。この吸気管6の下流端部は
2つの上流側吸気通路7,8に形成され、該両上
流側吸気通路7,8は各々チヤンバ1の第1室3
及び第2室4に接続されており、該両上流側吸気
通路7,8はチヤンバ1の第1室3と第2室4と
を連通する第1連通路9と成つている。この第1
連通路9の通路長さL1及び通路断面積S1は第1
の設定回転数Ne1以下の低回転域、及び第2の設
定回転数Ne2以上の高回転域にて吸気の共鳴が得
られるような長さ及び断面積に設定されている。
また上記上流側吸気通路7,8にはそれぞれスロ
ツトル弁11a,11bが配設されている。
Further, the downstream end of the intake pipe 6 is connected to the side surface of the chamber 1 . The downstream end of this intake pipe 6 is formed into two upstream intake passages 7, 8, each of which is connected to the first chamber 3 of the chamber 1.
and the second chamber 4, and both the upstream intake passages 7, 8 form a first communication passage 9 that communicates the first chamber 3 and the second chamber 4 of the chamber 1. This first
The passage length L1 and the passage cross-sectional area S1 of the communication passage 9 are the first
The length and cross-sectional area are set such that resonance of intake air can be obtained in a low rotation range below the set rotation speed Ne1 and a high rotation range above the second set rotation speed Ne2.
Further, throttle valves 11a and 11b are provided in the upstream intake passages 7 and 8, respectively.

また上記隔壁2には開口10が開設され、該開
口10は上記第1連通路9と並列にチヤンバ1の
第1室3と第2室4とを連通する第2連通路とな
つており、該第2連通路の通路長さ(隔壁2の厚
さ)L2及び通路断面積(開口10の面積)S2は
第1の設定回転数Ne1以上でかつ第2設定回転数
Ne2以下の中回転域にて気体の共振が得られる長
さ及び断面積に設定されている。またこの開口1
0にはこれを開閉するバルブ12が設けられ、該
バルブ12はアクチユエータ13によつて開閉動
作されるようになつている。
Further, an opening 10 is formed in the partition wall 2, and the opening 10 serves as a second communication passage that communicates the first chamber 3 and the second chamber 4 of the chamber 1 in parallel with the first communication passage 9. The passage length (thickness of the partition wall 2) L2 and passage cross-sectional area (area of the opening 10) S2 of the second communication passage are equal to or greater than the first set rotation speed Ne1 and the second set rotation speed
The length and cross-sectional area are set so that gas resonance can be obtained in the medium rotation range below Ne2. Also, this opening 1
0 is provided with a valve 12 that opens and closes it, and the valve 12 is opened and closed by an actuator 13.

また図中、14はエンジン回転数を検出する回
転数センサ、15はスロツトル開度を検出するス
ロツトルセンサ、16はエンジン回転数とスロツ
トル開度とをパラメータとするバルブ制御マツプ
を有し、上記両センサ14,15の出力を受けて
開信号又は閉信号を読み出し、それをアクチユエ
ータ13に加える制御回路(バルブ制御手段)で
ある。ここで上記バルブ制御マツプには、第3図
に示すように、エンジンの高負荷時にはエンジン
回転数が第1の設定値Ne1以下の低回転域及び第
2の設定値Ne2以上の高回転域で閉信号、第1の
設定値Ne1以上で第2の設定値Ne2以下の中回転
域で開信号が格納され、又エンジンの低負荷時に
は減速時であつてアイドル回転数NeIDより高い
所定回転数Ne3以上の領域で閉信号、それ以外で
は開信号が格納されている。なお第3図におい
て、曲線aは無負荷ラインである。
Further, in the figure, reference numeral 14 has a rotation speed sensor that detects the engine rotation speed, 15 a throttle sensor that detects the throttle opening degree, and 16 a valve control map that uses the engine rotation speed and the throttle opening degree as parameters. It is a control circuit (valve control means) that receives the outputs of both sensors 14 and 15, reads an open signal or a close signal, and applies it to the actuator 13. Here, as shown in Fig. 3, the above valve control map shows that when the engine is under high load, the engine speed is in the low speed range below the first set value Ne1 and in the high speed range above the second set value Ne2. Close signal, open signal is stored in the middle rotation range from the first set value Ne1 to the second set value Ne2, and when the engine is under low load, the predetermined rotation speed Ne3 is higher than the idle rotation speed NeID during deceleration. Close signals are stored in the above areas, and open signals are stored in other areas. Note that in FIG. 3, curve a is the no-load line.

また17はチヤンバ1上流側である吸気管6に
設けられ、吸入空気量を検出する吸気量センサ、
18は吸気量センサ17の出力を受け、吸入空気
量に応じた燃料噴射パルスを作成してそれをチヤ
ンバ1下流側である吸気マニホールド5a〜5f
下流端付近に設けられた燃料噴射弁19に与えて
燃料噴射弁19からの燃料供給量を制御する制御
回路(燃料制御手段)である。
Further, 17 is an intake air amount sensor provided in the intake pipe 6 on the upstream side of the chamber 1 and detects the amount of intake air;
18 receives the output of the intake air amount sensor 17, creates a fuel injection pulse according to the amount of intake air, and sends it to the intake manifolds 5a to 5f on the downstream side of the chamber 1.
This is a control circuit (fuel control means) that controls the amount of fuel supplied from the fuel injection valve 19 to the fuel injection valve 19 provided near the downstream end.

次に動作について説明する。 Next, the operation will be explained.

エンジンが作動すると、吸気量センサ17の出
力は制御回路18に加えられ、該回路18では吸
入空気量に応じて燃料噴射パルスが作成されてこ
れが所定のタイミングで燃料噴射弁19に加えら
れ、これにより各気筒に燃料が噴射供給される。
また回転数センサ14及びスロツトルセンサ15
の両出力は制御回路16に加えられ、該回路16
ではエンジンの負荷状態と回転状態とに応じてバ
ルブ制御マツプ(第3図参照)から開信号又は閉
信号が読み出され、それがアクチユエータ13に
加えられてバルブ12が開閉される。
When the engine operates, the output of the intake air amount sensor 17 is applied to the control circuit 18, and the circuit 18 creates a fuel injection pulse according to the amount of intake air, which is applied to the fuel injection valve 19 at a predetermined timing. Fuel is injected and supplied to each cylinder.
In addition, the rotation speed sensor 14 and the throttle sensor 15
Both outputs of are applied to a control circuit 16, which circuit 16
Then, an open signal or a close signal is read out from the valve control map (see FIG. 3) depending on the load condition and rotational condition of the engine, and is applied to the actuator 13 to open or close the valve 12.

するとエンジンの高負荷低回転域あるいは高負
荷高回転域においては、バルブ12は閉じて、チ
ヤンバ1内の吸気は第1連通路9の形状等によつ
て決まる1次または2次固有振動数で共鳴し、各
気筒には効率よく共鳴過給が行なわれる。またエ
ンジンの高負荷中回転域においては、バルブ12
は開き、チヤンバ1内の吸気は今度は第2連通路
10の形状等によつて決まる1次固有振動数で共
鳴し、この場合も各気筒には効率よく共鳴過給が
行なわれることとなる。
Then, in the high-load, low-speed range or the high-load, high-speed range of the engine, the valve 12 closes and the intake air in the chamber 1 flows at the primary or secondary natural frequency determined by the shape of the first communication passage 9, etc. The engine resonates, and each cylinder is efficiently resonantly supercharged. In addition, in the high load and medium speed range of the engine, the valve 12
opens, and the intake air in the chamber 1 now resonates at the primary natural frequency determined by the shape of the second communication passage 10, etc., and in this case as well, each cylinder is efficiently resonantly supercharged. .

一方、エンジンの低負荷域においては、通常は
バルブ12は開かれ、チヤンバ1の第1室3と第
2室4との間で第2連通路10を介して吸気の供
給が行なわれ、第1室3の圧力と第2室4の圧力
とがほぼ等しくなり、各気筒にはほぼ等しい量の
吸気が供給されることとなる。
On the other hand, in the low load range of the engine, the valve 12 is normally opened and intake air is supplied between the first chamber 3 and the second chamber 4 of the chamber 1 via the second communication passage 10. The pressure in the first chamber 3 and the pressure in the second chamber 4 become approximately equal, and approximately the same amount of intake air is supplied to each cylinder.

そしてエンジンの減速時においては、まず高回
転時にはバルブ12は強制的に閉じられ、各気筒
には対応するチヤンバ1の第1室3又は第2室4
のみから吸気が供給され、エンジンの低回転時に
なるとバルブ12は開かれ、チヤンバ1の第1室
3と第2室4との間で吸気の供給が行なわれ、各
気筒にはほぼ等しい量の吸気が供給されることと
なる。
When the engine is decelerating, the valve 12 is forcibly closed at high speed, and each cylinder is connected to the first chamber 3 or second chamber 4 of the corresponding chamber 1.
When the engine rotates at low speeds, the valve 12 is opened and the intake air is supplied between the first chamber 3 and the second chamber 4 of the chamber 1, and an approximately equal amount of air is supplied to each cylinder. Intake air will be supplied.

以上のような本実施例の装置では、エンジンの
高回転減速時にはバルブを強制的に閉じるように
したので、各気筒に対するチヤンバの容積を小さ
くでき、チヤンバ容積に起因する吸気の圧力変化
の遅れを少なくでき、混合気の空燃比変動を低減
して回転の落ち込み、エンスト等の運転性の悪化
を防止できる。
In the device of this embodiment as described above, the valve is forcibly closed when the engine is decelerated at high speed, so the volume of the chamber for each cylinder can be reduced, and the delay in the change in intake pressure caused by the chamber volume can be reduced. This can reduce fluctuations in the air-fuel ratio of the air-fuel mixture and prevent deterioration in drivability such as drop in rotation and engine stalling.

また本装置では、低回転減速時にはバルブを開
いてチヤンバの第1室と第2室との間で吸気量の
補正を行なうようにしたので、たとえグループ間
で吸気負圧、吸気抵抗等にばらつきがあつても各
気筒にほぼ等しい量の吸気を供給でき、不快なエ
ンジン振動が増大することはない。
In addition, this device opens the valve during low speed deceleration to correct the amount of intake air between the first and second chambers, so even if there are variations in intake negative pressure, intake resistance, etc. between groups. Even if there is a problem, approximately the same amount of intake air can be supplied to each cylinder, and unpleasant engine vibrations will not increase.

なお上記実施例ではチヤンバ内を隔壁によつて
第1室と第2室とに画成したが、本発明は勿論チ
ヤンバを別個に形成してもよい。またチヤンバの
数は2個以外の複数個であつてもよい。
In the above embodiment, the inside of the chamber is divided into a first chamber and a second chamber by a partition wall, but the chamber may of course be formed separately in the present invention. Further, the number of chambers may be a plurality other than two.

また上記実施例では第1、第2の連通路の形状
等を低、高回転域及び中回転域で吸気の共鳴が得
られるようにしたが、本発明は第1の連通路の形
状等のついては所定の回転域でて吸気の共鳴が得
られるように設定し、第2連通路については単に
チヤンバ間を連通するものであつてもよい。
In addition, in the above embodiment, the shapes of the first and second communication passages were set so that resonance of intake air could be obtained in the low, high and medium rotation ranges, but the present invention changes the shape of the first communication passages, etc. Accordingly, it may be set so that resonance of intake air is obtained in a predetermined rotation range, and the second communication path may simply communicate between the chambers.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、吸気の共鳴効果
を利用して過給を行なう一方、低負荷時にはチヤ
ンバ間の連通路に設けたバルブを開いて共鳴過給
を中止するようにした多気筒エンジンの吸気装置
において、チヤンバ上流に吸気センサを設けてそ
の出力に基づいてチヤンバ下流の燃料噴射弁を制
御するとともに、減速時であつてアイドル回転数
より高い所定回転数以上の領域では上記バルブを
強制的に閉じるようにしたので、減速時高回転域
での空燃比変動を抑制して回転の落ち込み、エン
スト等の運転性の悪化を防止でき、又減速時低回
転域でのグループ間の吸気バランスを保証してエ
ンジン振動の増大を防止できる効果がある。
As described above, according to the present invention, supercharging is performed using the resonance effect of intake air, and at low load, the valve provided in the communication path between the chambers is opened to stop resonance supercharging. In the intake system of an engine, an intake sensor is provided upstream of the chamber, and the fuel injection valve downstream of the chamber is controlled based on the output of the intake sensor.The valve is also Since it is forcibly closed, it is possible to suppress air-fuel ratio fluctuations in the high rotation range during deceleration, preventing deterioration of drivability such as drop in rotation and engine stalling, and also prevent intake air between groups in the low rotation range during deceleration. This has the effect of ensuring balance and preventing an increase in engine vibration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々本発明の一実施例によ
る多気筒エンジンの吸気装置の断面平面図及び断
面側面図、第3図は上記装置における制御回路1
6の開閉信号を示す図、第4図は本発明の構成を
説明するためのエンジン回転数、スロツトル弁通
過吸入空気量及び吸気相当圧力とチヤンバ内の圧
力の変化を示す図である。 3,4……第1室、第2室(チヤンバ)、5a
〜5f……吸気マニホールド(吸気通路)、7,
8……上流側吸気通路、10……開口(連通路)、
12……バルブ、16……制御回路(バルブ制御
手段)、17……吸気量センサ、18……制御回
路(燃料制御手段)、19……燃料噴射弁。
1 and 2 are a cross-sectional plan view and a cross-sectional side view of an intake system for a multi-cylinder engine according to an embodiment of the present invention, respectively, and FIG. 3 is a control circuit 1 in the above system.
6 is a diagram showing the opening/closing signal of No. 6, and FIG. 4 is a diagram showing changes in the engine speed, the amount of intake air passing through the throttle valve, the intake equivalent pressure, and the pressure in the chamber to explain the configuration of the present invention. 3, 4...1st room, 2nd room (chamba), 5a
~5f...Intake manifold (intake passage), 7,
8... Upstream intake passage, 10... Opening (communication passage),
12... Valve, 16... Control circuit (valve control means), 17... Intake air amount sensor, 18... Control circuit (fuel control means), 19... Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 着火順序の隣り合わない気筒同志を1つのグ
ループとして各気筒を複数のグループに分けたと
きの各グループに対応して設けられたチヤンバ
と、各気筒と対応するチヤンバとを独立して連通
する吸気通路と、各チヤンバに連通された上流側
吸気通路と、複数のチヤンバを直接連通する連通
路と、該連通路に設けられたバルブと、チヤンバ
上流に設けられた吸気量センサと、チヤンバ下流
側に設けられた燃料噴射弁からの燃料供給量を上
記吸気量センサの出力に応じて制御する燃料制御
手段と、エンジンの低負荷時上記バルブを開きそ
の際エンジンの減速時であつてアイドル回転数よ
り高い所定回転数以上の領域では上記バルブを強
制的に閉じるバルブ制御手段とを備えたことを特
徴とする多気筒エンジンの吸気装置。
1. When each cylinder is divided into a plurality of groups, with cylinders that do not have adjacent ignition orders as one group, the chamber provided corresponding to each group is independently communicated with the chamber corresponding to each cylinder. an intake passage, an upstream intake passage that communicates with each chamber, a communication passage that directly communicates the plurality of chambers, a valve provided in the communication passage, an intake air amount sensor provided upstream of the chamber, and an intake passage provided downstream of the chamber. a fuel control means for controlling the amount of fuel supplied from a fuel injection valve provided on the side according to the output of the intake air amount sensor; An intake system for a multi-cylinder engine, comprising valve control means for forcibly closing the valve in a range of a predetermined rotation speed or higher.
JP60043314A 1985-03-05 1985-03-05 Air intake device for multicylinder engine Granted JPS61201821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043314A JPS61201821A (en) 1985-03-05 1985-03-05 Air intake device for multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043314A JPS61201821A (en) 1985-03-05 1985-03-05 Air intake device for multicylinder engine

Publications (2)

Publication Number Publication Date
JPS61201821A JPS61201821A (en) 1986-09-06
JPH0324565B2 true JPH0324565B2 (en) 1991-04-03

Family

ID=12660341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043314A Granted JPS61201821A (en) 1985-03-05 1985-03-05 Air intake device for multicylinder engine

Country Status (1)

Country Link
JP (1) JPS61201821A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580687B1 (en) 2004-06-28 2006-05-15 현대자동차주식회사 Valve driving structure

Also Published As

Publication number Publication date
JPS61201821A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US5309886A (en) Supercharged internal combustion engine
US5443050A (en) Engine control system
JPS61116021A (en) Engine intake-air device
JPS61149519A (en) Intake-air passage device in multi-cylinder internal combustion engine
JPH0324565B2 (en)
JP3119925B2 (en) Engine control device
JP2620259B2 (en) Engine intake system
JP3325595B2 (en) Engine combustion control device
JPH048304Y2 (en)
JPH03271558A (en) Intake device of multiplecylinder v-engine
JP2754976B2 (en) Variable intake control device for internal combustion engine
JPH0236772B2 (en)
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JP2612686B2 (en) Engine intake system
JP3518044B2 (en) Engine intake system
JPH036858Y2 (en)
JPH0578653B2 (en)
JPH0450424Y2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPS63212717A (en) Multiple throttle type internal combustion engine
JPH0568612B2 (en)
JPS61218721A (en) Intake device of engine
JPH0577845B2 (en)
JPH05280407A (en) Control device for two cycle engine
JPH0440534B2 (en)