JPH0324458B2 - - Google Patents

Info

Publication number
JPH0324458B2
JPH0324458B2 JP58167861A JP16786183A JPH0324458B2 JP H0324458 B2 JPH0324458 B2 JP H0324458B2 JP 58167861 A JP58167861 A JP 58167861A JP 16786183 A JP16786183 A JP 16786183A JP H0324458 B2 JPH0324458 B2 JP H0324458B2
Authority
JP
Japan
Prior art keywords
acid
water
fatty acid
reaction
lower alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58167861A
Other languages
Japanese (ja)
Other versions
JPS6058936A (en
Inventor
Morimasa Taniguchi
Yoshihisa Matsumura
Masayuki Oku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP58167861A priority Critical patent/JPS6058936A/en
Priority to PH31172A priority patent/PH20396A/en
Priority to GB08422840A priority patent/GB2146638B/en
Publication of JPS6058936A publication Critical patent/JPS6058936A/en
Priority to MYPI87000605A priority patent/MY101210A/en
Publication of JPH0324458B2 publication Critical patent/JPH0324458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、脂肪酸低級アルコールエステルの加
水分解による脂肪酸製造法に関するものである。
一般的に油脂類エステルの加水分解による脂肪酸
の製造法として知られているものには、次の如き
ものがある。 加圧加水分解法 現在多量の油脂を加水分解する方法として最も
一般的に行なわれているもので、温温度200〜260
℃、圧力15〜55Kg/cm2G下触媒(酸化亜鉛等)の
存在下、あるいは、無触媒で連続式もしくはバツ
チ式で油脂と水を反応させ脂肪酸とグリセリンを
得る方法である。 ケン化及び酸分解法 エステル(油脂類)を水酸化ナトリウム等のア
ルカリでケン化し石けんとアルコール(グリセリ
ン)に分解后、石ケンを硫酸、塩酸等の無機酸で
脂肪酸にする方法である。 トウイツチエル分解法 油脂の加水分解法として古くから知られている
もので、油脂に20〜100%の水を加え、フエノー
ルステアロスルホン酸、ナフタレンステアロスル
ホン酸等の分解剤約1%、硫酸0.5〜2%の存在
下、蒸気撹拌で約20時間反応し、脂肪酸を得る方
法である。 一方、脂肪酸低級アルコールエステルの加水分
解については、前述の油脂類エステルの加水分解
法に準じて行なうことが出来るが、分解率の点に
於て又反応条件的にも工業的価値を見い出せる方
法が無いのが現状である。すなわち、上記の加圧
加水分解法では、低級アルコールの脂肪酸への溶
解の為分解率が上らないとか、使用水量が多量に
必要である等の問題点がある。次にケン化酸分解
法では副原料が多量に必要であるとか、副生物と
して無機塩が多量に排出されるとか、使用水量が
多い等の問題点がある。又、トウイツチエル分解
法では特殊な油溶性の分解剤が必要であり、分解
脂肪酸中の残存分解剤の除去が難しく脂肪酸品質
の低下原因となり、又分解率が低い等の問題があ
る。 本発明者らは、脂肪酸低級アルコールエステル
の加水分解における上記問題点解決のため鋭意検
討した結果、水溶液で使用した場合には、触媒効
果の非常に小さ短鎖アルキルベンゼンスルホン
酸、硫酸等水溶性の高いスルホン酸を水層の存在
しない系で触媒として用いることにより著しく触
媒効果が高まり、容易にエステルを加水分解出来
ることを見い出した。そこでこれらの酸触媒をエ
ステルに添加し、系外より水を連続的に添加しつ
つ生成アルコールと過剰の水を連続的に系外へ留
出させ、反応系内に水層を存在させることなく溶
解水のみで加水分解することにより高分解率で容
易に脂肪酸を得ることを見い出し本発明に到つた
ものである。即ち本発明は脂肪酸低級アルコール
エステルを酸触媒の存在下に加水分解して脂肪酸
を製造するに際し、系外より水を連続的に添加し
つつ生成する低級アルコールと加えた水の未反応
を蒸留により連続的に抜き出し、この際反応混合
物から水が分離して水層を形成することのないよ
うにして反応させることを特徴とする脂肪酸低級
アルコールエステルから脂肪酸の製造方法に係わ
るものである。本発明の脂肪酸の製造方法に於て
は、得られた粗脂肪酸からの触媒の回収除去が水
洗の如き簡単な操作で可能であり、かつ回収され
た触媒の再使用が可能であり、更に触媒除去後の
粗脂肪酸を蒸留することにより、収率良く、品質
の良い脂肪酸の製造が可能である。 尚、不飽和脂肪酸の場合触媒の一部が二重結合
に付加するため、加水分解終了后の粗脂肪酸から
の触媒除去は水洗のみでは完全に出来ず、水洗后
そのまま脂肪酸を蒸留すると品質低下をきたす
が、水洗后にアルカリ土類金属の炭酸塩又は水酸
化物、例えばCaCO3,BaCO3等で処理すること
により良品質の脂肪酸が得られる。 本発明における脂肪酸低級アルコールエステル
は、好ましくは脂肪酸部分が炭素数6〜26の脂肪
酸に相当し、アルコール部分が炭素数1〜4の1
価の低級アルコールに相当するエステルであり、
例えばカプロン酸、カプリル酸、カプリン酸、ラ
ウリン酸、ミリスチン酸、パルミチン酸、ステア
リン酸、アラキン酸、ベヘニン酸、リグノセリン
酸、セロチン酸、バルミトレイン酸、オレイン
酸、リノール酸、ゴンドイン酸、エルカ酸及びこ
れらの混合物のメタノール、エタノール、プロパ
ノール、イソプロパノール、ノルマルブタノー
ル、二級ブタノール、三級ブタノール、イソブタ
ノールとのエステルなどを挙げることができる。 本発明においては酸触媒が使用される。好まし
いものは水溶性の不揮発性強酸であり、更に、水
にとけて、界面活性を示さないものであればより
好ましい。そのようなものの例としてはたとえば
無機の不揮発性強酸、炭素数6〜14の芳香族系炭
化水素のスルホン酸、炭素数1〜8の脂肪族炭化
水素のスルホン酸などが挙げられる。無機の強酸
を選択する場合はPKa≦2のものが好ましいが、
他に不都合がなければPKaについては小さいも
のほどよい。入手の容易さからすればパラトルエ
ンスルホン酸、硫酸が良く、量はエステルに対し
0.5〜5重量%位が良い。反応圧は常圧に限らず
減圧系及び加圧系でも良く、又反応温度は、分解
して得られる脂肪酸の融点以上であれば良いが、
反応の容易さより常圧で100〜150℃位の温度が良
い。水の添加速度は任意に選択出来るものの、一
定分解率迄の使用水量と時間の関係から5〜50%
対エステル/時間位が良い。水の添加は反応器中
にパイプを通じて導入してもよいし、又水蒸気を
吹込んでもよく、任意の手段で実施し得る。 加水分解反応終率后の粗脂肪酸からの触媒の除
去は、飽和エステルの場合エステルに対し10〜50
%の水円使用し、脂肪酸の融点以上で数回水洗す
ることにより容易に除くことが出来る。尚、水洗
1回目に少量の水、例えば2〜10%の水で触媒の
大部分を除去し、それを反応に回収再使用するこ
とも可能である。一方不飽和エステルを含む場合
には、前述の如く水洗のみで触媒を完全に除去で
きないため、脂肪酸の品質向上のため水洗により
大部分の触媒の除去后、アルカリ土類金属の炭酸
塩又は水酸化物で処理する必要がある。処理法
は、水洗后残存触媒量に対し、等モル〜10倍モル
のアルカリ土類金属の炭酸塩又は水酸化物(例え
ばCaCO3,BaCO3)と水を0〜50%加え、50〜
100℃で30〜60分撹拌処理した後に静置分離・遠
心分離等通常の分離手段により水層及び生成した
有機酸塩を分離すれば良い。 以下本発明の実施例及び比較例を示すが、本発
明はこれらの実施例に限定されるものではない。 実施例 1 反応装置として撹拌器、温度計及び滴下ロート
のついたクライゼンフラスコを用い、カプリル酸
メチル100部と触媒としてパラトルエンスルホン
酸1部をフラスコに仕込み、オイルバスで内容物
を105℃に保ちながら水を先端が液面下にある滴
下ロートから30部/Hrで滴下した。生成したメ
タノールと過剰の水を系内に水層が存在しない様
に連続的に蒸留管から系外に抜出し反応を行なつ
た結果、反応時間8時間で97%の分解率であつ
た。分解率測定は反応終了物を飽和食塩水で洗滌
した後、N.V.(中和価)及びS.V.(ケン化価)を
測定して行なつた。 比較例 1 実施例−1に用いた装置と同じ装置にカプリル
酸メチル100部とパラトルエンスルホン酸1部を
仕込み、更に水20部を入れ、オイルバスで105℃
に内容物を保ちながら水を滴下ロートから30部/
Hrで滴下した。生成したメタノールと過剰の水
を系内に20部の水層が常に存在する様に連続的に
系外に蒸留管から抜出し反応を行なつた結果、8
時間で40%の分解率であつた。尚、反応は擬一次
反応で進行するため実施例−1と同等の分解率を
得るためには、計算上55〜60時間の反応時間が必
要となる。 実施例 2 カプリル酸メチル100部に触媒として硫酸1部
を加え、実施例−1と同様に系内に水層が存在し
ないように105℃で水を30部/Hrで滴下しなが
ら、生成したメタノールと過剰の水を連続的に系
外に抜出し、反応を行なつた結果、12時間で分解
率は93%であつた。 比較例 2 カプリル酸メチル100部と硫酸1部を加え、比
較例−1と同様に系内に20部の水が常に存在する
ように105℃で水を30部/Hrで滴下しながら生成
したメタノールと過剰の水を連続的に系外し抜出
し反応を行なつた結果、12時間で5%の分解率で
あつた。 実施例 3 カプリル酸メチル100部にパラトルエンスルホ
ン酸1部を加え、実施例−1の105℃に代え温度
を120℃に保ち、系内に水層が存在しないように
して水を30部/Hrで滴下しながら生成したメタ
ノールと過剰の水を系外に抜出し反応を行なつた
結果、反応時間6時間で分解率は98%であつた。 実施例 4 実施例−3に於てカプリル酸メチル100部にm
−キシレンスルホン酸、β−ナフタレンスルホン
酸、オクチルスルホン酸、オクチルベンゼンスル
ホン酸を触媒としてそれぞれ1部加えた以外は同
様に反応を行なつた。即ちそれぞれについて温度
を120℃に保ち、系内に水層が存在しないように
して水を約30部/Hrで滴下しながら、生成した
メタノールと過剰の水を連続的に系外に抜出し反
応を行なつた結果、反応時間6時間で分解率はそ
れぞれ98%、97.5%、97%、95%であつた。 実施例 5 表−1に示した各種の脂肪酸メチルエステル
100部にパルトルエンスルホン酸を触媒として表
−1の量加え、温度を表−1に示した反応温度に
保ち、表−1に示した常圧又は加圧下に系内に水
層が存在しないようにして水を連続的に滴下しな
がら、生成メタノールと過剰の水を連続的に系外
に抜出し、表−1に示した条件で反応を行なつた
結果、分解率は表−1に示した通りであつた。
The present invention relates to a method for producing fatty acids by hydrolyzing fatty acid lower alcohol esters.
The following methods are generally known as methods for producing fatty acids by hydrolyzing oil and fat esters. Pressure hydrolysis method Currently, this is the most commonly used method for hydrolyzing large amounts of fats and oils.
It is a method to obtain fatty acids and glycerin by reacting oil and fat with water in the presence of a catalyst (such as zinc oxide) at a temperature of 15 to 55 kg/cm 2 G, or in a continuous or batch manner without a catalyst. Saponification and acid decomposition method This is a method in which esters (oils and fats) are saponified with an alkali such as sodium hydroxide, decomposed into soap and alcohol (glycerin), and then the soap is converted into fatty acids with an inorganic acid such as sulfuric acid or hydrochloric acid. Toitziel decomposition method This method has been known for a long time as a method of hydrolyzing fats and oils, in which 20 to 100% water is added to fats and oils, approximately 1% of a decomposing agent such as phenolstearosulfonic acid or naphthalenestearosulfonic acid, and 0.5% of sulfuric acid are added. This method involves reacting in the presence of ~2% with steam stirring for about 20 hours to obtain fatty acids. On the other hand, hydrolysis of fatty acid lower alcohol esters can be carried out in accordance with the above-mentioned hydrolysis method of oil and fat esters, but this method has industrial value in terms of decomposition rate and reaction conditions. The current situation is that there is no. That is, the above-mentioned pressure hydrolysis method has problems such as the decomposition rate not increasing due to the dissolution of the lower alcohol into the fatty acid, and the need for a large amount of water. Next, the saponification acid decomposition method has problems such as a large amount of auxiliary raw materials being required, a large amount of inorganic salts being discharged as by-products, and a large amount of water being used. Furthermore, the Toitziel decomposition method requires a special oil-soluble decomposition agent, which causes problems such as difficulty in removing the residual decomposition agent from decomposed fatty acids, which causes deterioration of fatty acid quality, and low decomposition rate. As a result of intensive studies to solve the above-mentioned problems in the hydrolysis of fatty acid lower alcohol esters, the present inventors found that water-soluble compounds such as short-chain alkylbenzene sulfonic acids and sulfuric acids, which have very small catalytic effects when used in aqueous solutions, We have found that the catalytic effect is significantly enhanced by using a highly concentrated sulfonic acid as a catalyst in a system without an aqueous layer, and esters can be easily hydrolyzed. Therefore, these acid catalysts are added to the ester, water is continuously added from outside the system, and the generated alcohol and excess water are continuously distilled out of the system, without creating a water layer in the reaction system. The inventors have discovered that fatty acids can be easily obtained at a high decomposition rate by hydrolysis using only dissolved water, and have thus arrived at the present invention. That is, in the present invention, when a fatty acid lower alcohol ester is hydrolyzed in the presence of an acid catalyst to produce a fatty acid, water is continuously added from outside the system, and the unreacted lower alcohol and the added water are removed by distillation. This invention relates to a method for producing a fatty acid from a fatty acid lower alcohol ester, which is characterized in that the reaction is carried out by continuously extracting water from the reaction mixture and preventing the formation of an aqueous layer by separating water from the reaction mixture. In the fatty acid production method of the present invention, the catalyst can be recovered and removed from the obtained crude fatty acid by a simple operation such as washing with water, and the recovered catalyst can be reused. By distilling the removed crude fatty acids, it is possible to produce fatty acids with good yield and quality. In the case of unsaturated fatty acids, part of the catalyst is attached to the double bonds, so the catalyst cannot be completely removed from the crude fatty acid after hydrolysis by washing with water alone, and if the fatty acid is distilled directly after washing with water, the quality may deteriorate. However, high quality fatty acids can be obtained by treating with alkaline earth metal carbonates or hydroxides, such as CaCO 3 and BaCO 3 after washing with water. The fatty acid lower alcohol ester in the present invention preferably has a fatty acid portion corresponding to a fatty acid having 6 to 26 carbon atoms, and an alcohol portion corresponding to a fatty acid having 1 to 4 carbon atoms.
It is an ester corresponding to a lower alcohol of
For example, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, valmitoleic acid, oleic acid, linoleic acid, gondoiic acid, erucic acid, and these Examples include mixtures of methanol, ethanol, propanol, isopropanol, normal butanol, secondary butanol, tertiary butanol, and esters with isobutanol. Acid catalysts are used in the present invention. Preferred are water-soluble, nonvolatile strong acids, and more preferred are those that are soluble in water and exhibit no surface activity. Examples of such substances include inorganic nonvolatile strong acids, sulfonic acids of aromatic hydrocarbons having 6 to 14 carbon atoms, and sulfonic acids of aliphatic hydrocarbons having 1 to 8 carbon atoms. When selecting an inorganic strong acid, one with PKa≦2 is preferable;
As long as there are no other inconveniences, the smaller the PKa, the better. Para-toluenesulfonic acid and sulfuric acid are good in terms of availability, and the amount is relative to the ester.
Approximately 0.5 to 5% by weight is preferable. The reaction pressure is not limited to normal pressure, but may be a reduced pressure system or a pressurized system, and the reaction temperature may be at least the melting point of the fatty acid obtained by decomposition.
For ease of reaction, a temperature of about 100 to 150°C at normal pressure is preferable. Although the water addition rate can be selected arbitrarily, it is 5 to 50% due to the relationship between the amount of water used and the time required to reach a certain decomposition rate.
Good against ester/time. Addition of water can be carried out by any means, such as by introducing into the reactor through pipes or by blowing in steam. Removal of catalyst from crude fatty acids after completion of hydrolysis reaction is 10 to 50% relative to ester in the case of saturated esters.
It can be easily removed by washing with water several times at a temperature above the melting point of the fatty acid. It is also possible to remove most of the catalyst with a small amount of water, for example 2 to 10% water, in the first washing, and then collect and reuse it in the reaction. On the other hand, in cases where unsaturated esters are contained, the catalyst cannot be completely removed by washing with water alone as mentioned above, so in order to improve the quality of the fatty acid, after removing most of the catalyst by washing with water, carbonates or hydroxides of alkaline earth metals are used. It needs to be treated with something. The treatment method is to add carbonate or hydroxide of an alkaline earth metal (e.g. CaCO 3 , BaCO 3 ) and water at 0 to 50% in a molar amount to 10 times the amount of catalyst remaining after washing with water.
After stirring at 100° C. for 30 to 60 minutes, the aqueous layer and the produced organic acid salt may be separated by ordinary separation means such as static separation or centrifugation. Examples and comparative examples of the present invention are shown below, but the present invention is not limited to these examples. Example 1 Using a Claisen flask equipped with a stirrer, thermometer, and dropping funnel as a reaction device, 100 parts of methyl caprylate and 1 part of para-toluenesulfonic acid as a catalyst were charged into the flask, and the contents were heated to 105°C in an oil bath. Water was dropped at a rate of 30 parts/hour from a dropping funnel whose tip was below the liquid surface. The generated methanol and excess water were continuously extracted from the system through the distillation tube so that no water layer existed in the system, and the reaction was carried out. As a result, the decomposition rate was 97% in a reaction time of 8 hours. The decomposition rate was measured by washing the reaction product with saturated saline and measuring the NV (neutralization value) and SV (saponification value). Comparative Example 1 100 parts of methyl caprylate and 1 part of para-toluenesulfonic acid were charged into the same equipment as used in Example-1, and 20 parts of water was added, and the mixture was heated to 105°C in an oil bath.
Add 30 parts of water from the dropping funnel while keeping the contents intact.
Dropped in hr. The generated methanol and excess water were continuously extracted from the distillation tube so that a 20 part water layer always existed in the system, and the reaction was carried out.
The decomposition rate was 40% in hours. Incidentally, since the reaction proceeds as a pseudo-first-order reaction, in order to obtain a decomposition rate equivalent to that of Example-1, a reaction time of 55 to 60 hours is calculated. Example 2 1 part of sulfuric acid was added as a catalyst to 100 parts of methyl caprylate, and as in Example-1, water was added dropwise at 30 parts/Hr at 105°C to avoid the presence of an aqueous layer in the system. When methanol and excess water were continuously extracted from the system and the reaction was carried out, the decomposition rate was 93% in 12 hours. Comparative Example 2 100 parts of methyl caprylate and 1 part of sulfuric acid were added, and water was added dropwise at 105°C at a rate of 30 parts/Hr so that 20 parts of water was always present in the system as in Comparative Example-1. Methanol and excess water were continuously removed from the system and the reaction was carried out, resulting in a decomposition rate of 5% in 12 hours. Example 3 Add 1 part of para-toluenesulfonic acid to 100 parts of methyl caprylate, maintain the temperature at 120°C instead of 105°C in Example-1, and add 30 parts of water to 100 parts of methyl caprylate, keeping the temperature at 120°C so that there is no water layer in the system. The reaction was carried out by extracting the generated methanol and excess water from the system while dropping with Hr, and as a result, the decomposition rate was 98% in a reaction time of 6 hours. Example 4 In Example-3, m was added to 100 parts of methyl caprylate.
The reaction was carried out in the same manner except that 1 part each of -xylene sulfonic acid, β-naphthalene sulfonic acid, octyl sulfonic acid, and octylbenzenesulfonic acid were added as catalysts. That is, while maintaining the temperature of each at 120°C and adding water dropwise at a rate of about 30 parts/hour to ensure that no water layer exists in the system, the generated methanol and excess water are continuously extracted from the system to carry out the reaction. As a result, the decomposition rates were 98%, 97.5%, 97%, and 95%, respectively, after a reaction time of 6 hours. Example 5 Various fatty acid methyl esters shown in Table-1
Add part-toluenesulfonic acid as a catalyst in the amount shown in Table 1 to 100 parts, maintain the reaction temperature shown in Table 1, and under the normal pressure or increased pressure shown in Table 1, there is no aqueous layer in the system. While water was continuously added dropwise in this manner, the produced methanol and excess water were continuously extracted from the system, and the reaction was carried out under the conditions shown in Table 1. As a result, the decomposition rate was shown in Table 1. It was exactly as I expected.

【表】【table】

【表】 実施例 6 イソプロピルミリステート100部にパラトルエ
ンスルホン酸1部を加え120℃で系内に水層が存
在しないように水を35部/Hrで連続的に添加し
ながら生成イソプロパノールと過剰の水を系外に
抜出し反応を行なつた結果反応時間7時間で分解
率は98.5%であつた。 実施例 7 n−ブチルステアレート100部にパラトルエン
スルホン酸1部を加え120℃で系内に水層が存在
しないように水を30部/Hrで連続的に添加しな
がら生成n−ブタノールと過剰の水を系外に抜出
し反応を行なつた結果反応時間11時間で分解率は
94%であつた。
[Table] Example 6 Add 1 part of para-toluenesulfonic acid to 100 parts of isopropyl myristate and heat at 120°C. While continuously adding water at 35 parts/hour so that there is no aqueous layer in the system, the resulting isopropanol and excess The water was extracted from the system and the reaction was carried out. As a result, the decomposition rate was 98.5% in a reaction time of 7 hours. Example 7 1 part of para-toluenesulfonic acid was added to 100 parts of n-butyl stearate, and the resulting n-butanol was heated at 120°C while continuously adding water at a rate of 30 parts/hour so that no aqueous layer existed in the system. As a result of removing excess water from the system and carrying out the reaction, the decomposition rate decreased after 11 hours of reaction time.
It was 94%.

Claims (1)

【特許請求の範囲】 1 脂肪酸低級アルコールエステルを無機の不揮
発性強酸、炭素数6〜14の芳香族系炭化水素のス
ルホン酸および炭素数1〜8の脂肪族炭化水素の
スルホン酸からなる群から選ばれる1又は2以上
からなる酸触媒の存在下に加水分解して脂肪酸を
製造するに際し、系外より水を連続的に添加しつ
つ生成する低級アルコールと加えた水の未反応分
を蒸留により連続的に抜き出し、この際反応混合
物から水が分離して水層を形成することのないよ
うにして反応させることを特徴とする脂肪酸低級
アルコールエステルから脂肪酸の製造方法。 2 酸触媒が硫酸又はパラトルエンスルホン酸で
ある特許請求の範囲第1項記載の製造方法。 3 脂肪族低級アルコールエステルが脂肪酸部分
が炭素数6〜26の脂肪酸に相当し、アルコール部
分が炭素数1〜4の1価のアルコールに相当する
ものである特許請求の範囲第1項又は第2項記載
の製造方法。
[Scope of Claims] 1. Fatty acid lower alcohol ester is selected from the group consisting of inorganic nonvolatile strong acids, sulfonic acids of aromatic hydrocarbons having 6 to 14 carbon atoms, and sulfonic acids of aliphatic hydrocarbons having 1 to 8 carbon atoms. When producing fatty acids by hydrolysis in the presence of one or more selected acid catalysts, water is continuously added from outside the system, and the lower alcohol produced and the unreacted portion of the added water are distilled. 1. A method for producing a fatty acid from a fatty acid lower alcohol ester, which comprises continuously extracting water from the reaction mixture and carrying out the reaction without separating water from the reaction mixture to form an aqueous layer. 2. The manufacturing method according to claim 1, wherein the acid catalyst is sulfuric acid or para-toluenesulfonic acid. 3. Claims 1 or 2, in which the fatty acid portion of the aliphatic lower alcohol ester corresponds to a fatty acid having 6 to 26 carbon atoms, and the alcohol portion corresponds to a monohydric alcohol having 1 to 4 carbon atoms. Manufacturing method described in section.
JP58167861A 1983-09-12 1983-09-12 Production of fatty acid from lower alcohol ester of fatty acid Granted JPS6058936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58167861A JPS6058936A (en) 1983-09-12 1983-09-12 Production of fatty acid from lower alcohol ester of fatty acid
PH31172A PH20396A (en) 1983-09-12 1984-08-31 Process for producing fatty acids from lower alcohol ester of fatty acids
GB08422840A GB2146638B (en) 1983-09-12 1984-09-10 Producing fatty acids from lower alkyl esters of fatty acids
MYPI87000605A MY101210A (en) 1983-09-12 1987-05-08 Process for producing fatty acids from lower alcohol ester of fatty acids.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167861A JPS6058936A (en) 1983-09-12 1983-09-12 Production of fatty acid from lower alcohol ester of fatty acid

Publications (2)

Publication Number Publication Date
JPS6058936A JPS6058936A (en) 1985-04-05
JPH0324458B2 true JPH0324458B2 (en) 1991-04-03

Family

ID=15857443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167861A Granted JPS6058936A (en) 1983-09-12 1983-09-12 Production of fatty acid from lower alcohol ester of fatty acid

Country Status (4)

Country Link
JP (1) JPS6058936A (en)
GB (1) GB2146638B (en)
MY (1) MY101210A (en)
PH (1) PH20396A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930001325B1 (en) * 1989-12-14 1993-02-26 몬산토 캄파니 Process for preparing butane tetracarboxylic acid
ES2122228T3 (en) * 1992-12-22 1998-12-16 Procter & Gamble HYDROLYSIS OF METHYL ESTERS FOR THE PRODUCTION OF FATTY ACIDS.
JP3465339B2 (en) * 1994-03-25 2003-11-10 アイシン精機株式会社 Mounting member for disc brake
US5440061A (en) * 1994-03-29 1995-08-08 The Procter & Gamble Company Hydrolysis of methyl esters in dimethylsulfoxide for production of fatty acids
DE19907458C2 (en) * 1999-02-20 2003-05-08 Cognis Deutschland Gmbh Process for the production of fatty acids
JP4282829B2 (en) * 1999-06-16 2009-06-24 株式会社クラレ Method for producing carboxylic acid and alcohol
EP1078910A1 (en) * 1999-08-20 2001-02-28 HaltermannAscot GmbH Non-corrosive catalytic hydrolysis of fatty acid esters to fatty acids.
US7195923B2 (en) 2001-01-31 2007-03-27 Scripps Laboratories, Inc. Ratiometric determination of glycated protein
DE10108750A1 (en) * 2001-02-23 2002-09-05 Bayer Ag Improved process for the production of fluoroquinolonecarboxylic acids
MY119895A (en) * 2002-02-27 2005-07-29 Haltermannascot Gmbh Non-corrosive catalytic hydrolysis of fatty acid esters to fatty acids.
EP2464714B1 (en) * 2009-08-13 2013-06-26 Council of Scientific & Industrial Research Process for producing fatty acids
US9040263B2 (en) 2010-07-28 2015-05-26 Butamax Advanced Biofuels Llc Production of alcohol esters and in situ product removal during alcohol fermentation
CN103119172B (en) 2010-06-18 2016-05-11 布特马斯先进生物燃料有限责任公司 Extract in fermentation, remove for alcohol derive from oily extraction solvent
US20150080615A1 (en) * 2013-09-13 2015-03-19 Butamax Advanced Biofuels Llc High temperature ester hydrolysis operating at high ester to water ratios

Also Published As

Publication number Publication date
GB2146638A (en) 1985-04-24
GB8422840D0 (en) 1984-10-17
PH20396A (en) 1986-12-12
JPS6058936A (en) 1985-04-05
MY101210A (en) 1991-08-17
GB2146638B (en) 1987-02-25

Similar Documents

Publication Publication Date Title
JPH0324458B2 (en)
KR101148471B1 (en) Method for producing alpha-hydroxycarboxylic acids and the esters thereof
JPH0532581A (en) Carbonylation method
JP3101037B2 (en) Method for producing alkoxyalkanoic acid or salt thereof
US5606102A (en) Process for the manufacture of butyl acrylate by direct esterification
JP2003507444A (en) Non-corrosive catalytic hydrolysis of fatty acid esters to fatty acids
US3968177A (en) Method for preparing straight-chain primary alcohols
TW438766B (en) Sulfur removal process from an acrylate stream
US3538159A (en) Process for preparing di-n-methylamides from dimethylamines
JPS6126779B2 (en)
US5440061A (en) Hydrolysis of methyl esters in dimethylsulfoxide for production of fatty acids
JPS6241662B2 (en)
US5344975A (en) Process for production of lower alkanoic acids
TW200305564A (en) Method for decomposition of Michael type adduct
JP4293424B2 (en) Purification method of sucrose fatty acid ester
US5440047A (en) Method of preparing 2-chloro-pyridinemethanol
JP3222941B2 (en) Method for producing carboxylic acid
JP2611861B2 (en) Method for separation and purification of glyceryl ether
BE1007058A3 (en) A NEW METHOD FOR THE PREPARATION OF ACID 5- (2,5-dimethylphenoxy) -2,2-DIMETHYL pentanoic.
JP2002527495A (en) Treatment of contaminated fatty alcohol mixtures
US2871249A (en) Working up of distillation fractions containing alcohols and hydrocarbons
JPH0625053A (en) Production of glyceryl ether compounds
US3458567A (en) Use of glycerin as an antifoam agent
SU644376A3 (en) Method of separating esters of n-benzoyl-n-(3,4-digaloidphenyl)-2-aminopropionic acids
GB1565663A (en) Production of esters in the presence of amphoteric catalysts and oxalic acid