JPH03243872A - Ground fault point detecting method for gas insulation opening and closing device - Google Patents

Ground fault point detecting method for gas insulation opening and closing device

Info

Publication number
JPH03243872A
JPH03243872A JP2038288A JP3828890A JPH03243872A JP H03243872 A JPH03243872 A JP H03243872A JP 2038288 A JP2038288 A JP 2038288A JP 3828890 A JP3828890 A JP 3828890A JP H03243872 A JPH03243872 A JP H03243872A
Authority
JP
Japan
Prior art keywords
ground fault
gas
voltage
gis
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038288A
Other languages
Japanese (ja)
Inventor
Yasumasa Kamisaka
上坂 恭正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2038288A priority Critical patent/JPH03243872A/en
Publication of JPH03243872A publication Critical patent/JPH03243872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To speedily and accurately specify an accident occurrence position without making a patrol by impressing a voltage to an area where the gas insulation opening and closing device(GIS) is stopped from operating because of the presence of a ground fault point, and deciding the ground fault point. CONSTITUTION:For example, a ground fault accident occurs in a section 16 of the GIS which is sectioned with insulating spacers 10 and 11. A generated arc moves fast in the GIS along a conductor and stops at the spacer 11 and the arc stays at the insulating space part until a ground fault current is cut off. Breakers 1 - 4 are tripped under the command of a protection relay and a thick-line part is disconnected from the system. In this state, an AC power source 17 is connected to the secondary side 8a of a gas PT (gas insulation voltage transformer) 8 for an A type bus to excite the PT 8 reversely and when an AC voltage is impressed to the stop range of the thick-line part, partial discharger is caused at the spacer 11 which is damaged by the arc at the time of the ground fault because of an AC voltage generated by the reverse excitation. A high frequency pulse voltage which is induced owing to the partial discharge is detected by the buried electrode of the insulating spacer. Further, the damage insulating spacer is specified.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電力の送受電のために電気所(発電所、開閉
所、変電所等)に配設されるガス絶縁開閉装置(以下、
GISと称する)に発生した地絡点を検出する方法に関
するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gas-insulated system installed in an electric station (power station, switchyard, substation, etc.) for transmitting and receiving electric power. Switchgear (hereinafter referred to as
The present invention relates to a method for detecting a ground fault point that occurs in a GIS.

(従来の技術) GISは充電部が金属容器内に収納されているため、地
絡事故が発生しても、容器が損傷を受けないかぎり、外
部から地絡点を見つけ1−13すことは困難である。ま
た、容器が損傷を受けたとしても、GISは広範囲に設
置されており、■つ、パイプ状の容器が複雑に入り組ん
で配置されているため、損傷箇所を見つけ出すためには
かなりの長時間を要する。従って、事故復旧の迅速化と
省力化の観点から、運転員や保守員が電気所内を巡回し
なくても地絡点を特定できるように、各挿センサーを使
用した地絡点検出方法が提案されている。以下にそれぞ
れの方法について説明する。
(Prior art) Since the live parts of GIS are housed in a metal container, even if a ground fault occurs, as long as the container is not damaged, it is not possible to find the ground fault point from the outside1-13. Have difficulty. In addition, even if a container is damaged, GIS is installed over a wide area, and pipe-shaped containers are arranged in a complicated manner, so it will take a considerable amount of time to find the damaged location. It takes. Therefore, from the perspective of speeding up accident recovery and saving labor, a method for detecting ground fault points using various inserted sensors has been proposed so that operators and maintenance personnel can identify ground fault points without having to patrol the electrical station. has been done. Each method will be explained below.

(a)接地線電流検出方法 GISの内部に地絡事故が発生した時の地絡電流は、G
ISの接地線を流れることから、接地線ごとに設けた変
流器でこの地絡電流を検出して、地絡事故発生部位を特
定する方法である。しかし、地絡電流は複数の接地線に
分流するので、想定されるすべての地絡点に対して、予
めその分流状況を把握しておくことが必要である。
(a) Grounding wire current detection method When a grounding fault occurs inside the GIS, the grounding current is G
Since this current flows through the grounding wire of the IS, this grounding current is detected using a current transformer provided for each grounding wire, thereby identifying the location where the grounding fault has occurred. However, since the ground fault current is divided into a plurality of grounding wires, it is necessary to understand in advance the branch current situation for all possible ground fault points.

(b)衝撃ガス圧力−ヒ昇検出方法 GIS内部地絡時のアークエネルギーによる過渡的な圧
力−に昇の第1波を、ガス区分毎に設けた圧力センサー
により検出して地絡事故発生部位を特定する方法である
。しかし、遮断器のように事故電流を遮断する機器では
、地絡事故時の圧力り昇と電流遮断時の圧力上昇を圧力
センサーで判別することは困難である。
(b) Impact gas pressure rise detection method The first wave of pressure rise due to arc energy during a ground fault inside the GIS is detected by a pressure sensor installed in each gas section at the location where the ground fault occurred. This is a method of identifying However, in devices that interrupt fault current, such as circuit breakers, it is difficult to distinguish between a pressure rise at the time of a ground fault and a pressure rise at the time of current cutoff using a pressure sensor.

(C)振動加速度検出方法 GIS内部地絡時のアークエネルギーによる容器の振動
加速度を、容器の壁に配置した加速度センサーで検出し
て地絡事故発生部(1°Lを特定する方法である。しか
し、遮断器、断路器、接地開閉装置など可動部がある機
器では、その操作時の振動を加速度センサーが地絡事故
による振動と誤゛r11定する可能性がある。
(C) Vibration acceleration detection method This method detects the vibration acceleration of the container due to arc energy during a GIS internal ground fault with an acceleration sensor placed on the wall of the container to identify the ground fault occurrence area (1°L). However, in devices that have moving parts, such as circuit breakers, disconnectors, and grounding switchgears, there is a possibility that the acceleration sensor will erroneously identify vibrations during operation as vibrations caused by ground faults.

(d)アーク光検出方法 地絡事故時のアーク光を、容器の貫通孔に配置した集光
窓を介して、フォトダイオード等の光センサーにより検
出し、地絡事故発生箇所を特定する方法である。しかし
、この方法では電流を開閉する遮断器、断路器、接地開
閉装置などにおいては、通常の電流開閉による発光と事
故時のアーク光とを判別することが困難である。
(d) Arc light detection method This is a method in which the arc light at the time of a ground fault is detected by an optical sensor such as a photodiode through a condensing window placed in a through hole of the container, and the location of the ground fault is identified. be. However, with this method, it is difficult to distinguish between light emitted by normal current switching and arc light at the time of an accident in circuit breakers, disconnectors, earthing switchgears, etc. that switch current.

(発明が解決しようとする課題) 」二連した様に、前記4つの地絡点検出方法にはそれぞ
れ問題点があった。即ち、(a)接地線電流検出方法で
は、地絡電流が複数の接地線に分流するため、予め分流
の状l兄を把握しておく必械がある。つまり、想定され
る地絡点に電流を注入し、この時各接地線に流れる電流
を測定することにより分流の状況を知ることができる。
(Problems to be Solved by the Invention) As described above, each of the four methods for detecting a ground fault point has its own problems. That is, in the (a) grounding line current detection method, since the ground fault current is divided into a plurality of grounding lines, it is necessary to know the nature of the branching in advance. In other words, by injecting a current into an assumed ground fault point and measuring the current flowing through each ground wire at this time, it is possible to know the current situation.

従って、GISを現地に実際に据付けた後でなければ、
正確な電流分布を把握することは困難であるし、GIS
が増設されたりすると、その電流分布が変わるので、地
絡事故発生箇所を判定する基準を変更しなければならな
いなどの不都合がある。
Therefore, it is necessary to install the GIS on-site.
It is difficult to grasp the accurate current distribution, and GIS
If a ground fault is added, the current distribution will change, resulting in inconveniences such as the need to change the criteria for determining where a ground fault has occurred.

また、(b)衝撃ガス圧力上昇検出方法、(c)振動加
速度検出方法、(d)アーク光検出方法は、いずれも遮
断器、断路器、接地開閉装置に適用すると、正常時の現
象と地絡事故時の現象とを晶同する可能性が大きく、単
一の検出方法での地絡事故発生箇所の特定には、その信
憑性に問題がある。
In addition, (b) impact gas pressure rise detection method, (c) vibration acceleration detection method, and (d) arc light detection method are all applicable to circuit breakers, disconnectors, and grounding switchgears. There is a strong possibility that the phenomena at the time of a ground fault are the same, and there is a problem with the reliability of identifying the location where a ground fault has occurred using a single detection method.

また、(b)衝撃ガス圧力1゛、昇検出方法と(d)ア
ーク光検出方法は、容器にセンサー用の貫通孔を設ける
必要があり、GISのガス漏れに対する信頼性を損なう
欠点がある。
In addition, (b) the impact gas pressure 1'' detection method and (d) the arc light detection method require a through hole for a sensor to be provided in the container, which has the disadvantage of impairing the reliability of the GIS against gas leakage.

本発明は、以トの問題点を解決するために提案されたも
ので、その目的は、GIS内部ての地絡事故発生後に、
運転員や保守員がG13周辺を巡回することなく、迅速
且つ正確に事故発生箇所を特定することのできるガス絶
縁開閉装置の地絡点検出方法を提供することにある。
The present invention was proposed to solve the following problems, and its purpose is to
An object of the present invention is to provide a method for detecting a ground fault point in a gas insulated switchgear, which allows an operator or a maintenance person to quickly and accurately identify the location of an accident without having to patrol around G13.

[発明の構成] (課題を解決するための手段) 本発明のガス絶縁開閉装置の地絡点検出方法は、容器内
に絶縁ガスを封入したガス絶縁開閉装置において、地絡
事故が発生した後、地絡点が存在するために電力系統か
ら切り離されて運転を停止した領域に電圧を印加し、前
記ガス絶縁開閉装置に設けた絶縁異常検出センサからの
情報によって、地絡点をII定することを特徴とするも
のである。
[Structure of the Invention] (Means for Solving the Problems) A method for detecting a ground fault point in a gas insulated switchgear according to the present invention is a method for detecting a ground fault point in a gas insulated switchgear in which an insulating gas is sealed in a container after a ground fault occurs. , applying a voltage to an area that has been disconnected from the power system and stopped operating due to the presence of a ground fault point, and determining the ground fault point based on information from an insulation abnormality detection sensor provided in the gas-insulated switchgear; It is characterized by this.

(作用) 本発明のガス絶縁開閉装置の地絡点検出方法によれば、
GIS内で地絡事故が発生したため、系統から分離され
て運転を停止した領域に、この領域に配設されたガス絶
縁電圧変成器を逆励磁して交流電圧を印加し、地絡アー
クによって損傷を受けた部分に部分放電を発生させ、こ
の部分放電をガス絶縁開閉装置に設けた絶縁異常検出セ
ンサによって検出することにより、電気所の運転員や保
守員がG13周辺を巡回することなく、迅速且つ正確に
地絡点を検出することができる。
(Function) According to the method for detecting a ground fault point in a gas insulated switchgear of the present invention,
Because a ground fault occurred in the GIS, the gas insulated voltage transformer installed in this area was reverse excited and AC voltage was applied to the area that was isolated from the grid and stopped operation, and damage caused by the ground fault arc was applied. By generating a partial discharge in the affected area and detecting this partial discharge with an insulation abnormality detection sensor installed in the gas-insulated switchgear, the operator and maintenance staff at the electrical station can quickly eliminate the need to patrol around the G13 area. Moreover, the ground fault point can be detected accurately.

(実施例) 以下、本発明の一実施例を第1図ハモ第10図に基づい
て具体的に説明する。
(Example) Hereinafter, an example of the present invention will be specifically described based on FIG. 1 and FIG. 10.

本実施例においては、第1図乃至第4因に示した様に、
G I Sの地絡事故点標定のために、系統保護におけ
る送電線保護の領域(線路用遮断器より線路側)、母線
保護の領域、変圧器保護の領域(変圧器用遮断器より変
圧器側)のそれぞれの保護範囲に、交屍電圧発生源とし
てカス絶縁電圧変成器(以下、ガスPTと称す)が設け
られている。
In this example, as shown in Figures 1 to 4,
In order to locate the ground fault point of GIS, the power transmission line protection area (from the line breaker to the line side), the bus bar protection area, and the transformer protection area (from the transformer breaker to the transformer side) in system protection. ) is provided with a gas insulation voltage transformer (hereinafter referred to as gas PT) as an alternating voltage generation source.

ここで、第1図乃〒第4図は、これら電圧発生源として
のガスPTの配置例を、代表的なGIS構成である単母
線構成(第1図)、標$2巾11線構成(第2図)、4
ブスタイ構戊(第121)、1・1/2遮断器構成(第
4図)について示したちのである。即ち、第1図に示し
た様に、単lJ線構成のGISにおいては、線路用遮断
器1の線路ff1l+、変圧器用遮断器2より変圧器1
2叫及び主母線28に、それぞれガスPT25が接続さ
れている。
Here, FIGS. 1 to 4 show examples of the arrangement of gas PTs as voltage generation sources, including a single bus bar configuration (Figure 1), which is a typical GIS configuration, and a 2-width 11-wire configuration (Figure 1). Figure 2), 4
The bus tie configuration (No. 121) and the 1 1/2 circuit breaker configuration (Figure 4) are shown. That is, as shown in FIG. 1, in a GIS with a single J line configuration, the line ff1l+ of the line breaker 1 is connected to the transformer 1 from the transformer breaker 2.
A gas PT 25 is connected to the main bus 28 and the main bus 28, respectively.

また、第2図乃至第4図においても同様に、送電線保護
の領域(線路用遮断器より線路側)、母線保護の領域、
変圧器保護の領域(変圧器用遮断器より変圧器側)のそ
れぞれの保護範四に、ガスPT25が接続されている。
Similarly, in FIGS. 2 to 4, the power transmission line protection area (line side from the line breaker), the bus bar protection area,
A gas PT 25 is connected to each protection range in the transformer protection area (on the transformer side from the transformer circuit breaker).

なお、一般に、送電線保護の領域と14線保護の領域に
はカスPTが配置されている場合が多く、その場合には
そのガスPTを交流電床発生源として利mできるか、変
圧器保護の領域にはガスPTが配置されていないので、
カスPTあるいはそれに類似の電圧発生源が設けられる
Generally, gas PTs are often placed in the power transmission line protection area and the 14-line protection area, and in that case, whether the gas PT can be used as an AC power source, or whether the transformer protection Since no gas PT is placed in the area,
A cass PT or similar voltage source is provided.

また、GISの線路回線は、一般に、第5図に示す様に
構成されている。即ち、遮断器21、lJ線線断蒸器2
2線路ff1ll断路器23、接地開閉装置24、ガス
PT25、ケーブル接続部26、変流器27、主母線2
8から構成され、各区分は絶縁スペーサ20て仕切られ
ている。この絶縁スペーサ20には、第6図に示した様
に絶縁異常検出センサである埋込み電極201が設けら
れ、この押込み電極201から外部に検出端1204が
引き出されている。そして、この理込み電極201によ
って、導体202と容器203との間の電床を静電容量
分圧で監視することができるように構成されている。
Further, a GIS line is generally configured as shown in FIG. That is, the circuit breaker 21, the lJ line breaker 2
2-track ff1ll disconnector 23, earthing switch 24, gas PT 25, cable connection 26, current transformer 27, main bus 2
Each section is separated by an insulating spacer 20. As shown in FIG. 6, this insulating spacer 20 is provided with a buried electrode 201 which is an insulation abnormality detection sensor, and a detection end 1204 is drawn out from this pressed-in electrode 201 to the outside. The built-in electrode 201 is configured so that the electric bed between the conductor 202 and the container 203 can be monitored using capacitance partial pressure.

次に、前記ガスPTの基本的な構成を第7図及び第8図
に示した。即ち、1次巻線302が鉄心304に装着さ
れている。また、1−次巻線302の高圧側は、高圧端
子301を介して主回路に接続されている。さらに、2
次巻線303は端子箱310によって保護回路や口側回
路に接続されている。この様に構成されたカスPTの2
次巻線303に交流電源を接続してガスPTを逆励磁す
れば、1次巻線302には運転電圧相当までの電圧を誘
起することができる。
Next, the basic structure of the gas PT is shown in FIGS. 7 and 8. That is, the primary winding 302 is attached to the iron core 304. Further, the high voltage side of the primary winding 302 is connected to the main circuit via the high voltage terminal 301. Furthermore, 2
The next winding 303 is connected to a protection circuit and an opening circuit through a terminal box 310. 2 of the Kass PT configured in this way
If an AC power source is connected to the secondary winding 303 and the gas PT is reversely excited, a voltage equivalent to the operating voltage can be induced in the primary winding 302.

この様な構成を有する本実施例の地絡点検出方法におい
ては、以下に述べる様にして地絡点が検出される。即ち
、第9図に示す様な状態で運転中のGISにおいて、第
1の絶縁スペーサ10と第2の絶縁スペーサ11て什切
られた区分16て地絡事故が発生したとする。この様な
GIS内部の地絡事故時によって発生したアークは、G
IS内を導体に沿って高速で移動し、第2の絶縁スペー
サ11て停止し、地絡電流が遮断されるまで絶縁スペー
サ部にとどまっている。この時、第2の絶縁スペーサ1
1の沿面はアークにさらされているので損傷を受ける。
In the ground fault point detection method of this embodiment having such a configuration, a ground fault point is detected as described below. That is, it is assumed that a ground fault occurs in the section 16 where the first insulating spacer 10 and the second insulating spacer 11 are cut off in the GIS which is operating in the state shown in FIG. The arc generated by such a ground fault inside the GIS is the G
It moves at high speed along the conductor within the IS, stops at the second insulating spacer 11, and remains there until the ground fault current is interrupted. At this time, the second insulating spacer 1
Since the creeping surface of No. 1 is exposed to the arc, it will be damaged.

この様な状態になると、保護リレーからの指令により、
線路用遮断器1、変圧器用遮断器2、母線連絡用遮断器
3、甲母線区分用遮断器4がトリップして、第10図の
太線部が系統から切離される。この状態で甲母線用ガス
PT8の2次側8aに交流電源17を接続してガスPT
8を逆励磁し、第10図中太線で示した停止範囲に交滝
電序を印加する。すると、地絡時のアークによって損傷
を受けた第2の絶縁スペーサ11ては、ガスPT3の逆
励磁によって発生した交流電圧のため部分放電が発生す
る。この部分放電に伴って誘起される高周波パルス電圧
を、第6図に示した絶縁スペーサの埋込み電極201に
より検出することができる。また、絶縁スペーサが損傷
を受けたことにより、埋込み電極201と容器203と
の間の電圧の比が正常な場合と異なるので、この変化を
検知することにより損傷した絶縁スペーサを特定するこ
ともてきる。即ち、地絡時のアークによって損傷を受け
た絶縁スペーサを、以上に述べた方法で特定すれば、そ
の絶縁スペーサが装置する箇所を地絡事故点と判定する
ことができる。
In such a situation, a command from the protection relay will cause
The line circuit breaker 1, the transformer circuit breaker 2, the busbar connection circuit breaker 3, and the first busbar division circuit breaker 4 are tripped, and the bold line portion in FIG. 10 is disconnected from the system. In this state, connect the AC power supply 17 to the secondary side 8a of the gas PT8 for the upper bus line and
8 is reversely excited, and an alternating voltage is applied to the stop range shown by the thick line in FIG. Then, partial discharge occurs in the second insulating spacer 11, which was damaged by the arc during the ground fault, due to the alternating current voltage generated by reverse excitation of the gas PT3. The high frequency pulse voltage induced by this partial discharge can be detected by the embedded electrode 201 of the insulating spacer shown in FIG. Furthermore, because the insulating spacer is damaged, the voltage ratio between the embedded electrode 201 and the container 203 differs from the normal one, so it is also possible to identify the damaged insulating spacer by detecting this change. Ru. That is, by identifying an insulating spacer that has been damaged by an arc during a ground fault using the method described above, the location where the insulating spacer is located can be determined to be the ground fault point.

この様に、本実施例によれば、GIS内で地絡事故が発
生したため、系統から分離されて運転を停止した領域に
、この領域に配設されたガスPTを逆励磁して交流電圧
を印加し、地絡アークによって損傷を受けた絶縁スペー
サに部分放電を発生させ、この部分放電を絶縁スペーサ
に設けた押込み電極によって検出することによって、迅
速址っ正確に地絡点を検出することができる。
In this way, according to this embodiment, the gas PT installed in this area is reverse excited to apply AC voltage to the area that has been separated from the system and stopped operation due to a ground fault occurring in the GIS. By applying an electric current to the insulating spacer that has been damaged by the ground fault arc, and detecting this partial discharge with a push-in electrode installed on the insulating spacer, it is possible to quickly detect the ground fault point. can.

また、前述した従来の検出方法における秤々の問題点が
すべて解決できる。即ち、地絡電流の分流の状況を把握
しておく必要がなく、遮断器等における故障電流遮断を
事故と誤1.I+断することもない。また、容器に検出
センサ取付は用の貫通孔を設ける必要がないので、GI
Sのガスもれも防止できる。さらに、絶縁スペーサに設
けた押込み電極からの情報を中央処理装置等によって監
視するように構成すれは、運転員や保守員等がGISの
周辺を巡回する必要もなくなる。
In addition, all the problems with the scales in the conventional detection methods described above can be solved. In other words, there is no need to know the status of ground fault current shunting, and failure current interruption at a circuit breaker, etc. can be mistaken for an accident.1. I + never give up. In addition, since there is no need to provide a through hole for installing a detection sensor in the container, the GI
S gas leakage can also be prevented. Furthermore, if the central processing unit or the like monitors information from the push-in electrodes provided on the insulating spacer, there is no need for operators, maintenance personnel, etc. to patrol around the GIS.

[弁用の効果コ 以上述べた様に、本弁用によれば、地絡1散が発生した
後、地絡点が存在するために電力系統から切り離されて
運転を停止した領域に電床を印加し、ガス絶縁開閉装乙
に設けた絶縁異常検出センサからの情報により地絡点を
判定するように構成することによって、GIS内部ての
地絡事故発生後に、運転員や保守員がG15周辺を巡回
することなく、迅速且つ正確に事故発生箇所を特定する
ことのできるガス絶縁開閉装置の地絡点検出方法を提供
することができる。
[Effects of valves] As mentioned above, according to this valve, after a ground fault has occurred, an electric bed is placed in an area that has been disconnected from the power system and stopped operating due to the existence of a ground fault point. By applying G15 and determining the ground fault point based on information from the insulation abnormality detection sensor installed in the gas-insulated switchgear B, operators and maintenance personnel can detect the G15 after a ground fault occurs inside the GIS. It is possible to provide a method for detecting a ground fault point in a gas insulated switchgear that can quickly and accurately identify the location of an accident without patrolling the surrounding area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発門の地絡点検出方法の一実施
例を示す回路図であり、第1図は単rt線構成、第2図
は標準2重母線構成、第3図は4ブスタイ構成、第4図
は1・1/2遮断器構成を示し、第5図は2重母線構成
のGISの線路回線の構成を示す断面図、第6図は絶縁
異常検出センサを備えた絶縁スペーサの一例を示す断面
図 第7図はガスPTの構成を示す断面図、第8図はそ
の要部回路図、第9図及び第10図は4ブスタイ構戊の
GISで地絡事故が発生した時の状況を示す回路図であ
る。 1・・・線路用遮断器、2・・・変圧器用遮断器、3・
・・母線連絡用遮断器、4・・・11 /’]線区分用
遮断器、5・・・乙母線区分用遮断器、6・・・Fil
 frj線、7・・・乙母線、8・・・IT1母線ガス
PT、8a・・・叶1 /TJ線ガスPTの2次側、9
・・・乙母線ガスPT、10・・・第1の絶縁スペーサ
、11・・・第2の絶縁スペーサ、12・・・変圧器、
13・・・ブッシング、14・・・「開」断路器、15
・・・「閉」断路器、16・・・地絡点、1−7・・・
交流電源、20・・・絶縁スペーサ、21・・・遮断器
、22・・・母線断路器、23・・・線路側断路器、2
4・・・接地開閉器、25・・・ガスPT、26・・・
ケーブル接続部、27・・・変流器、28・・・十R1
線、201・・・押込み電極、202・・・導体、20
3・・・容器、204・・・検出端子、301・・・高
圧端子、302・・・1次巻線、303・・・2次巻線
、304・・・鉄心、305・・・絶縁ガス、306・
・・容器、307・・・鉄心クランプ、308・・・高
電圧シールド、309・・・接地シールド、310・・
・端子箱、311・・・ベース、312・・・2次端子
。 第 図 第 2vA 第 3 第 図 第 図 303 第 図
Figures 1 to 4 are circuit diagrams showing one embodiment of the ground fault detection method of the present invention, in which Figure 1 shows a single RT line configuration, Figure 2 shows a standard double bus line configuration, and Figure 2 shows a standard double bus line configuration, and a third The figure shows a 4 bus tie configuration, Figure 4 shows a 1 1/2 breaker configuration, Figure 5 is a cross-sectional view showing the configuration of a GIS line with a double busbar configuration, and Figure 6 shows an insulation abnormality detection sensor. A cross-sectional view showing an example of the insulating spacer provided. Fig. 7 is a cross-sectional view showing the configuration of the gas PT. Fig. 8 is a circuit diagram of its main parts. Figs. 9 and 10 are ground faults in a GIS with a 4-bus tie configuration. FIG. 3 is a circuit diagram showing a situation when an accident occurs. 1...Line circuit breaker, 2...Transformer circuit breaker, 3.
...Bus bar communication circuit breaker, 4...11/'] Line division circuit breaker, 5...Bus bar division circuit breaker, 6...Fil
frj line, 7... Otsu bus line, 8... IT1 bus gas PT, 8a... Kano 1 / Secondary side of TJ line gas PT, 9
... Bus line gas PT, 10... First insulating spacer, 11... Second insulating spacer, 12... Transformer,
13... Bushing, 14... "Open" disconnector, 15
... "Closed" disconnector, 16... Ground fault point, 1-7...
AC power supply, 20... Insulating spacer, 21... Circuit breaker, 22... Busbar disconnector, 23... Track side disconnector, 2
4... Earthing switch, 25... Gas PT, 26...
Cable connection part, 27...Current transformer, 28...10R1
Wire, 201... Push-in electrode, 202... Conductor, 20
3... Container, 204... Detection terminal, 301... High voltage terminal, 302... Primary winding, 303... Secondary winding, 304... Iron core, 305... Insulating gas , 306・
...Container, 307... Iron core clamp, 308... High voltage shield, 309... Grounding shield, 310...
・Terminal box, 311...Base, 312...Secondary terminal. Figure 2vA Figure 3 Figure 303 Figure

Claims (1)

【特許請求の範囲】[Claims]  容器内に絶縁ガスを封入したガス絶縁開閉装置におい
て、地絡事故が発生した後、地絡点が存在するために電
力系統から切り離されて運転を停止した領域に電圧を印
加し、前記ガス絶縁開閉装置に設けた絶縁異常検出セン
サからの情報によって、地絡点を判定することを特徴と
するガス絶縁開閉装置の地絡点検出方法。
After a ground fault occurs in a gas-insulated switchgear in which an insulating gas is sealed in a container, a voltage is applied to the area that has been disconnected from the power system and stopped operating due to the presence of a ground fault point, and the gas-insulated switchgear is A method for detecting a ground fault point in a gas insulated switchgear, characterized in that a ground fault point is determined based on information from an insulation abnormality detection sensor provided in the switchgear.
JP2038288A 1990-02-21 1990-02-21 Ground fault point detecting method for gas insulation opening and closing device Pending JPH03243872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038288A JPH03243872A (en) 1990-02-21 1990-02-21 Ground fault point detecting method for gas insulation opening and closing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038288A JPH03243872A (en) 1990-02-21 1990-02-21 Ground fault point detecting method for gas insulation opening and closing device

Publications (1)

Publication Number Publication Date
JPH03243872A true JPH03243872A (en) 1991-10-30

Family

ID=12521126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038288A Pending JPH03243872A (en) 1990-02-21 1990-02-21 Ground fault point detecting method for gas insulation opening and closing device

Country Status (1)

Country Link
JP (1) JPH03243872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548810A (en) * 2015-12-21 2016-05-04 国家电网公司 Fault air chamber positioning method and device of buses
CN105866639A (en) * 2016-04-12 2016-08-17 西安交通大学 Model for simulating defects of high-voltage conductor spikes in GIS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548810A (en) * 2015-12-21 2016-05-04 国家电网公司 Fault air chamber positioning method and device of buses
CN105866639A (en) * 2016-04-12 2016-08-17 西安交通大学 Model for simulating defects of high-voltage conductor spikes in GIS

Similar Documents

Publication Publication Date Title
CN86102108A (en) Gas-insulated switchgear device
CN108134376A (en) High-voltage bus fault rapid protection device and protection method
Morton Circuit breaker and protection requirements for DC switchgear used in rapid transit systems
KR101077128B1 (en) Diagnosis system for circuit breaker of power utilities
CN104917158B (en) Switch cabinet arc light detects protection system
JPH03243872A (en) Ground fault point detecting method for gas insulation opening and closing device
CN207925942U (en) A kind of fast cut type armored withdraw type switchgear of arc protection intelligence
JP2012152014A (en) Protection system of feeding equipment, detection device, and protection method
CN209946345U (en) Intelligent pole-mounted circuit breaker with primary and secondary integration and cable monitoring system
CN210720633U (en) GIS partial discharge detection device based on flange bolt
CN103018631A (en) System for 10kV fault line detection
KR200314282Y1 (en) A Cable Connect Box For Electric Cabl
EP1321951A1 (en) Compact measurement apparatus for the protection of medium-voltage line
KR101602060B1 (en) Apparatus and method for detecting fault point using protection relay
JPH07298476A (en) Lightening response relay device
KR102460366B1 (en) Fault-phase protection system of vacuum circuit breaker
Bowen et al. A tested method for mitigating arc flash hazards in existing low voltage motor control centers
EP4339988A1 (en) Passive fault protection arrangement for a measuring voltage transformer or a power voltage transformer for use in high voltage applications
JP2004194471A (en) Protector which detects ground fault inside dc machine
JP3321480B2 (en) Fault location system
JPH0140286Y2 (en)
Cuk et al. Specification and application of SF6 compressed gas insulated switchgear a utility's point of view
JPH04255421A (en) Protector for distribution line
JP2508391B2 (en) Gas insulation switchgear fault location method
Elkins et al. Transients during 138-kV SF6 breaker switching of low inductive currents