JPH03243781A - Chemical conversion treating solution for aluminum and aluminum alloy - Google Patents

Chemical conversion treating solution for aluminum and aluminum alloy

Info

Publication number
JPH03243781A
JPH03243781A JP4016890A JP4016890A JPH03243781A JP H03243781 A JPH03243781 A JP H03243781A JP 4016890 A JP4016890 A JP 4016890A JP 4016890 A JP4016890 A JP 4016890A JP H03243781 A JPH03243781 A JP H03243781A
Authority
JP
Japan
Prior art keywords
chemical conversion
aluminum
ions
treatment liquid
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4016890A
Other languages
Japanese (ja)
Other versions
JPH07100872B2 (en
Inventor
Masayuki Yoshida
昌之 吉田
Kazuya Nakada
和也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2040168A priority Critical patent/JPH07100872B2/en
Priority to EP91904950A priority patent/EP0516700B1/en
Priority to DE69103139T priority patent/DE69103139T2/en
Priority to PCT/US1991/000965 priority patent/WO1991013186A1/en
Priority to BR919106049A priority patent/BR9106049A/en
Priority to US07/923,889 priority patent/US5451271A/en
Priority to AU73370/91A priority patent/AU642478B2/en
Priority to CA 2072592 priority patent/CA2072592A1/en
Publication of JPH03243781A publication Critical patent/JPH03243781A/en
Publication of JPH07100872B2 publication Critical patent/JPH07100872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of an Al or Al alloy member and the adhesion of paint after coating by treating the surface of the member with a chemical conversion treating soln. having a specified compsn. CONSTITUTION:When an Al or Al alloy member of a can, etc., is coated, the surface of the member is previously degreased, washed and treated with a chemical conversion treating soln. contg. 5.0-40.0 g/l (expressed in terms of phosphate ions) H3PO4, 1.0-4.0 g/l (expressed in terms of hexavalent Cr ions) CrO3, 0.1-2.0 g/l (expressed in terms of F ions) HF, NaF, KF, etc., and 4.0-15.0 g/l fluorosilicate ions or 0.5-3.0 g/l fluoroborate ions and adjusted to pH 1.0-3.0 with NH4OH. The corrosion resistance of the surface of the Al or Al alloy member and the adhesion of paint after coating are improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はアルミニウムおよびアルミニウム合金を塗装す
る前に、該表面に優れた耐食性と塗料密着性を付与する
新規なアルミニウムおよびアルミニウム合金の化成処理
液に関し、例えば、飲料缶の蓋材すなわち缶エンド材等
の表面に効果的に適用されるものである。 〔従来の技術〕 アルミニウムおよびアルミニウム合金の化成処理液とし
てはクロメートタイプとノンクロメートタイプに大別で
きる。クロメートタイプの代表的なものとしては、クロ
ム酸クロメート処理とりん酸クロメート処理とがあり、
クロム酸クロメート処理は1950年頃に実用化され現
在も熱交換器のフィン材などに広く使用されている。化
成処理液はクロムII(Cry3)とフッ化水素酸(H
F)が主成分でさらに促進剤が添加されているものであ
りで、若干6価クロムを含有する皮膜を形成する。 りん酸クロメート化成処理は米国特許第2.438.8
77号明細書に開示されており、化成処理液はクロム[
1(Cry)、りん酸(■3PO4〉、フッ化水素酸(
HF)からなり、形成される皮膜は水和したりん酸り0
ム(CrPO4・4H20)を主成分とするものである
。この皮膜は6価クロムを含有しないことから、飲料用
節および蓋材の塗装下地処理として現在も広く使用され
ている。 以上説明したクロメートタイプの処理液とは別にノンク
ロメートタイプのものが開発されており、その代表的な
発明として特開昭52−131937号公報に開示され
たものが挙げられる。この開示された処理液は、ジルコ
ニウムまたはチタンあるいはこれらの混合物、ホスフェ
ートおよびフッ化物を含有し、且つ、0口が約1.0〜
4.0の酸性の水性コーティング溶液である。この開示
された化成処理液を用いて処理を行うとアルミニウム表
面上にジルコニウムあるいはチタンの酸化物を主成分と
する化成皮膜を形成する。しかしながら、ノンクロメー
トタイプの処理液は6価クロムを含有しないという利点
を有するもののクロメートタイプに比べると耐食性およ
び塗料密着性が劣るという欠点を有しているのである。 一方、アルミニウム合金の板またはコイルは、塗装され
飲料用筒の蓋材すなわち缶エンド材として広く使用され
ているが、耐食性および塗料密着性向上のために化成処
理がなされており、国内では殆んどの場合にりん酸クロ
メート処理が採用されでいる。これに対してノンクロメ
ートタイプの化成処理はりん酸クロメート処理に比べ塗
料密着性が劣るために米国で一部採用されているにすぎ
ないのが現状である。缶エンド材用のりん酸りDメート
化成処理の場合は一般的に、りん酸イオン10.0〜4
0.0’j/1.6(iiクロム2.0〜4.09/1
およびフッ素イオン0.7〜1.5g/lを含有する処
理液で処理されている。また、缶エンド材の塗装には現
在、塩化ビニル系の塗料が主に使用されている。すなわ
ち、缶エンドはアルミニウム合金のコイルあるいは板材
をりん酸クロメート処理し、塩化ビニル系の塗料を塗布
して、その後成型という工程により生産されている。 (発明が解決しようとする課題) 前記従来例で処理されたアルミニウム合金またはコイル
を用いて成形された缶エンドと、ジュースやビールなど
が充填された缶本体により飲料用筒が形成さた飲料用筒
は、その充填物によりバック後に相当過酷な条件で殺菌
処理されるのである。 この殺菌工程において、水蒸気は塗膜を透過し、透過し
た水蒸気はその後塗膜と化成皮膜との界面で凝縮し、こ
れにより塗膜の密着力が低下するといった問題が発生し
やすいのである。実際に、缶エンドの一部がイージーオ
ー=ブン方式で開缶された時に、開孔部に塗膜剥離によ
る欠陥(エナメルフェザ−〉を生じることがあるので、
この対応として塗料密着性の向上は従来例において解決
しなければならない重要な課題である。 〔課題を解決するための手段〕 前記従来例の課題を解決する具体的手段として本発明は
、りん酸イオン5.0〜40.0g/l、6価クロムイ
オン1.0〜4.0g/Itおよびフッ素イオン0.1
〜2.0g/l、フルオロケイ酸イオンを4.0〜15
゜Og/lもしくはフルオロホウ酸イオンを0.5〜3
.0g/lを含有し、DHを1.0〜3.0にしたこと
を特徴とするアルミニウムおよびアルミニウム合金用化
成処理液を提供するものであり、該化成処理液によって
アルミニウムあるいはアルミニウム合金表面に優れた耐
食性を付与し、且つ塗料密着性の非常に優れた化成皮膜
を形成することができるのである。 つまり、アルミニウムおよびアルミニウム合金を塗装す
る前に、その表面に優れた耐食性と塗料密着性とを付与
する化成処理液を提供しようとするものである。 〔組成および処理工程の説明) 本発明の化成処理液はフッ素錯体イオン、りん酸イオン
、6価クロム、フッ素イオンを必須成分として含む酸性
処理液に関するものである。 フッ素錯体イオンはフルオロケイ酸イオンとフルオロホ
ウ酸イオンから選択される。フッ素錯体イオンの含有に
はフルオロケイ酸、フルオロホウ酸およびこの可溶性塩
から任意に選んで使用できる。フルオロケイ酸イオンの
場合には4.0〜15.0g/j!の範囲が好ましく、
4.09/1未満では良好な塗料密着性が得られない。 逆に15゜OfJ/1を超えるとエツチングが多くなり
皮膜が充分に形成されない。フルオロホウ酸イオンの場
合には0.5〜5.0g/lの範囲が好ましく、0.5
fJ11未満の場合には良好な塗料密着性が得られない
。逆に5.0g/lを超えると廃水処理性が悪くなり経
済上の問題がある。 りん酸イオンを含有させるにはりん1(H3PO4)を
使用することが好ましい。りん酸の含有量は5゜0〜4
0.0g/lの範囲が好ましく、5.0g/1未満では
形成される皮膜にりん酸クロムが少なくなり塗料密着性
が低下する。40.0g/lを超えても良好な皮膜は形
成されるが、処理液のコストが高くなり経済的に問題が
ある。 6価クロムを含有させるにはりOム1m(CrO2)を
使用することが好ましい。このクロム酸の含有量は1.
0〜4.0g/lの範囲が好ましく1g/1未満では化
成皮膜が充分に形成されないため耐食性が劣る。4.0
g/lを超えると処理液の廃水処理性が悪くなり、環境
上及び経済上の問題がある。 フッ素イオンは化成皮膜の皮膜成長速度を左右する重要
成分である。フッ素イオンを含有させるにはフッ化水素
酸(HF)、フッ化ナトリウム(NaF)、フッ化カリ
ウム(KF)などを使用することができる。 化成液中のフッ素イオン濃度は以下の如く規定した。イ
オン電極〈フッ素F−125、比較l5−305DP東
亜電波工業■製〉およびイオンメーター(IN−408
東亜電波工業■製)を用い、クロム酸5g/l、リンl
115g/iにフッ化水素酸を一定量UN、t4f0.
19/1.19/1.10’J/1 )を加え、リン酸
あるいは水酸化ナトリウムでpHを2.0に調整した液
を基準液(フッ素イオン濃度は添加したフッ化水素酸の
全フッ素量と規定〉とし校正した。そして、化成液の0
口をリン酸あるいは水酸化ナトリウムで2.0に調整後
、フッ素イオンメーターで測定し、その測定値をフッ素
イオン濃度とした。 このフッ素イオンの濃度は0.1〜2.0g/lの範囲
が好ましく、0.1SF/j!未満では成長速度が遅す
ぎ、充分な化成皮膜を得るには長時間処理を行わなけれ
ばならず生産性が劣るという問題がある。逆に2.0g
/lを超えると成長速度が速くなり、皮II fflが
多くなって、不透明な外観になるという問題がある。し
たがって、濃度は0.1〜2.09/lの範囲が好まし
く、特に0.4〜1.(1/j!の範囲が好ましい。 化成処理液のpHは1.0〜3.0の範囲に制御される
が、pHの調整にはりん酸、硝酸、塩酸などの酸または
水酸化ナトリウム、水酸化アンモニウムなどから任意に
選んで用いることができる。 pHが1.0未満ではエツチングが多くなって皮膜が形
成され難くなり、逆にpHが3.0を超えるとエツチン
グが弱くなり均一な皮膜が形成できなくなる。 次に本発明の化成処理液による処理工程について説明す
る。本発明の化成処理液は現在広く使用されているりん
酸クロメート処理液の代替として用することが可能であ
る。アルミニウムおよびアルミニウム合金の表面に本発
明の化成処理液により化成処理を施す場合に先ず表面の
清浄化が必要であり、そのための洗浄方法としては酸系
、アルカリ系または溶剤系の洗浄液による処理またはこ
れらの組み合せの処理のいずれでもよい。また、必要あ
ればアルミニウムおよびアルミニウム合金の表面を洗浄
後さらに酸あるいはアルカリによりエツチングしてもよ
い。本発明液による処理方法は浸漬、スプレー処理のい
ずれでもよく、処理温度と処理時間は形成する化成皮膜
量を左右する因子となる。処理液の温度は室温〜70℃
の範囲が可能であり、好ましくは35〜55℃の範囲で
あり、また、処理時間は1〜90秒の範囲が好ましい。 化成皮膜量はりん酸クロメート皮膜と同様にクロム付着
量で評価する。クロム付着量は5〜50q/iの範囲が
好ましく、要求される耐食性の度合により調整する。ク
ロム付′!!組のコントロールは上記処理温度と処理時
間を適宜調整することにより可能である。 本発明の化成処理液より形成される化成皮膜はりん酸ク
ロメート処理において形成される皮膜と同等であり、化
成皮膜は主に水和したりん酸クロム(CrPO4−48
20)からなる。 〔実施例〕 以下に本発明の化成処理液に関し、いくつかの実施例を
挙げ、その有用性を比較例と対比して表1に示す。 素材には、アルミニウムーマグネシウム合金(JIS 
A3082 )を使用した。このアルミニウム合金の脱
脂および化成処理には小型スプレー装置を使用した。こ
の小型スプレー装置は、現在、アルミニウム合金のコイ
ルの化成処理において使用されている連続化成処理ライ
ンにおいてスプレー処理された場合と同様のスプレー条
件になるよう設計されている。化成処理されたアルミニ
ウム合金板に缶エンド用塗料(塩化ビニル系)を塗膜厚
12〜14μ扉に塗装し、200℃で10分間焼付けを
行い試験板とした。また、化成皮膜のクロム付M畿は蛍
光X線分析装置(理学電機工業製3070E型〉を用い
測定した。 耐食性の評価には塩水噴霧試験を行った。塩水噴霧試験
は、JIS 2−2371に準拠し塗装後の試験板の塗
膜クロスカット部のフクレ発生までの時間で表記した。 したがって、時間が長いほど耐食性は優れる。噴霧時間
が2000時間以上であれば良好である。塗料密着性は
塗装後の試験板を5×150m+の短冊状に切断し、ボ
リアくド系のフィルムで熱圧着し試片とし、これを脱イ
オン導水に3時間浸漬後180度ビール試験法により剥
離し、その際のビール強度より評価した。したがって、
ビール強度が大きいほど塗料密着性は優れる。−般に3
 、0 kQf15 m幅であれば良好である。また、
エナメルフェザ−の評価には、軽金属学会第73回状期
大会講演概要(D49)に記載のアルコア法に準拠し行
った。評価は剥離後の最大塗膜残存幅で行った。したが
って、塗膜残存幅が小さい番よどエナメルフェザ−に優
れる。一般に残存幅が0.5M以下であれば良好である
。 実施例1 アルミニウム合金を市販の強アルカリ性脱脂剤(登録商
標ファインクリーナー4418、日本バー力ライジング
株式会社製)の4%加熱水溶液(70℃〉を用いて洗浄
し、次いで水洗して表面を清浄にした後、化成処理液1
を50℃に加温して5秒間スプレー処理し次いで水道水
で水洗し、さらに3000.000ΩCX1X上の脱イ
オン水で10秒問スプレーした後、70℃の熱風乾燥炉
内で5分間乾燥した。乾燥後、前記の条件で塗装を行い
耐食性、塗料密着性、エナメルフェザ−を評価した。 化成処理液1 40%フルオロケイ酸(H3iF6) 1 B、89/1  (SiF6τ 7.49#り75
%りんIl!(03P04) 21 、 3 g/l  (PO43°  15.5g
#!  )クロム酸(CrO2> 5.89/1  (Cr   3.Og/l  )20
%フン化水素i!1(HF) 3、0g/l  (F −0,6g/l )0日2.0
(水酸化アンモニウムで調整)実施例2 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液2を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液2 40%フルオロケイ酸(H2SiF 6)1 2 、 
5 g/l  (5iFaγ 4.9fJ/1  )7
5%りん酸(H3P04〉 21 、 3 g/j  (P、043− 15.5S
F/J!  )クロム酸< cro3> 6◆ 5.89/1  (Cr   3.0g/l!  )2
0%フッ化水素III(HF) 3、0g/l (F −0,6g/l )pH2,0(
水酸化アンモニウムで調整)実施例3 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液3を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液3 40%フルオロケイ酸(H3iF6) 18、 8 g/l  (5iFst7.49/1  
)75%りん酸(83PG4) 21 、39/It (PO43−15,59/j )
クロムWi(CrO3) 2.99/j!  (Cr   1.59/l  )2
0%フッ化水素1(HF) 3、0g/l  (F   0.6g/l )pH1,
5(塩酸で調整) 実施例4 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液4を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液4 40%フルオロケイ酸(82SIF s )18、8g
/l (SiF6γ7.49/1 )75%りん1ll
(H3P04) 21、39/It  (PO4]−15,5g/J! 
)クロム酸(CrO3) 5、8g/1(Cr  3.Og/l )20%フッ化
水素酸(HF) 5.0’;J/l (F   1.Og/lンpH2,
0(水酸化ナトリウムで調整〉実施例5 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液5を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液5 フルオロホウ酸塩(NaBF4) 1 、 09/l  (BF4− 0.89/I  )
75%りんM (83PO4) 21.3g/l  (PO43−1s、sg、/1 )
クロム酸(CrO3) 5.8g/l  (Cr   3.O’J/l  )2
0%フッ化水素酸(HF) 3、0g/l (F −0,6g/l )0口2.0(
水酸化アンモニウムで調整)実施例6 実施例1と周一条件でアルミニウム合金を清浄後、化成
処理液6を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液6 フルオロホウ酸塩(NaBr4 ) 2.09/1  (BF4− 1.69/l  )75
%りん酸(H3PO4) 21 、39/1  (PO4’−15,59/j! 
)り0ムII (CrO3) 5.8g/l  (Cr   3.Og/l  )20
%フッ化水馬1(HF) 3.09/1  (F    O,69/1  )pH
2,5(水酸化アンモニウムで調整)実施例7 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液1を40℃に加温して10秒間スプレー処理した
。処理後、実施例1と同一条件で水洗、乾燥、塗装し、
性能を評価した。 実施例8 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液1を50℃に加温して10秒間スプレー処理した
。処理後、実施例1と同一条件で水洗、乾燥、塗装し、
性能を評価した。 比較例1 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液7を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液7 40%フルオロケイI!(tl  SIF 6 )6.
39/I (5iF6r  2.59/l  )75%
りん酸(83PO4) 21 、 3g/J!(PO43−15,59/1  
)クロム酸(Cr03) 5.8fl/I  (Cr   3.Og/l  )2
0%フッ化水素酸(HF) 3.0g/l (F −0,6g/l)0口2.0(水
酸化アンモニウムで調整)比較例2 実施例1と同一条件でアルミニウム合金を清浄後、化成
処理液8を50℃に加温して5秒間スプレー処理した。 処理後、実施例1と同一条件で水洗、乾燥、塗装し、性
能を評価した。 化成処理液8 40%フルオOケイ酸(H2SiF 6)40、0g/
l (5iFsγ15.89/j! ”)75%りん酸
(H3P04) 21、3g/l  (PO43−15,5g# )クロ
ム酸(CrO3) 5、8y/j! (Cr  3.Og/l )20%0
%フッ素酸(HF) 3、0g/J  (F −0,69/l )0口2.0
(水酸化アンモニウムで調整)比較例3 実施例1と同一条件でアルミニウム合金を清浄後、市販
のりん酸クロメート剤(登録商標アルクロムに702、
日本バー力ライジング株式会社製)の5%水溶液を50
℃に加温して5秒間スプレー処理した。処理後、実施例
1と同一条件で水洗、乾燥、塗装し、性能を評価した。 比較例4 実施例1と同一条件でアルミニウム合金を清浄後、市販
のノンクロメート剤(登録商標パルコートに3761、
日本バー力ライジング株式会社製)の2%水溶液を50
℃に加温して30秒間スプレー処理した。処理後、実施
例1と同一条件で水洗、乾燥、塗装し、性能を評価した
。 表1 評価試験結果 注)傘Z「付着量を示す。 表1に示したように、本発明の化成処理液を用いること
により、優れた耐食性、塗料密着性が得られ、エナメル
フェザ−にも優れることが理解できる。
[Industrial Application Field] The present invention relates to a novel chemical conversion treatment solution for aluminum and aluminum alloys that imparts excellent corrosion resistance and paint adhesion to the surfaces of aluminum and aluminum alloys before painting them. It can be effectively applied to the surface of lid materials, ie, can end materials, etc. [Prior Art] Chemical conversion treatment solutions for aluminum and aluminum alloys can be broadly classified into chromate type and non-chromate type. Typical chromate types include chromate chromate treatment and chromate phosphoric acid treatment.
Chromate chromate treatment was put into practical use around 1950 and is still widely used for fin materials of heat exchangers. The chemical conversion treatment liquid consists of chromium II (Cry3) and hydrofluoric acid (H
F) is the main component and an accelerator is further added, forming a film containing a slight amount of hexavalent chromium. Phosphate chromate chemical conversion treatment is based on U.S. Patent No. 2.438.8
It is disclosed in the specification of No. 77, and the chemical conversion treatment liquid is chromium [
1 (Cry), phosphoric acid (■3PO4>, hydrofluoric acid (
HF), and the film formed is made of hydrated phosphoric acid.
The main component is CrPO4.4H20. Since this film does not contain hexavalent chromium, it is still widely used as a coating base treatment for beverage closures and lid materials. In addition to the chromate-type processing liquids described above, non-chromate-type processing liquids have been developed, and a typical invention is one disclosed in Japanese Patent Laid-Open No. 131937/1983. The disclosed treatment liquid contains zirconium or titanium or mixtures thereof, phosphate and fluoride, and has a
4.0 acidic aqueous coating solution. When the disclosed chemical conversion treatment liquid is used for treatment, a chemical conversion film containing zirconium or titanium oxide as a main component is formed on the aluminum surface. However, although non-chromate type treatment liquids have the advantage of not containing hexavalent chromium, they have the disadvantage of inferior corrosion resistance and paint adhesion compared to chromate type treatment liquids. On the other hand, aluminum alloy plates or coils are painted and widely used as can end materials for beverage cylinders, but they are chemically treated to improve corrosion resistance and paint adhesion, and are rarely used in Japan. Phosphoric chromate treatment is used in all cases. On the other hand, non-chromate type chemical conversion treatments have inferior paint adhesion compared to phosphoric acid chromate treatments, and are currently only partially used in the United States. In the case of phosphate D-mate chemical conversion treatment for can end materials, the phosphate ion is generally 10.0 to 4.
0.0'j/1.6 (ii chromium 2.0~4.09/1
and a treatment liquid containing 0.7 to 1.5 g/l of fluorine ions. Furthermore, vinyl chloride-based paints are currently mainly used for painting can end materials. That is, can ends are produced by a process of treating aluminum alloy coils or plates with phosphoric acid chromate, coating them with vinyl chloride paint, and then molding them. (Problems to be Solved by the Invention) A beverage tube in which a beverage cylinder is formed by a can end formed using aluminum alloy or coil treated in the conventional example and a can body filled with juice, beer, etc. The cylinder is sterilized under extremely harsh conditions after being packed with the filling. In this sterilization process, water vapor permeates through the paint film, and the permeated water vapor then condenses at the interface between the paint film and the chemical conversion film, which tends to cause problems such as reduced adhesion of the paint film. In fact, when some can ends are opened using the easy oven method, defects (enamel feathers) may occur at the opening due to paint peeling off.
In response to this, improving paint adhesion is an important issue that must be solved in the conventional example. [Means for Solving the Problems] As a specific means for solving the problems of the conventional example, the present invention provides phosphate ions of 5.0 to 40.0 g/l and hexavalent chromium ions of 1.0 to 4.0 g/l. It and fluorine ion 0.1
~2.0g/l, 4.0-15 fluorosilicate ions
°Og/l or 0.5 to 3 fluoroborate ions
.. 0 g/l and a DH of 1.0 to 3.0, the chemical conversion treatment solution can improve the surface of aluminum or aluminum alloys. It is possible to form a chemical conversion film that provides excellent corrosion resistance and has excellent paint adhesion. That is, the present invention aims to provide a chemical conversion treatment solution that imparts excellent corrosion resistance and paint adhesion to the surfaces of aluminum and aluminum alloys before painting them. [Description of Composition and Treatment Steps] The chemical conversion treatment liquid of the present invention relates to an acidic treatment liquid containing fluorine complex ions, phosphate ions, hexavalent chromium, and fluorine ions as essential components. The fluorine complex ions are selected from fluorosilicate ions and fluoroborate ions. For containing fluorine complex ions, any one selected from fluorosilicic acid, fluoroboric acid, and soluble salts thereof can be used. In the case of fluorosilicic acid ions, it is 4.0 to 15.0 g/j! It is preferable that the range of
If it is less than 4.09/1, good paint adhesion cannot be obtained. On the other hand, if it exceeds 15°OfJ/1, etching will increase and a film will not be formed sufficiently. In the case of fluoroborate ion, the range is preferably 0.5 to 5.0 g/l, and 0.5
If fJ is less than 11, good paint adhesion cannot be obtained. On the other hand, if it exceeds 5.0 g/l, the wastewater treatment properties will deteriorate and there will be economic problems. It is preferable to use phosphorus 1 (H3PO4) to contain phosphate ions. The content of phosphoric acid is 5°0-4
A range of 0.0 g/l is preferable, and if it is less than 5.0 g/l, the formed film will contain less chromium phosphate and paint adhesion will deteriorate. Even if it exceeds 40.0 g/l, a good film can be formed, but the cost of the treatment liquid increases, causing an economical problem. It is preferable to use 1m (CrO2) to contain hexavalent chromium. The content of this chromic acid is 1.
The range of 0 to 4.0 g/l is preferable, and if it is less than 1 g/l, the chemical conversion film will not be sufficiently formed, resulting in poor corrosion resistance. 4.0
If it exceeds g/l, the wastewater treatment properties of the treatment liquid deteriorate, resulting in environmental and economic problems. Fluorine ions are important components that affect the growth rate of chemical conversion coatings. Hydrofluoric acid (HF), sodium fluoride (NaF), potassium fluoride (KF), etc. can be used to contain fluorine ions. The fluorine ion concentration in the chemical solution was defined as follows. Ion electrode (Fluorine F-125, comparative l5-305DP manufactured by Toa Denpa Kogyo ■) and ion meter (IN-408)
(manufactured by Toa Denpa Kogyo ■), chromic acid 5g/l, phosphorus l
Add a certain amount of hydrofluoric acid to 115g/i UN, t4f0.
19/1.19/1.10'J/1) and adjusted the pH to 2.0 with phosphoric acid or sodium hydroxide. The amount and specifications were calibrated.Then, the 0 of the chemical solution was
After adjusting the concentration to 2.0 with phosphoric acid or sodium hydroxide, it was measured with a fluoride ion meter, and the measured value was taken as the fluoride ion concentration. The concentration of this fluorine ion is preferably in the range of 0.1 to 2.0 g/l, and 0.1 SF/j! If it is less than that, the growth rate is too slow and a long treatment time is required to obtain a sufficient chemical conversion film, resulting in poor productivity. On the other hand, 2.0g
If it exceeds /l, there is a problem that the growth rate becomes faster and skin II ffl increases, resulting in an opaque appearance. Therefore, the concentration is preferably in the range of 0.1-2.09/l, particularly 0.4-1. (The range of 1/j! is preferable. The pH of the chemical conversion treatment liquid is controlled within the range of 1.0 to 3.0. To adjust the pH, use an acid such as phosphoric acid, nitric acid, or hydrochloric acid, or sodium hydroxide, It can be arbitrarily selected from ammonium hydroxide, etc. If the pH is less than 1.0, etching will increase and it will be difficult to form a film, and if the pH exceeds 3.0, etching will be weak and a uniform film will be formed. will no longer be formed. Next, the treatment process using the chemical conversion treatment liquid of the present invention will be explained. The chemical conversion treatment liquid of the present invention can be used as a substitute for the phosphoric acid chromate treatment liquid that is currently widely used. Aluminum When carrying out chemical conversion treatment on the surface of an aluminum alloy using the chemical conversion treatment solution of the present invention, it is first necessary to clean the surface, and cleaning methods for this purpose include treatment with an acid-based, alkaline-based or solvent-based cleaning solution, or treatment with an acid-based, alkaline-based or solvent-based cleaning solution, or Any combination of treatments may be used.Also, if necessary, the surfaces of aluminum and aluminum alloys may be etched with acid or alkali after cleaning.The treatment method with the solution of the present invention may be either immersion or spray treatment; Temperature and treatment time are factors that affect the amount of chemical conversion coating formed.The temperature of the treatment solution is room temperature to 70℃.
The temperature is preferably in the range of 35 to 55°C, and the treatment time is preferably in the range of 1 to 90 seconds. The amount of chemical conversion coating is evaluated by the amount of chromium deposited in the same way as the phosphoric acid chromate coating. The amount of chromium deposited is preferably in the range of 5 to 50 q/i, and is adjusted depending on the required degree of corrosion resistance. Comes with chrome! ! The combination can be controlled by appropriately adjusting the above-mentioned processing temperature and processing time. The chemical conversion coating formed from the chemical conversion treatment solution of the present invention is equivalent to the coating formed in phosphoric acid chromate treatment, and the chemical conversion coating mainly consists of hydrated chromium phosphate (CrPO4-48
20). [Examples] Several Examples regarding the chemical conversion treatment liquid of the present invention are listed below, and Table 1 shows the usefulness thereof in comparison with Comparative Examples. The material is aluminum-magnesium alloy (JIS
A3082) was used. A small spray device was used for degreasing and chemical conversion treatment of this aluminum alloy. This small spray device is designed to provide spray conditions similar to those in continuous chemical conversion treatment lines currently used in the chemical conversion treatment of aluminum alloy coils. A can end paint (vinyl chloride type) was applied to the door of a chemical conversion treated aluminum alloy plate with a film thickness of 12 to 14 μm, and the test plate was baked at 200° C. for 10 minutes. In addition, the chromium-attached M ridge of the chemical conversion coating was measured using a fluorescent X-ray analyzer (Model 3070E, manufactured by Rigaku Denki Kogyo).A salt spray test was conducted to evaluate corrosion resistance.The salt spray test conforms to JIS 2-2371. Based on this, the time until blistering occurs at the cross-cut part of the paint film on the test plate after painting is expressed as the time. Therefore, the longer the time, the better the corrosion resistance.If the spray time is 2000 hours or more, it is good.Paint adhesion is The coated test plate was cut into strips of 5 x 150 m+ and heat-pressed with a boria-based film to make test pieces. After immersing this in deionized water for 3 hours, it was peeled off using the beer test method at 180 degrees. It was evaluated based on the beer strength at the time.
The higher the beer strength, the better the paint adhesion. -generally 3
, 0 kQf15 m width is good. Also,
The enamel feather was evaluated in accordance with the Alcoa method described in the 73rd Annual Conference of the Japan Society of Light Metals (D49). Evaluation was performed based on the maximum remaining width of the coating film after peeling. Therefore, the smaller the residual width of the coating film, the better the enamel feather. Generally, it is good if the remaining width is 0.5M or less. Example 1 An aluminum alloy was cleaned using a 4% heated aqueous solution (70°C) of a commercially available strong alkaline degreaser (registered trademark Fine Cleaner 4418, manufactured by Nihon Bariki Rising Co., Ltd.), and then washed with water to clean the surface. After that, chemical conversion treatment liquid 1
was heated to 50° C., sprayed for 5 seconds, washed with tap water, further sprayed with deionized water above 3000.000Ω CX1X for 10 seconds, and dried in a hot air drying oven at 70° C. for 5 minutes. After drying, it was painted under the above conditions and its corrosion resistance, paint adhesion, and enamel feather were evaluated. Chemical conversion treatment solution 1 40% fluorosilicic acid (H3iF6) 1 B, 89/1 (SiF6τ 7.49 #75
%phosphorus! (03P04) 21, 3 g/l (PO43° 15.5g
#! ) Chromic acid (CrO2>5.89/1 (Cr 3.Og/l)20
% hydrogen fluoride i! 1 (HF) 3.0 g/l (F -0.6 g/l) 0 days 2.0
(Adjusted with ammonium hydroxide) Example 2 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 2 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 2 40% fluorosilicic acid (H2SiF 6) 1 2,
5 g/l (5iFaγ 4.9fJ/1)7
5% phosphoric acid (H3P04> 21, 3 g/j (P, 043-15.5S
F/J! ) Chromic acid <cro3> 6◆ 5.89/1 (Cr 3.0g/l!)2
0% hydrogen fluoride III (HF) 3.0 g/l (F -0.6 g/l) pH 2.0 (
Adjustment with ammonium hydroxide) Example 3 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 3 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 3 40% fluorosilicic acid (H3iF6) 18.8 g/l (5iFst7.49/1
) 75% phosphoric acid (83PG4) 21, 39/It (PO43-15,59/j)
Chromium Wi (CrO3) 2.99/j! (Cr 1.59/l)2
0% hydrogen fluoride 1 (HF) 3, 0g/l (F 0.6g/l) pH 1,
5 (adjusted with hydrochloric acid) Example 4 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 4 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 4 40% fluorosilicic acid (82SIFs) 18.8g
/l (SiF6γ7.49/1) 75% phosphorus 1ll
(H3P04) 21,39/It (PO4]-15,5g/J!
) Chromic acid (CrO3) 5.8g/1 (Cr 3.Og/l) 20% Hydrofluoric acid (HF) 5.0'; J/l (F 1.Og/l pH2,
0 (adjusted with sodium hydroxide) Example 5 After cleaning the aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 5 was heated to 50°C and sprayed for 5 seconds. After treatment, the same as in Example 1 The performance was evaluated by washing with water, drying, and painting under the following conditions.Chemical treatment liquid 5 Fluoroborate (NaBF4) 1,09/l (BF4-0.89/I)
75% phosphorus M (83PO4) 21.3g/l (PO43-1s,sg,/1)
Chromic acid (CrO3) 5.8g/l (Cr 3.O'J/l)2
0% Hydrofluoric acid (HF) 3.0 g/l (F -0.6 g/l) 0 mouth 2.0 (
Adjustment with ammonium hydroxide) Example 6 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 6 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 6 Fluoroborate (NaBr4) 2.09/1 (BF4- 1.69/l) 75
% phosphoric acid (H3PO4) 21, 39/1 (PO4'-15,59/j!
) Rim II (CrO3) 5.8g/l (Cr 3.Og/l)20
% Fluoride water horse 1 (HF) 3.09/1 (FO, 69/1) pH
2,5 (Adjusted with ammonium hydroxide) Example 7 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 1 was heated to 40° C. and sprayed for 10 seconds. After treatment, it was washed with water, dried, and painted under the same conditions as Example 1.
Performance was evaluated. Example 8 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 1 was heated to 50° C. and sprayed for 10 seconds. After treatment, it was washed with water, dried, and painted under the same conditions as Example 1.
Performance was evaluated. Comparative Example 1 After cleaning an aluminum alloy under the same conditions as in Example 1, chemical conversion treatment liquid 7 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 7 40% fluorosilicone I! (tl SIF 6)6.
39/I (5iF6r 2.59/l) 75%
Phosphoric acid (83PO4) 21, 3g/J! (PO43-15, 59/1
) Chromic acid (Cr03) 5.8fl/I (Cr 3.Og/l)2
0% hydrofluoric acid (HF) 3.0 g/l (F -0.6 g/l) 0 mouth 2.0 (adjusted with ammonium hydroxide) Comparative Example 2 After cleaning the aluminum alloy under the same conditions as Example 1 The chemical conversion treatment liquid 8 was heated to 50° C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Chemical conversion treatment liquid 8 40% fluorosilicic acid (H2SiF 6) 40.0g/
l (5iFsγ15.89/j!”) 75% phosphoric acid (H3P04) 21,3g/l (PO43-15,5g#) Chromic acid (CrO3) 5,8y/j! (Cr 3.Og/l)20 %0
% Fluoric acid (HF) 3.0g/J (F -0.69/l) 0 mouths 2.0
(Adjusted with ammonium hydroxide) Comparative Example 3 After cleaning the aluminum alloy under the same conditions as in Example 1, a commercially available phosphoric acid chromate agent (registered trademark Alchrom 702,
50% aqueous solution of Nippon Bar Riki Rising Co., Ltd.)
It was heated to 0.degree. C. and sprayed for 5 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Comparative Example 4 After cleaning the aluminum alloy under the same conditions as in Example 1, a commercially available non-chromate agent (registered trademark Palcoat 3761,
50% aqueous solution of Nippon Bar Riki Rising Co., Ltd.)
It was heated to 0.degree. C. and sprayed for 30 seconds. After the treatment, it was washed with water, dried, and painted under the same conditions as in Example 1, and its performance was evaluated. Table 1 Evaluation test results (Note) Shows the amount of coating on Umbrella Z. As shown in Table 1, by using the chemical conversion treatment liquid of the present invention, excellent corrosion resistance and paint adhesion can be obtained, and it can also be applied to enamel feathers. I can understand that it is excellent.

【発明の効果】【Effect of the invention】

以上説明したように本発明に係るアルミニウムおよびア
ルミニウム合金用化成処理液は、りん酸イオン5.0〜
40.0g/l、6価クロムイオン1.0〜4.0g/
Ilおよびフッ素イオン01〜2.09/1、フルオロ
ケイ酸イオンを460〜15−0g/j!もしくはフル
オロホウ酸イオンを0.5〜3.0g/lを含有し、0
口を1゜0〜3.0にしたものであって、特にフルオロ
ケイ酸もしくはフルオロホウ酸を配合させることにより
、塗装前のアルミニウムおよびアルミニウム合金の表面
に優れた耐食性と塗料密着性を有する化成皮膜が形成で
きるという優れた効果を奏する。 平成3年2月4日 平成2年特許願第40168号 2、発明の名称 アルミニウム及びアルミニウム合金用化成処理液3、補
正をする者 事件との関係  特許出願人 名 称  日本パーカライジング株式会社4、代理人 住 所  東京都港区南青山−丁目1番1号発明の詳細
な説明の欄 7、補正の内容 (ヨ)本願明細書中、第6頁、第19行目の「05〜5
.0g/I」を「0.5〜3.0g/l」と訂正する。 (2)同書中、第7頁、第1行目のr5.og/l」を
r3.Og/IJと訂正する。 (3)  同書中、同頁、第12行目の「量は」と「1
.0〜4.0g/I」との間に「6価クロムイオンとし
て」を挿入する。 以上
As explained above, the chemical conversion treatment liquid for aluminum and aluminum alloys according to the present invention has a phosphate ion concentration of 5.0 to
40.0g/l, hexavalent chromium ion 1.0-4.0g/
Il and fluorine ions 01-2.09/1, fluorosilicate ions 460-15-0 g/j! Or it contains 0.5 to 3.0 g/l of fluoroborate ion, and 0.
A chemical conversion film with a diameter of 1°0 to 3.0, which has excellent corrosion resistance and paint adhesion on the surface of aluminum and aluminum alloys before painting, especially by incorporating fluorosilicic acid or fluoroboric acid. It has the excellent effect of forming February 4, 1991 1990 Patent Application No. 40168 2 Name of the invention Chemical conversion treatment liquid for aluminum and aluminum alloys 3 Relationship to the case of the person making the amendment Patent applicant name Nippon Parkerizing Co., Ltd. 4 Agent Address: 1-1 Minami Aoyama-chome, Minato-ku, Tokyo Column 7 of the detailed description of the invention, Contents of the amendment (Y) "05-5" on page 6, line 19 of the specification of the present application
.. 0g/I" is corrected to "0.5-3.0g/l". (2) In the same book, page 7, line 1, r5. og/l” to r3. Correct it as Og/IJ. (3) In the same book, on the same page, line 12, “quantity is” and “1
.. 0 to 4.0 g/I" and "as a hexavalent chromium ion" is inserted. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)りん酸イオン5.0〜40.0g/l、6価クロ
ムイオン1.0〜4.0g/lおよびフッ素イオン0.
1〜2.0g/l、フルオロケイ酸イオンを4.0〜1
5.0g/lもしくはフルオロホウ酸イオンを0.5〜
3.0g/lを含有し、pHを1.0〜3.0にしたこ
とを特徴とするアルミニウムおよびアルミニウム合金用
化成処理液。
(1) Phosphate ion 5.0 to 40.0 g/l, hexavalent chromium ion 1.0 to 4.0 g/l, and fluorine ion 0.
1-2.0 g/l, 4.0-1 fluorosilicate ion
5.0g/l or 0.5 to fluoroborate ion
A chemical conversion treatment liquid for aluminum and aluminum alloys containing 3.0 g/l and having a pH of 1.0 to 3.0.
JP2040168A 1990-02-21 1990-02-21 Chemical conversion treatment liquid for aluminum and aluminum alloys Expired - Lifetime JPH07100872B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2040168A JPH07100872B2 (en) 1990-02-21 1990-02-21 Chemical conversion treatment liquid for aluminum and aluminum alloys
EP91904950A EP0516700B1 (en) 1990-02-21 1991-02-13 Conversion treatment method and composition for aluminum and aluminum alloys
DE69103139T DE69103139T2 (en) 1990-02-21 1991-02-13 METHOD AND COMPOSITIONS FOR THE CONVERSION TREATMENT OF ALUMINUM AND ALUMINUM ALLOYS.
PCT/US1991/000965 WO1991013186A1 (en) 1990-02-21 1991-02-13 Conversion treatment method and composition for aluminum and aluminum alloys
BR919106049A BR9106049A (en) 1990-02-21 1991-02-13 WATER CONVERSION COATING SOLUTION, AND, PROCESS TO TREAT AN ALUMINUM SURFACE OR AN ALUMINUM ALLOY
US07/923,889 US5451271A (en) 1990-02-21 1991-02-13 Conversion treatment method and composition for aluminum and aluminum alloys
AU73370/91A AU642478B2 (en) 1990-02-21 1991-02-13 Conversion treatment method and composition for aluminum and aluminum alloys
CA 2072592 CA2072592A1 (en) 1990-02-21 1991-02-13 Conversion treatment method and composition for aluminum and aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040168A JPH07100872B2 (en) 1990-02-21 1990-02-21 Chemical conversion treatment liquid for aluminum and aluminum alloys

Publications (2)

Publication Number Publication Date
JPH03243781A true JPH03243781A (en) 1991-10-30
JPH07100872B2 JPH07100872B2 (en) 1995-11-01

Family

ID=12573238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040168A Expired - Lifetime JPH07100872B2 (en) 1990-02-21 1990-02-21 Chemical conversion treatment liquid for aluminum and aluminum alloys

Country Status (1)

Country Link
JP (1) JPH07100872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495967C1 (en) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Method of electrolyte-plasma grinding parts made from titanium alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177182A (en) * 1986-01-30 1987-08-04 Sumitomo Light Metal Ind Ltd Chromating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177182A (en) * 1986-01-30 1987-08-04 Sumitomo Light Metal Ind Ltd Chromating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495967C1 (en) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Method of electrolyte-plasma grinding parts made from titanium alloys

Also Published As

Publication number Publication date
JPH07100872B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US3964936A (en) Coating solution for metal surfaces
US4921552A (en) Composition and method for non-chromate coating of aluminum
EP1433875B1 (en) Chemical conversion coating agent and surface-treated metal
US5328525A (en) Method and composition for treatment of metals
US5393354A (en) Iridescent chromium coatings and method
US5304257A (en) Trivalent chromium conversion coatings for aluminum
US5641542A (en) Chromium-free aluminum treatment
US5451271A (en) Conversion treatment method and composition for aluminum and aluminum alloys
JPH04293789A (en) Method of coating steel with innoxious, inorganic and corrosion-resistant coating
JPS6022067B2 (en) Method for forming film on metal surface
JPH07310189A (en) Surface treating composition for aluminum containing metallic material and surface treatment
US4595424A (en) Method of forming phosphate coating on zinc
EP0411606B1 (en) Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method
US6030710A (en) Copolymer primer for aluminum alloy food and beverage containers
JPH08176841A (en) Surface treating composition for aluminum-containing metallic material excellent in sludge controlling property and treatment of surface
JPS5841352B2 (en) Coating treatment liquid for metal surfaces
US5358623A (en) Corrosion resistant anodized aluminum
EP0516700B1 (en) Conversion treatment method and composition for aluminum and aluminum alloys
JPH03243781A (en) Chemical conversion treating solution for aluminum and aluminum alloy
GB871606A (en) Improvements relating to the production of phosphate coatings on metallic surfaces
US5961809A (en) Chromium-free process for improving paint adhesion after thin-layer anodization
JPH03243782A (en) Chemical conversion treating solution for aluminum and aluminum alloy
US6200693B1 (en) Water-based liquid treatment for aluminum and its alloys
JPH01208477A (en) Surface treating agent and treating bath for aluminum or alloy thereof
JP3930640B2 (en) Surface treatment solution for light metal or light alloy materials