JPH03243321A - Controlling method of motor-operated injection molder - Google Patents

Controlling method of motor-operated injection molder

Info

Publication number
JPH03243321A
JPH03243321A JP3965190A JP3965190A JPH03243321A JP H03243321 A JPH03243321 A JP H03243321A JP 3965190 A JP3965190 A JP 3965190A JP 3965190 A JP3965190 A JP 3965190A JP H03243321 A JPH03243321 A JP H03243321A
Authority
JP
Japan
Prior art keywords
signal
injection
speed
pressure
setting signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3965190A
Other languages
Japanese (ja)
Other versions
JP2628770B2 (en
Inventor
Kazuo Hiraoka
平岡 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3965190A priority Critical patent/JP2628770B2/en
Publication of JPH03243321A publication Critical patent/JPH03243321A/en
Application granted granted Critical
Publication of JP2628770B2 publication Critical patent/JP2628770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To ensure the continuity of injection pressure and consequently protect mold, prevent burrs and the like from developing and improve the accuracy of molded item by a method wherein the operating signal of the minor feedback of the injection speed of dwell controlling system in injection process is compared with injection speed setting signal so as to adopt either smaller one of both the signals as speed command signal. CONSTITUTION:Operating signal (g), which is obtained by compensatingly calculating the value obtained by subtracting screw speed detection signal (d) from injection speed setting signal (c) with a subtracter 22, with a compensator 16, is sent to a servo amplifier 12. Further, operating signal (i) obtained by compensatingly calculating the value, which is obtained by subtracting injection pressure detection signal (e) inputted from a load cell amplifier 13 into a controller 15 from dwell setting signal (b) with a subtracter 21, with a compensator 19 and becomes the speed command signal to speed feedback system and acts as minor feedback, which stabilizes the internal state of dwell feedback system. A comparator 23 compares the operating signal (i) and the injection speed setting signal (c) with each other. When the signal (i) is larger than the signal (c), a selective switch 18 is brought into 2-3 connection so as to carry out injection process, while, when the signal (i) is equal to or smaller than the signal (c), the selective switch 18 is brought into 1-3 connection so as to be changed-over to dwell process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、射出、保圧の駆動源にサーボモータを用いた
電動射出成形機の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of controlling an electric injection molding machine using a servo motor as a drive source for injection and pressure holding.

(従来の技術) 従来、射出、保圧の駆動源にサーボモータを用いた射出
成形機において、射出工程から保圧工程に移行する場合
、スクリュ位置や樹脂圧などを検出し、設定値と一致し
たか否かを判断して切り換えを行っている。
(Conventional technology) Conventionally, in injection molding machines that use servo motors as drive sources for injection and pressure holding, when transitioning from the injection process to the pressure holding process, the screw position, resin pressure, etc. are detected and matched with the set value. The switch is made based on whether or not the

第4図は従来の電動射出成形機を示す図である。FIG. 4 is a diagram showing a conventional electric injection molding machine.

図において、1は射出用サーボモータであり、該射出用
サーボモータ1の回転は、ボールねじ軸2を介してボー
ルねしナツト3に伝達される。該ボールねしナツト3は
、部材4と一体的に形成され、該部材4は、図示しない
フレームの固定部材6.6’、7.7’間に架設された
ガイドバー55′に沿って、後述するスクリュ10の前
後進方向に移動自在に取り付けられる。したがって、ボ
ールねじ軸2の回転に伴い、部材4がガイドバー5゜5
′上を前後進できる。そして、上記部材4の前後進運動
はロードセル8、ヘアリング9を介してスクリュIOに
伝えられる。
In the figure, reference numeral 1 denotes an injection servo motor, and the rotation of the injection servo motor 1 is transmitted to a ball screw nut 3 via a ball screw shaft 2. The ball nut 3 is integrally formed with a member 4, which extends along a guide bar 55' installed between fixed members 6.6' and 7.7' of a frame (not shown). It is attached so as to be movable in the forward and backward movement direction of the screw 10, which will be described later. Therefore, as the ball screw shaft 2 rotates, the member 4 moves toward the guide bar 5°5.
'You can move forward and backward on the top. The forward and backward movement of the member 4 is transmitted to the screw IO via the load cell 8 and hair ring 9.

また、図示しない射出シリンダの中をスクリュ10が前
後進することにより、貯えられた溶融樹脂が金型内に押
し込まれて射出成形が行われる。この時、樹脂を押す力
がロードセル8により反力として検出され、ロードセル
アンプ13により増幅され、コントローラ15に人力さ
れる。
Furthermore, by moving the screw 10 back and forth in an injection cylinder (not shown), the stored molten resin is forced into the mold and injection molding is performed. At this time, the force pushing the resin is detected as a reaction force by the load cell 8, amplified by the load cell amplifier 13, and manually applied to the controller 15.

また、スクリュの移動量が分かるように部材4と固定部
材6  (6’、7.7’)間に位置検出器(以下、「
エンコーダ」と言う。)11が取り付けられており、該
エンコーダ11から出力された信号は増幅器14により
増幅され、コントローラ15に入力される。コントロー
ラ15はオペレータの設定によりそれぞれの工程に応し
た電流指令をサーボアンプ12に出力し、射出用サーボ
モータ1を駆動する。
In addition, a position detector (hereinafter referred to as "
Encoder. ) 11 is attached, and the signal output from the encoder 11 is amplified by an amplifier 14 and input to a controller 15. The controller 15 outputs a current command corresponding to each process to the servo amplifier 12 according to the operator's settings, and drives the injection servo motor 1.

上記構成により、溶融樹脂を金型内に押し込む射出工程
では、スクリュ速度をフィードバックし、金型内に押し
込まれた溶融樹脂に一定圧をかける保圧工程では、ロー
ドセル8にかかる反力をフィードバックし、それぞれ速
度、反力(射出圧)を制御することにより底形が行われ
る。
With the above configuration, the screw speed is fed back in the injection process in which the molten resin is pushed into the mold, and the reaction force applied to the load cell 8 is fed back in the pressure holding process in which a constant pressure is applied to the molten resin pushed into the mold. , the bottom shape is performed by controlling the speed and reaction force (injection pressure), respectively.

ここで、従来の制御方式においては、上記射出工程から
保圧工程に切り換える際にスクリュ位置又はロードセル
負荷荷重として検出される射出圧と設定値を比較して、
両者が一致した場合に切り換えていた。
Here, in the conventional control method, when switching from the injection process to the pressure holding process, the injection pressure detected as the screw position or load cell load is compared with the set value,
It was switched when the two matched.

次に、上記従来の電動射出成形機において射出圧によっ
て射出工程から保圧工程に切り換える例について第5図
を併用して説明する。
Next, an example of switching from the injection process to the pressure holding process based on the injection pressure in the conventional electric injection molding machine will be described with reference to FIG. 5.

第5図は従来の電動射出成形機の制御方法を実施するた
めのブロック図である。
FIG. 5 is a block diagram for implementing a conventional electric injection molding machine control method.

図において、エンコーダ11からの信号が増幅器14を
介してコントローラ15に人力されると、該信号は微分
器17により微分されてスクリュ速度検出信号dが与え
られる。
In the figure, when a signal from an encoder 11 is input to a controller 15 via an amplifier 14, the signal is differentiated by a differentiator 17 to provide a screw speed detection signal d.

Cは射出工程中の射出速度設定信号で、この射出速度設
定信号Cから上記スクリュ速度検出信号dを減算器22
で滅しくフィードバックし)この偏差信号を補償器16
において補償演算した操作信号gがサーボアンプ12に
送られる。
C is an injection speed setting signal during the injection process, and the screw speed detection signal d is subtracted from this injection speed setting signal C by a subtractor 22.
(feedback constantly) This deviation signal is sent to the compensator 16.
The operation signal g subjected to the compensation calculation is sent to the servo amplifier 12.

また、bは保圧工程中の保圧設定信号である。Further, b is a holding pressure setting signal during the holding pressure process.

該保圧設定信号すは、減算器21でロードセルアンプ1
3からコントローラ15に人力される射出圧検出信号e
が減じられ(フィードバックされ)、偏差信号となって
補償器19で補償演算され、操作信号iが得られる。
The holding pressure setting signal is sent to the load cell amplifier 1 by the subtracter 21.
Injection pressure detection signal e manually input from 3 to controller 15
is subtracted (feedback) and becomes a deviation signal, which is subjected to compensation calculation in the compensator 19 to obtain the operation signal i.

この時操作信号iは、直接サーボアンプ12への操作信
号となるのではなく、上記射出工程中の射出速度設定信
号と同様に速度フィードバック系(微分器17→減算器
22→補償器16)への操作量となる。
At this time, the operation signal i is not directly an operation signal to the servo amplifier 12, but is sent to the speed feedback system (differentiator 17 → subtracter 22 → compensator 16) in the same way as the injection speed setting signal during the injection process. The amount of operation is

すなわち操作信号iは、速度フィードバック系への速度
指令信号となっている。一方、上記速度フィードバック
系は、保圧フィードバック系(ロードセルアンプ13→
減算器21→補償器19〉の内部状態を安定化するため
のマイナフィードハンクとして動作する。
In other words, the operation signal i is a speed command signal to the speed feedback system. On the other hand, the speed feedback system described above is a holding pressure feedback system (load cell amplifier 13→
It operates as a minor feed hunk to stabilize the internal state of the subtracter 21→compensator 19>.

上記制御系においては、射出工程中と保圧工程中で、上
記射出速度設定信号Cと操作信号iのいずれを速度フィ
ードバック系への操作量とするかを選択することができ
るように、選択スイッチ1日が設けられている。この選
択スイッチ18は射出工程から保圧工程への切換えの条
件として与えられている。そして、切換圧力設定信号a
と射出圧検出信号eが比較され、e≧aの条件により射
出工程(選択スインチ18の接点2−3側)から保圧工
程(選択スイッチ18の接点1−3側)に切り換わるよ
うになっている。
In the above control system, a selection switch is provided so that it is possible to select which of the injection speed setting signal C and the operation signal i is to be used as the operation amount to the speed feedback system during the injection process and the pressure holding process. One day is set. This selection switch 18 is provided as a condition for switching from the injection process to the pressure holding process. Then, the switching pressure setting signal a
and the injection pressure detection signal e are compared, and the injection process (on the contact 2-3 side of the selection switch 18) is switched to the holding pressure process (on the contact 1-3 side of the selection switch 18) under the condition of e≧a. ing.

(発明が解決しようとする課題) しかしながら、上記構成の電動射出成形機の制御方法に
おいては、樹脂圧を検出して射出工程から保圧工程に切
り換える制御系の場合、サーボモータ自身や駆動伝達系
の慣性が大きいため、モータ速度の大きい射出工程から
モータ速度の小さい保圧工程へ移行する際に大きな射出
圧が発生し、金型を破損したりバリ等の成形不良を起こ
したりして機械の寿命を短くする。
(Problem to be Solved by the Invention) However, in the control method for the electric injection molding machine with the above configuration, in the case of a control system that detects resin pressure and switches from the injection process to the pressure holding process, the servo motor itself and the drive transmission system Because of the large inertia of the motor, a large injection pressure is generated when moving from the injection process with a high motor speed to the holding process with a low motor speed, which can damage the mold or cause molding defects such as burrs, resulting in machine damage. Shorten lifespan.

また、射出速度制御系から保圧制御系へ急に切り換える
ため、サーボモータを駆動するサーボアンプへの指令が
急変し、サーボモータが急激に動作をする。この時、射
出圧力は切換前の圧力に比べて大きく変動するため、射
出工程と保圧工程間の連続性が失われ、その間の制御も
困難となり、再現性も悪く良品を得ることが困難となる
Furthermore, since the injection speed control system is suddenly switched to the pressure holding control system, the command to the servo amplifier that drives the servo motor changes suddenly, causing the servo motor to operate suddenly. At this time, the injection pressure fluctuates significantly compared to the pressure before switching, so the continuity between the injection process and the pressure holding process is lost, control during that time becomes difficult, and the reproducibility is poor, making it difficult to obtain good products. Become.

また射出速度制御系から保圧制御系に切り換えた場合、
第6図のように、切換時にオーバシュートが発生したり
、切換後に設定値(保圧設定信号b)からの圧力の落込
みがあったりする。このため、切換時に射出圧の連続性
が失われ、良好な成形状態を得るのが困難である。この
圧力のを落込みは切換直前の射出圧を構成する成分によ
り生ずる。
Also, when switching from the injection speed control system to the holding pressure control system,
As shown in FIG. 6, overshoot may occur during switching, or the pressure may drop from the set value (holding pressure setting signal b) after switching. For this reason, the continuity of the injection pressure is lost during switching, making it difficult to obtain a good molding state. This drop in pressure is caused by the components that make up the injection pressure immediately before switching.

すなわち、射出圧をPL、切換直前の射出速度をVL、
スクリュlOより先の金型内の樹脂を、圧縮性のあるば
ねと仮想した場合のばね定数をkとした場合、射出圧P
Lは、 t :現時刻 to :スクリュ10より先の樹脂がハネと仮想できる
ようになった時、すなわちキャビティ内にほぼ樹脂が充
填された時刻 B −樹脂の粘性 F、−その他の負荷トルク で表すことができる。
That is, the injection pressure is PL, the injection speed immediately before switching is VL,
If the resin in the mold beyond the screw lO is assumed to be a compressible spring and the spring constant is k, then the injection pressure P
L is: t: Current time to: When the resin beyond the screw 10 can be imagined as a splash, that is, the time when the cavity is almost filled with resin B - Resin viscosity F, - Other load torques can be expressed.

上記(1)式に示されるように、切換前の射出圧PLに
は、射出速度■1の積分値、すなわちスクリュのストロ
ークに比例する成分(第1項)、スクリュの速度に比例
する成分(第2項)及びその他の成分(第3項)が含ま
れている。この内、スクリュのストロークに比例する成
分は射出速度がゼロになってもゼロにならない。反面、
スクリュの速度に比例する成分は射出速度がゼロになる
とゼロになる。このことから、切換時において射出圧P
Lが変動してしまう。
As shown in equation (1) above, the injection pressure PL before switching includes an integral value of the injection speed ■1, that is, a component proportional to the screw stroke (first term), a component proportional to the screw speed ( 2) and other ingredients (3rd term). Among these, the component proportional to the stroke of the screw does not become zero even if the injection speed becomes zero. On the other hand,
The component proportional to the screw speed becomes zero when the injection speed becomes zero. From this, the injection pressure P at the time of switching
L will fluctuate.

また、上記構成の制御系においては、速度制御系から圧
力制御系に切り換えられた時、速度フィードバック系に
入力される速度指令信号が射出速度設定信号Cから操作
信号iに急変する。そして、例えば切換圧力設定信号a
と保圧設定信号すを同し大きさに設定している場合は、
切換時の切換条件はa=eで切換圧力設定信号aと射出
圧検出信号eが等しい。この時、b=eであり射出圧検
出信号eが保圧設定信号すに等しくなり、切換直後の圧
力制御系の圧力偏差がゼロになる。
Furthermore, in the control system having the above configuration, when the speed control system is switched to the pressure control system, the speed command signal input to the speed feedback system suddenly changes from the injection speed setting signal C to the operation signal i. For example, the switching pressure setting signal a
If the holding pressure setting signal and the holding pressure setting signal are set to the same size,
The switching condition at the time of switching is a=e, and the switching pressure setting signal a and the injection pressure detection signal e are equal. At this time, b=e, the injection pressure detection signal e becomes equal to the holding pressure setting signal, and the pressure deviation in the pressure control system immediately after switching becomes zero.

したがって、補償器19が比例動作のみを行う場合など
は、操作信号iもゼロとなるので、切換えにより減算器
22に与えられる信号が射出速度設定信号Cからゼロに
急変することになり、このことからも、射出圧PLの連
続性が損なわれる。
Therefore, when the compensator 19 performs only proportional operation, the operation signal i will also be zero, so the signal given to the subtractor 22 will suddenly change from the injection speed setting signal C to zero due to switching. This also impairs the continuity of the injection pressure PL.

また、射出工程と保圧工程をスクリュ位置により切り換
える制御系の場合でも、射出速度制御系から保圧制御系
に急に切り換わるために不具合が生したり、操作上切換
位置を適切に選ぶことが困難になる。
In addition, even in the case of a control system that switches between the injection process and the pressure holding process based on the screw position, problems may occur due to the sudden switch from the injection speed control system to the pressure holding control system, and it is difficult to select the switching position appropriately for operational reasons. becomes difficult.

本発明は、上記従来の電動射出成形機の制御方法の問題
点を解決して、射出工程から保圧工程に切り換える際の
射出圧の連続性を確保して、金型を保護し、ハリ等の発
生を防止して良好な成形品を得ることを可能とし、かつ
電動射出成形機の寿命を延ばして成形品の精度を向上さ
せることが可能な電動射出成形機の制御方法を提供する
ことを目的とする。
The present invention solves the problems of the conventional electric injection molding machine control method described above, ensures continuity of injection pressure when switching from the injection process to the pressure holding process, protects the mold, and reduces firmness. It is an object of the present invention to provide a control method for an electric injection molding machine that can prevent the occurrence of molding and obtain a good molded product, extend the life of the electric injection molding machine, and improve the precision of the molded product. purpose.

(課題を解決するための手段) そのために、本発明の電動射出成形機の制御方法におい
ては、サーボモータを駆動源に用いた射出装置の射出工
程と保圧工程の切換えにおいて、保圧制御系に射出速度
のマイナフイードハックを設け、これを射出速度制御系
の速度フィードバック系と共用し、射出工程中における
保圧制御系の射出速度のマイナフィードハノクへの操作
信号と、射出速度設定信号を比較し、両信号のいずれか
小さい方を選択して速度指令信号とする。
(Means for Solving the Problems) To this end, in the control method for an electric injection molding machine of the present invention, the pressure holding control system is A minor feed hack for the injection speed is provided in , which is shared with the speed feedback system of the injection speed control system, and is used to send operation signals to the minor feed hack for the injection speed of the holding pressure control system and injection speed setting signals during the injection process. The smaller one of both signals is selected and used as the speed command signal.

(作用) 本発明によれば、上記のようにサーボモータを駆動源に
用いた射出装置の射出工程と保圧工程の切換えにおいて
、保圧制御系に射出速度のマイナフィードバックを設け
、これを射出速度制御系の速度フィードバック系と共用
し、射出工程中における保圧制御系の射出速度のマイナ
フイードバツりへの操作信号と、射出速度設定信号を比
較し、両信号のいずれか小さい方を選択して速度指令信
号としているので、射出工程中において保圧設定信号か
ら射出圧検出信号が減算され、操作信号が得られ、該操
作信号と射出速度設定信号が比較される。
(Function) According to the present invention, when switching between the injection process and the pressure holding process of an injection device using a servo motor as a drive source as described above, minor feedback of the injection speed is provided in the pressure holding control system, and this is applied to the injection speed. It is shared with the speed feedback system of the speed control system, and compares the operation signal for minor feed deviation of the injection speed of the holding pressure control system during the injection process with the injection speed setting signal, and selects the smaller of both signals. Since it is selected as the speed command signal, the injection pressure detection signal is subtracted from the holding pressure setting signal during the injection process to obtain the operation signal, and the operation signal and the injection speed setting signal are compared.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の電動射出成形機の制御方法を実施する
ためのブロック図である。
FIG. 1 is a block diagram for carrying out the method of controlling an electric injection molding machine of the present invention.

図において、エンコーダ11からの信号が増幅器14を
通してコントローラ15に入力されると、該信号は微分
器17により微分されてスクリュ速度検出信号dが与え
られる。
In the figure, when a signal from an encoder 11 is input to a controller 15 through an amplifier 14, the signal is differentiated by a differentiator 17 to provide a screw speed detection signal d.

Cは射出工程中の射出速度設定信号で、この射出速度設
定信号Cから上記スクリュ速度検出信号dを減算器22
で滅しくフィードバックし)この偏差信号を補償器16
において補償演算して得られる操作信号gがサーボアン
プ12に送られる。
C is an injection speed setting signal during the injection process, and the screw speed detection signal d is subtracted from this injection speed setting signal C by a subtractor 22.
(feedback constantly) This deviation signal is sent to the compensator 16.
The operation signal g obtained by compensation calculation is sent to the servo amplifier 12.

また、bは保圧工程中の保圧設定信号である。Further, b is a holding pressure setting signal during the holding pressure process.

該保圧設定信号すは、減算器21でロードセルアンプ1
3からコントローラ15に入力される射出圧検出信号e
が滅しられ(フィードバックされ)、偏差信号となって
補償器19で補償演算され、操作信号iが得られる。
The holding pressure setting signal is sent to the load cell amplifier 1 by the subtracter 21.
Injection pressure detection signal e input from 3 to controller 15
is eliminated (feedback), becomes a deviation signal, and is subjected to compensation calculation in the compensator 19 to obtain the operation signal i.

この時操作信号iは、直接サーボアンプ12への操作信
号となるのではなく、上記射出工程中の射出速度設定信
号と同様に速度フィードハック系(微分器17→減算器
22→補償器16)への操作量となる。
At this time, the operation signal i is not a direct operation signal to the servo amplifier 12, but a speed feed hack system (differentiator 17 → subtracter 22 → compensator 16) like the injection speed setting signal during the injection process described above. This is the amount of operation to be performed.

すなわち操作信号iは、速度フィードバック系への速度
指令信号となっている。一方、上記速度フィードバック
系は、保圧フィードバック系(ロードセルアンプ13→
減算器21→補償器19)の内部状態を安定化するため
のマイナフィードハノクとして動作する。
In other words, the operation signal i is a speed command signal to the speed feedback system. On the other hand, the speed feedback system described above is a holding pressure feedback system (load cell amplifier 13→
It operates as a minor feed hanok to stabilize the internal state of the subtracter 21→compensator 19).

上記制御系においては、射出工程中と保圧工程中で、上
記射出速度設定信号Cと操作信号iのいずれを速度フィ
ードバック系への操作量とするかを選択することができ
るように、選択スイッチ18が設けられている。この選
択スイッチ18は射出工程から保圧工程への切換えの条
件として与えられている。そして、保圧フィードバック
系から速度フィードバック系への出力である操作信号i
と射出速度設定信号Cが比較され、i≦Cの条件により
射出工程から保圧工程に切り換わるようになっている。
In the above control system, a selection switch is provided so that it is possible to select which of the injection speed setting signal C and the operation signal i is to be used as the operation amount to the speed feedback system during the injection process and the pressure holding process. 18 are provided. This selection switch 18 is provided as a condition for switching from the injection process to the pressure holding process. Then, the operation signal i is output from the pressure feedback system to the speed feedback system.
and the injection speed setting signal C, and the injection process is switched to the pressure holding process based on the condition of i≦C.

そのために、上記操作信号iと射出速度設定信号Cが人
力される比較器23が配設され、選択スイッチ18には
端子1,2が端子3に対して選択的に接続されるように
なっている。
For this purpose, a comparator 23 to which the operation signal i and the injection speed setting signal C are manually input is provided, and the selection switch 18 is configured such that terminals 1 and 2 are selectively connected to terminal 3. There is.

そして、上記比較器23は、射出工程−保圧工程の切換
の条件となる操作信号iと射出速度設定信号Cを比較し
、選択スイッチ1日に対して切換信号を出力する。すな
わちi>cのときは選択スイッチ18を2−3接続とし
て射出工程を行い、i≦Cのときは選択スイッチ18を
1−3接続として保圧工程に切り換える。
The comparator 23 compares the operation signal i, which is a condition for switching between the injection process and the pressure holding process, with the injection speed setting signal C, and outputs a switching signal to the selection switch 1. That is, when i>c, the selection switch 18 is connected to 2-3 and the injection process is performed, and when i≦C, the selection switch 18 is connected to 1-3 and the injection process is performed.

この時の各信号の状態について第2図を併用して説明す
る。
The state of each signal at this time will be explained with reference to FIG. 2.

第2図は本発明の電動射出成形機の制御方法における時
間/圧力・速度関係図、第2図(A)は射出圧検出信号
の推移を示す図、第2図(B)は選択スイッチによって
選択された信号の推移を示す図である。
Fig. 2 is a time/pressure/speed relation diagram in the control method of the electric injection molding machine of the present invention, Fig. 2 (A) is a diagram showing the transition of the injection pressure detection signal, and Fig. 2 (B) is a diagram showing the transition of the injection pressure detection signal. FIG. 3 is a diagram showing the transition of a selected signal.

第2図(A)における実線は射出圧検出信号eと保圧設
定信号すを示す。両信号e、  bは上記減算器21に
おいて減算処理が行われ、補償器19において補償・演
算が行われることにより第2図(B)の破線によって示
されるような操作信号!が得られる。
The solid lines in FIG. 2(A) indicate the injection pressure detection signal e and the holding pressure setting signal i. Both signals e and b are subjected to subtraction processing in the subtracter 21, and compensation and calculation are performed in the compensator 19, resulting in an operation signal as shown by the broken line in FIG. 2(B)! is obtained.

一方、射出速度設定信号Cは第2図(B)の−点鎖線で
示される。そして、操作信号iと該射出速度設定信号C
は選択スイッチ18によって選択され、第2図(B)の
実線に示すような選択信号が得られる。射出速度制御か
ら保圧制御に切り換わった後は、保圧制御系の時定数に
よってスムーズに減速され、圧力が保圧設定値に近づく
On the other hand, the injection speed setting signal C is indicated by a dashed line in FIG. 2(B). Then, the operation signal i and the injection speed setting signal C
is selected by the selection switch 18, and a selection signal as shown by the solid line in FIG. 2(B) is obtained. After switching from injection speed control to pressure holding control, the pressure is smoothly decelerated by the time constant of the pressure holding control system, and the pressure approaches the holding pressure set value.

第3図は本発明の電動射出成形機の制御方法の動作フロ
ーチャートである。
FIG. 3 is an operational flowchart of the method for controlling an electric injection molding machine according to the present invention.

ステ、プ■ まず、射出工程の開始時に射出速度設定信
号C及び保圧設定信号すを出力するとともに、射出工程
を開始する。
First, at the start of the injection process, the injection speed setting signal C and the holding pressure setting signal S are output, and the injection process is started.

ステップ■■ 保圧設定信号すから射出速度設定信号C
を減算し、補償器1つ(第1図)において補償・演算し
て操作信号iを得る。そして、該操作信号iと上記射出
速度設定信号Cを比較して、操作信号1が射出速度設定
信号Cよりも上回るまで通常の射出速度による制御を実
行する。この間選択スイッチ18は2−3接続状態に置
かれる。
Step ■■ Holding pressure setting signal Skara Injection speed setting signal C
is subtracted and compensated and calculated in one compensator (FIG. 1) to obtain the operation signal i. Then, the operation signal i is compared with the injection speed setting signal C, and control at the normal injection speed is executed until the operation signal 1 exceeds the injection speed setting signal C. During this time, the selection switch 18 is placed in the 2-3 connection state.

ステップ■ 1≦Cとなると選択スイッチ23を13接
続とし、保圧制御工程を実行する。
Step (2) When 1≦C, the selection switch 23 is set to 13 and the pressure holding control process is executed.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上詳細に説明したように、本発明の電動射出成形機の
制御方法においては、保圧制御系に射出速度のマイナフ
ィードハンクを設け、これを射出速度制御系の速度フィ
ードバック系と共用し、射出工程中における保圧制御系
の射出速度のマイナフィードバックへの操作信号と、射
出速度設定信号を比較し、両信号のいずれか小さい方を
選択して速度指令信号としているので、射出工程から保
圧工程に切り換える際の射出圧の連続性を確保して、金
型を保護し、パリ等の発生を防止して良好な成形品を得
ることを可能とし、かつ電動射出成形機の寿命を延ばし
て成形品の精度を向上することが可能になる。
(Effects of the Invention) As explained in detail above, in the control method for an electric injection molding machine of the present invention, the injection speed minor feed hunk is provided in the pressure holding control system, and this is connected to the speed feedback system of the injection speed control system. The operation signal for the injection speed minor feedback of the pressure holding control system during the injection process is compared with the injection speed setting signal, and the smaller of both signals is selected as the speed command signal. An electric injection molding machine that ensures continuity of injection pressure when switching from the injection process to the pressure holding process, protects the mold, prevents the occurrence of cracks, etc., and makes it possible to obtain good molded products. This makes it possible to extend the life of the molded product and improve the precision of the molded product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電動射出成形機の制御方法を実施する
ためのブロック図、第2図は本発明の電動射出成形機の
制御方法における時間/圧力・速度関係図、第2図(A
)は射出圧検出信号の推移を示す図、第2図(B)は選
択スイッチによって選択された信号の推移を示す図、第
3図は本発明の電動射出成形機の制御方法の動作フロー
チャート、第4図は従来の電動射出成形機を示す図、第
5図は従来の電動射出成形機の制御方法を実施するため
のブロック図、第6図は従来の電動射出成形機の制御方
法における切換時の時間/圧力・速度関係図である。 l・・・射出用サーボモータ、12・・・サーボアンプ
、13・・・ロードセルアンプ、15・・・コントロー
ラ、16゜19・・・補償器、17・・・微分器、18
・・・選択スイッチ、23・・・比較器。
FIG. 1 is a block diagram for carrying out the method of controlling an electric injection molding machine of the present invention, FIG. 2 is a time/pressure/speed relationship diagram in the method of controlling an electric injection molding machine of the present invention, and FIG.
) is a diagram showing the transition of the injection pressure detection signal, FIG. 2(B) is a diagram showing the transition of the signal selected by the selection switch, FIG. 3 is an operation flowchart of the control method for the electric injection molding machine of the present invention, Fig. 4 is a diagram showing a conventional electric injection molding machine, Fig. 5 is a block diagram for implementing a conventional electric injection molding machine control method, and Fig. 6 is a switch in the conventional electric injection molding machine control method. FIG. 3 is a time/pressure/velocity relationship diagram. l... Injection servo motor, 12... Servo amplifier, 13... Load cell amplifier, 15... Controller, 16° 19... Compensator, 17... Differentiator, 18
...Selection switch, 23...Comparator.

Claims (1)

【特許請求の範囲】 サーボモータを駆動源に用いた射出装置の射出工程と保
圧工程を切り換えるための電動射出成形機の制御方法に
おいて、 (a)保圧制御系に射出速度のマイナフィードバックを
設け、これを射出速度制御系の速度フィードバック系と
共用し、 (b)射出工程中における保圧制御系の射出速度のマイ
ナフィードバックへの操作信号と、射出速度設定信号を
比較し、 (c)両信号のいずれか小さい方を選択して速度指令信
号とすることを特徴とする電動射出成形機の制御方法。
[Scope of Claims] A control method for an electric injection molding machine for switching between an injection process and a pressure holding process in an injection device using a servo motor as a drive source, comprising: (a) providing minor feedback of injection speed to a pressure holding control system; (b) compare the operation signal to the injection speed minor feedback of the pressure holding control system during the injection process with the injection speed setting signal; (c) A method for controlling an electric injection molding machine, characterized in that the smaller of the two signals is selected as the speed command signal.
JP3965190A 1990-02-22 1990-02-22 Control method of electric injection molding machine Expired - Lifetime JP2628770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3965190A JP2628770B2 (en) 1990-02-22 1990-02-22 Control method of electric injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3965190A JP2628770B2 (en) 1990-02-22 1990-02-22 Control method of electric injection molding machine

Publications (2)

Publication Number Publication Date
JPH03243321A true JPH03243321A (en) 1991-10-30
JP2628770B2 JP2628770B2 (en) 1997-07-09

Family

ID=12558990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3965190A Expired - Lifetime JP2628770B2 (en) 1990-02-22 1990-02-22 Control method of electric injection molding machine

Country Status (1)

Country Link
JP (1) JP2628770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309713A (en) * 1992-05-08 1993-11-22 Sumitomo Jukikai Plast Mach Kk Molding method of injection molding machine
US7910029B2 (en) 2008-06-20 2011-03-22 Sony Corporation Control method of injection molding and control apparatus of injection molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309713A (en) * 1992-05-08 1993-11-22 Sumitomo Jukikai Plast Mach Kk Molding method of injection molding machine
US7910029B2 (en) 2008-06-20 2011-03-22 Sony Corporation Control method of injection molding and control apparatus of injection molding

Also Published As

Publication number Publication date
JP2628770B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
JP4083767B2 (en) Numerical control device to control servo motor
KR100350238B1 (en) Mold clamping control device and method capable of accurately controlling mold clamping forces exerted on a mold during injection molding
JPH0655598A (en) Controller for injection molding machine
JP3002811B2 (en) Control method and device for injection molding machine
US5336073A (en) Injection pressure limiting device for injection molding machine
EP1640136A1 (en) Molding device and control method thereof
JPH03243321A (en) Controlling method of motor-operated injection molder
JPH0661808B2 (en) Die touch position detection method in electric direct pressure mold clamping mechanism
JP2000006217A (en) Starting point adjusting method of load cell in motorized injection molder
EP0965429B1 (en) Mold clamping method
JP2746474B2 (en) Control method of electric injection molding machine
JP2628769B2 (en) Control method of electric injection molding machine
JP3556779B2 (en) Servo motor overshoot prevention method
JP4275894B2 (en) Mold clamping control method of injection molding machine
JP2628773B2 (en) Injection pressure limiting device for electric injection molding machine
JPH0459130B2 (en)
JP2524499B2 (en) Control method of mold clamping force of injection molding machine
JP2746473B2 (en) Injection speed control method for electric injection molding machine
JPH089189B2 (en) Method and apparatus for controlling injection process of injection molding machine
JP3686771B2 (en) Injection molding machine
JP2926286B2 (en) Control device for injection molding machine
JPS63112136A (en) Method and apparatus for controlling mold closing and opening of injection molder
JPH0544115Y2 (en)
JPH0429818A (en) Controlling device for electrically-driven injection molding machine
TW202220341A (en) Motor control apparatus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

EXPY Cancellation because of completion of term