JPH03242680A - Atom and molecule model - Google Patents

Atom and molecule model

Info

Publication number
JPH03242680A
JPH03242680A JP4056090A JP4056090A JPH03242680A JP H03242680 A JPH03242680 A JP H03242680A JP 4056090 A JP4056090 A JP 4056090A JP 4056090 A JP4056090 A JP 4056090A JP H03242680 A JPH03242680 A JP H03242680A
Authority
JP
Japan
Prior art keywords
atomic
model
atom
models
orbital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4056090A
Other languages
Japanese (ja)
Other versions
JP2519562B2 (en
Inventor
Miyoshi Sato
美代志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2040560A priority Critical patent/JP2519562B2/en
Publication of JPH03242680A publication Critical patent/JPH03242680A/en
Application granted granted Critical
Publication of JP2519562B2 publication Critical patent/JP2519562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PURPOSE:To obtain the inexpensive atom and molecule model which can be used by all students on a teaching site by three-dimensionally assembling plural sheets of disk plates having slits for coupling to a spherical structure. CONSTITUTION:The disk plates 3 to 6 consisting of paper, plastic, etc. provided wit the respective slits 1, 2 for coupling are assembled to the three-dimensional structure by the respective slits 1, 2 for coupling to form the respective atom models 10, 11. Further, the respective atom models are freely attachably and detachably combined with the prescribed other atom models 10, 11, by the slits 1, 2 for coupling at need, by which the molecule model 15 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として中学校、高等学校、大学等における化
学教育に用いられる原子、分子模型(本明細書において
は、原子軌道模型及び原子軌道が互いに重なり合う原子
の結合状態を示す原子軌道結合模型を含む。〉に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to atomic and molecular models (in this specification, atomic orbital models and atomic orbitals are used for chemical education in junior high schools, high schools, universities, etc.) Contains an atomic orbital bonding model that shows the bonding state of overlapping atoms.

(従来の技術と発明が解決しようとする課題)(1〉化
学を初めて学ぶ者にとり、分子の構造式は抽象的で実際
の分子構造をとらえにくく、その外観及び立体構造の違
いや対称性を理解することは容易でない。この点分子模
型は分子の外観や構造を理解する上で大きな助けとなり
、その市販品や自作の分子模型等が教育現場で盛んに利
用されている。
(Problems to be solved by conventional technology and the invention) (1) For those learning chemistry for the first time, the structural formula of a molecule is abstract and difficult to understand the actual molecular structure, and it is difficult to understand the appearance, differences in three-dimensional structure, and symmetry. This is not easy to understand.Molecular models are a great help in understanding the appearance and structure of molecules, and commercially available and self-made molecular models are widely used in educational settings.

しかしながら、市販されている分子模型は極めて高価で
あり、また自作の模型は製作が面倒であって生徒用に多
数製作することは困難である。
However, commercially available molecular models are extremely expensive, and self-made models are cumbersome to produce, making it difficult to produce them in large numbers for students.

学校現場では、そのため分子模型の数が充分確保できず
、授業者が演示用に分子模型を使う程度である。生徒全
員に分子模型を持たせた個別的授業の実施は難しい。こ
のため分子模型が教具としての本来の効果を充分発揮し
ているとは言い難い。これが生徒側々の原子、分子に対
する粒子としてのイメージ化を妨げ、原子分子観が充分
培われない原因の一つになっていると考えられる。
For this reason, in schools, it is not possible to secure a sufficient number of molecular models, and teachers only use molecular models for demonstration purposes. It is difficult to conduct individual classes in which all students have molecular models. For this reason, it is difficult to say that molecular models are fully demonstrating their original effectiveness as teaching tools. This is thought to be one of the reasons why students are not able to visualize atoms and molecules as particles, and are not able to fully develop their view of atoms and molecules.

(2〉原子のもつ原子軌道(atom:c 0rbit
al)は、各種化学結合を支配している。これらの原子
軌道を立体的に理解することも、分子構造及び化学反応
の特性を考察する上で大変有益である。これら原子軌道
の立体的外観をコンピュータ作画した化学書も出版され
ている。しかし、S、ρ、dの各原子vt道模型となる
と、市販品は大変高価である。自作の原子軌道模型もあ
るが、数多く製作するには面倒で、生徒側々に持たせる
には不向きである。 原子軌道が互いに重なり合う、原
子の結合状態を示す原子軌道結合模型となると更に高価
である。
(2> Atomic orbital of an atom (atom: c 0rbit
al) controls various chemical bonds. A three-dimensional understanding of these atomic orbitals is also very useful when considering the characteristics of molecular structures and chemical reactions. Chemistry books with computer-drawn three-dimensional appearances of these atomic orbitals have also been published. However, when it comes to each atom vt road model of S, ρ, and d, commercially available products are very expensive. There are self-made atomic orbital models, but they are cumbersome to make in large numbers and are not suitable for students to have. Atomic orbital bonding models, which show the bonding state of atoms in which atomic orbitals overlap each other, are even more expensive.

その上自作教具としての報告もなく、一般に普及してい
るとは言い難い。
Furthermore, there are no reports of it being used as a self-made teaching tool, so it is hard to say that it is widely used.

以上の点に鑑み、本発明は教育現場において生徒全員に
各別に使用させ得るような安価な原子、分子模型、好ま
しくは原子軌道を表示した原子、分子模型を提供しよう
としてなされたものである。
In view of the above points, the present invention was made in an attempt to provide an inexpensive atomic and molecular model, preferably an atomic and molecular model displaying atomic orbitals, that can be used individually by all students in educational settings.

(課題を解決するための手段) 上記課題を解決するために本発明は、各々結合用スリッ
トを備えた所定寸法の円形板3〜4枚を各結合用スリッ
トにより立体的な球状構造に組み立てることにより各原
子模型を形成し、各原子模型を必要に応じて結合用スリ
ットにより他の所定の原子模型と着脱自在に組み合わせ
ることにより分子模型を形成し得るようにした原子、分
子模型を提供するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention involves assembling three to four circular plates each having a predetermined size and each having a coupling slit into a three-dimensional spherical structure with each coupling slit. to form each atomic model, and each atomic model can be removably combined with other predetermined atomic models using coupling slits as necessary to form a molecule model. It is.

上記円形板には所定の位置に原子軌道を表示させるのが
望ましい。
It is desirable that atomic orbits be displayed at predetermined positions on the circular plate.

(作 用) 本発明の原子、分子模型は各使用者(生徒〉が教室等で
自ら組み立てるものであって、分解、組み替え等も自在
である。この原子、分子模型は実際の原子、分子の大き
ざ、形状を反映した球状構造の実体原子、分子模型であ
って、原子、分子の基礎的な特徴を備えている。模型の
原子間結合は原子法同士がそのまま重なり合う実際の結
合状態に近いものである。
(Function) The atom and molecule models of the present invention are assembled by each user (student) in a classroom, etc., and can be disassembled and recombined freely. It is a real atom or molecule model with a spherical structure that reflects the size and shape, and has the basic characteristics of atoms and molecules.The interatomic bonds in the model are close to the actual bonding state in which the atoms overlap each other as is. It is something.

また、円形板の所定の位置に原子軌道を表示させたとき
には、組み立てられた模型はわかりやすい原子軌道模型
、原子軌道結合模型となる。
Furthermore, when atomic orbits are displayed at predetermined positions on the circular plate, the assembled model becomes an easy-to-understand atomic orbital model or atomic orbital bonding model.

〔実施例〕〔Example〕

次に本発明の実施例について説明するが、以下に示す寸
法等の数値は例示的なものにすぎない。
Next, embodiments of the present invention will be described, but the dimensions and other numerical values shown below are merely illustrative.

本発明の原子、分子模型は、各々結合用スリット1.2
を備えた紙、プラスチック等の円形板3〜6 (7〜9)を各結合用スリット1.2により立体的な球
状構造に組み立てることにより各原子模型10.11・
・・を形成し、各原子模型を必要に応じて結合用スリッ
ト1.2により所定の他の原子模型、10.11・・・
と着脱自在に組み合わせることにより分子模型15・・
・を形成し得るものである。
The atomic and molecular models of the present invention each have bonding slits 1.2 and 2.
Each atomic model 10.11.
..., and each atomic model is connected to a predetermined other atomic model, 10.11... by a bonding slit 1.2 as necessary.
Molecular model 15 can be created by removably combining the
・It is possible to form.

21は円形板を山折りする折曲線である。21 is a folding line for mountain-folding the circular plate.

円形板3〜6(7〜9)は各原子模型ごとに色別けする
のが望ましい。16はピン等の止め具である。
It is desirable that the circular plates 3 to 6 (7 to 9) be colored differently for each atomic model. 16 is a stopper such as a pin.

また、各円形板3〜6(7〜9〉には所定の位置に原子
軌道23を表示させるのが望ましい。
Further, it is desirable to display the atomic orbitals 23 at predetermined positions on each of the circular plates 3 to 6 (7 to 9).

模型は原子、分子の実際の大きさ、形を反映した実体原
子、分子模型とする。このため各原子模型の大きさは、
ファンデアワールス半径を基準として定めるものとする
。このようにすれば各原子、分子の実際の形や大きさと
その違いが、模型より把握できる。
The model shall be a real atom or molecule model that reflects the actual size and shape of the atom or molecule. Therefore, the size of each atomic model is
It shall be determined based on the van der Waals radius. In this way, the actual shapes and sizes of each atom and molecule and their differences can be understood from the model.

模型の原子間結合は、原子法同士がそのまま重なり合う
、実際の結合形態に近いものとし、更に各原子模型は相
互に着脱自在とすることにより各種分子の組立てが自由
にてきるようになす。すなわち、各原子模型の結合用ス
リットを各々深く切り込み、これを互いに挟み合わせる
ことにより、実際の原子間と同じ結合形態を模型で再現
する。
The interatomic bonds in the model are made to be close to the actual bonding form, in which the atomic methods overlap each other, and each atomic model is made to be able to be attached to and detached from each other, so that various molecules can be assembled freely. That is, by deeply cutting the bonding slits in each atomic model and sandwiching them together, the model reproduces the same bonding form as that between actual atoms.

化学教育で取り扱う原子種は、主に水素、炭素、窒素、
酸素である。これらのうち水素原子は1S原子軌道を持
ち、炭素原子はSp 、Sp2、Sp混成軌道のいずれ
かをとる。また窒素原子、酸素原子は、水素と化合しア
ンモニア、水を生成する場合Sp3混戒軌道で結合して
いると考えられる。そこでこれら主な原子の模型につい
て以下具体的に説明する。
The atomic species treated in chemical education are mainly hydrogen, carbon, nitrogen,
It is oxygen. Among these, the hydrogen atom has a 1S atomic orbital, and the carbon atom has one of Sp, Sp2, and Sp hybrid orbitals. Furthermore, when nitrogen atoms and oxygen atoms combine with hydrogen to produce ammonia and water, it is thought that they are bonded in Sp3 mixed orbitals. Therefore, these main atomic models will be specifically explained below.

原子価が1の水素原子は、第6図(1〉のように直径2
.4cmの円形板3a〜6aにより組み立てる。原子価
1の他の原子についても直径を変えて同様に製作する。
A hydrogen atom with a valence of 1 has a diameter of 2 as shown in Figure 6 (1).
.. Assemble with 4 cm circular plates 3a to 6a. Other atoms with a valence of 1 are manufactured in the same manner with different diameters.

例えば、塩素原子は直径3゜6crnの円形板3b〜6
bを用いて製作する(第6図(2〉〉。
For example, the chlorine atoms are circular plates 3b to 6 with a diameter of 3°6crn.
(Fig. 6 (2)).

次に直線あるいは対角線型の結合状態をとる原子として
、sp混成軌道の炭素原子は、第6図(3)のような直
径3.4cmの円形板30〜6Cを用いる。Sp2混成
軌道で正三角形型立体構造をとる炭素原子は、第6図(
4〉のような円形板3d〜6dを用いる。
Next, as atoms in a linear or diagonal bonding state, carbon atoms in an sp-hybridized orbit are used as circular plates 30 to 6C having a diameter of 3.4 cm as shown in FIG. 6(3). A carbon atom with an equilateral triangular conformation in the Sp2 hybrid orbital is shown in Figure 6 (
4> circular plates 3d to 6d are used.

正四面体型立体構造をとるSp3混成軌道の炭素原子は
、第6図(5〉に示す円形板30〜6eを用いる。この
場合、円形板4eの一部22をくさび状に14.7度(
角度a)切除し、該円形板4eを三角鐘状になし、円形
板30〜6eを組み立てると、各結合角は約109度と
なり正四面体型立体構造を示す結合をつくりうる。第6
図(5)において角度すは115°1−1角度Cは10
0’〇−1角度dは109°28−である。
For the Sp3 hybrid orbital carbon atom that has a regular tetrahedral three-dimensional structure, circular plates 30 to 6e shown in Figure 6 (5) are used. In this case, a part 22 of the circular plate 4e is wedged at 14.7 degrees (
When the angle a) is cut, the circular plate 4e is shaped into a triangular bell shape, and the circular plates 30 to 6e are assembled, each bond angle becomes approximately 109 degrees, and a bond exhibiting a regular tetrahedral three-dimensional structure can be created. 6th
In figure (5), the angle C is 115°1-1 and the angle C is 10
The 0'〇-1 angle d is 109°28-.

同様にSp3混成軌道を゛とり、原子価3のチッ素原子
は、第6図(6〉に示す直径3.2txtの円形板3f
〜6fを用い、原子価2の酸素原子は第6図(7)に示
す直径3.0ctnの円形板30〜6qを用いる。なお
、チッ素原子、酸素原子についても上記炭素原子と同様
に円形板4f、4gの一部22を切除して形成する。
Similarly, a nitrogen atom with a valence of 3 and having an Sp3 hybrid orbit is formed on a circular plate 3f with a diameter of 3.2txt as shown in Figure 6 (6).
~6f is used, and for oxygen atoms with a valence of 2, circular plates 30~6q with a diameter of 3.0 ctn shown in FIG. 6(7) are used. Note that the nitrogen atoms and oxygen atoms are also formed by cutting out a portion 22 of the circular plates 4f and 4g in the same manner as the carbon atoms.

フ7ンデアワールス半径の1億倍に調整された各原子模
型の結合用スリットを互いに挟み合わせると、各種立体
構造の分子模型が自由に組み立てられる。これらの分子
模型の結合距離は実際の分子のそれより幾分大きいが、
結合角はほぼ等しく、実際の分子の形を充分反映した実
体分子模型であると言える。
By sandwiching the bonding slits of each atomic model, which are adjusted to 100 million times the F7nd der Waals radius, molecular models with various three-dimensional structures can be freely assembled. Although the bond distances in these molecular models are somewhat larger than those in the actual molecules,
The bond angles are almost the same, and it can be said that this is a solid molecule model that fully reflects the shape of the actual molecule.

次に、原子軌道模型、原子軌道結合模型について説明す
る。
Next, the atomic orbital model and the atomic orbital coupling model will be explained.

各原子軌道23(S、px、py、p7等)を表示した
3枚の円形板7〜9を前記と同様に組み立てることによ
り、三次元構造の基本的原子軌道模型(第7図参照〉を
形成する。第8図(1〉〜(9)に示す円形板7〜9は
それぞれ下記の基本的原子軌道模型の作成に使用される
ものである。
By assembling three circular plates 7 to 9 displaying each atomic orbital 23 (S, px, py, p7, etc.) in the same manner as described above, a basic atomic orbital model with a three-dimensional structure (see Figure 7) can be created. The circular plates 7 to 9 shown in FIGS. 8(1> to 9) are respectively used to create the basic atomic orbital model described below.

第8図(1)・・・S軌道の基本的原子軌道模型〃 (
2〉・・・p軌道の        (px〉〃 (3
〉・・・ //     ’ rt    (p y)
〃 〈4〉・・・ u          (p z 
)〃 〃  5〉・・・d軌道の   /l  (dxy)〃
  6〉・・・ 〃       (dyz〉〃  7
)・・・ 〃        (dx□〉n   8)
−−・n     o (d×2−y2)〃  9〉・
・・ lI        (d72〉次に、原子軌道
結合模型について述べる。水素原子の1SvL道や炭素
原子などのsp3、sp2、sp混成軌道24の基本的
形を円形板3〜6の表裏両面に表示し、これらの円形板
を用いて個々の原子軌道を描いた原子模型(第9図)を
組み立てる。これらの原子模型を互いに結合させれば、
原子軌道の重なった分子の結合形態を示す原子軌道結合
模型を組み立てることが可能となる。
Figure 8 (1)...Basic atomic orbital model of S orbital (
2〉...p orbital (px〃 (3
〉・・・ //' rt (p y)
〃〈4〉... u (p z
)〃 〃 5〉.../l of d orbital (dxy)〃
6〉・・・ 〃 (dyz〉〃 7
)... 〃 (dx□〉n 8)
--・no (d×2-y2)〃 9〉・
... lI (d72> Next, we will discuss the atomic orbital bonding model. The basic shapes of the 1SvL path of hydrogen atoms and the sp3, sp2, sp hybrid orbitals 24 of carbon atoms, etc. are displayed on both the front and back sides of circular plates 3 to 6. , use these circular plates to assemble an atomic model (Figure 9) depicting individual atomic orbits.If these atomic models are connected to each other,
It becomes possible to construct an atomic orbital bonding model that shows the bonding form of molecules with overlapping atomic orbitals.

なお、円形板3〜6には混成軌道に参加しない軌道25
も併せて表示する。
Note that the circular plates 3 to 6 include orbits 25 that do not participate in the hybrid orbit.
Also displayed.

第10図(1)〜(6〉に示す円形板3〜6はそれぞれ
下記の模型の作成に使用されるものである。
The circular plates 3 to 6 shown in FIGS. 10 (1) to (6) are used to create the following models, respectively.

第10図 1)・・・水素IS原子軌道模型〃  2〉
・・・炭素原子のSp混成軌道模型//   3)、、
、  y、   5,2   、。
Figure 10 1)...Hydrogen IS atomic orbital model〃2〉
...Sp hybridized orbital model of carbon atom // 3),,
,y,5,2,.

”   4)””  ’/   Sp3 rt〃  5
〉・・・チッ素原子の5l)3 //第10図 6〉・
・・酸素原子のSp3混成軌道模型なお、上図において
26は孤立電子対である。
"4)""'/Sp3 rt〃 5
〉...Nitrogen atom 5l)3 //Figure 10 6〉・
... Sp3 hybrid orbital model of oxygen atom In the above figure, 26 is a lone pair of electrons.

このような原子軌道結合模型においては各分子中に見ら
れる混成軌道24と混成軌道に参加しない軌道25及び
孤立電子対26との関係、そしてベンゼン環等の共鳴構
造の様子を模型で立体的かつ具体的に示すことが可能と
なる。
In such an atomic orbital bonding model, the relationship between the hybrid orbital 24 found in each molecule, the orbital 25 that does not participate in the hybrid orbital, and the lone pair 26, and the state of the resonance structure of a benzene ring etc. can be visualized three-dimensionally and It becomes possible to show it concretely.

〔発明の効果〕〔Effect of the invention〕

本発明の原子、分子模型は結合用スリットを備え、好ま
しくは原子軌道を表示した円形板を該結合用スリットを
利用して組み立てるようにしたため、極めて安価である
。従って、生徒全員に原子、分子模型を持たせた個別的
授業を行なうことが可能となり、各生徒にその組み立て
、分解、組み替え等をさせることができる。故に原子分
子観を培う上で大きな教育的効果が得られる。
The atomic and molecular models of the present invention are extremely inexpensive because they are equipped with bonding slits, and preferably a circular plate displaying atomic orbits is assembled using the bonding slits. Therefore, it is possible to conduct individual lessons in which all students have atomic and molecular models, and each student can be asked to assemble, disassemble, and rearrange the models. Therefore, a great educational effect can be obtained in cultivating a view of atoms and molecules.

本発明の原子、分子模型は上述の如く極めて安価である
にもかかわらず、実際の原子、分子の大きさ、形状、原
子間結合状態その他の基礎的特徴を備えている。
Although the atomic and molecular models of the present invention are extremely inexpensive as described above, they have the basic characteristics of actual atoms and molecules, such as their size, shape, and interatomic bonding state.

更に、円形板に原子軌道を表示させたときには好ましい
原子軌道模型、原子軌道結合模型が得られる。
Furthermore, when atomic orbits are displayed on a circular plate, a preferable atomic orbital model and atomic orbital bonding model can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による原子模型(C原子)の−例を示す
斜視図、第2図は本発明による分子模型のC−口結合の
一例を示す斜視図、第3図は炭素原子模型用の円形板を
示す平面図、第4図はその組み立てを示す斜視図、第5
図は第2図の分子模型の組み立てを示す斜視図、第6図
は各原子模型用の円形板を示す平面図、第7図は基本的
原子軌道模型の一例を示す斜視図、第8図は各基本的原
子軌道模型用の円形板を示す平面図、第9図は原子軌道
模型の別の一例を示す斜視図、第10図は各原子軌道模
型用の円形板を示す平面図である。 1.2・・・結合用スリット 3〜9・・・円形板 10.11・・・原子模型 15・・・分子模型 16・・・止め具 20・・・原子軌道 21・・・折曲線 22・・・一部 23・・・原子軌道 24・・・混成軌道 25・・・混成軌道に参加しない軌道 26・・・孤立電子対 第1 図 第3図 第2図 6 第40 第5図 第70 1e:I 第S図 (1) じ 第8図 (2) (3) (4)
FIG. 1 is a perspective view showing an example of the atomic model (C atom) according to the present invention, FIG. 2 is a perspective view showing an example of the C-port bond of the molecular model according to the present invention, and FIG. 3 is a perspective view showing an example of the C-port bond of the molecular model according to the present invention. Figure 4 is a plan view showing the circular plate, Figure 4 is a perspective view showing its assembly, Figure 5 is a perspective view showing its assembly.
The figure is a perspective view showing the assembly of the molecular model in Fig. 2, Fig. 6 is a plan view showing the circular plate for each atomic model, Fig. 7 is a perspective view showing an example of a basic atomic orbital model, and Fig. 8 9 is a plan view showing a circular plate for each basic atomic orbital model, FIG. 9 is a perspective view showing another example of an atomic orbital model, and FIG. 10 is a plan view showing a circular plate for each atomic orbital model. . 1.2... Bonding slits 3 to 9... Circular plate 10.11... Atomic model 15... Molecular model 16... Stopper 20... Atomic orbit 21... Folding line 22 ... Part 23 ... Atomic orbital 24 ... Hybrid orbital 25 ... Orbital that does not participate in the hybrid orbit 26 ... Lone pair 1 Figure 3 Figure 2 Figure 6 40 Figure 5 70 1e:I Figure S (1) Figure 8 (2) (3) (4)

Claims (1)

【特許請求の範囲】 1、各々結合用スリットを備えた所定寸法の円形板3〜
4枚を各結合用スリットにより立体的な球状構造に組み
立てることにより各原子模型を形成し、各原子模型を必
要に応じて結合用スリットにより他の所定の原子模型と
着脱自在に組み合わせることにより分子模型を形成し得
るようにした原子、分子模型。 2、前記円形板には所定の位置に原子軌道を表示させた
ことを特徴とする請求項1記載の原子、分子模型。
[Claims] 1. Circular plates 3 to 3 each having a predetermined size and each having a coupling slit.
Each atomic model is formed by assembling the four pieces into a three-dimensional spherical structure through each bonding slit, and each atomic model is removably combined with other predetermined atomic models through the bonding slit as necessary to form a molecule. Atom and molecular models that can be used to form models. 2. The atom and molecule model according to claim 1, wherein the circular plate has atomic orbits displayed at predetermined positions.
JP2040560A 1990-02-21 1990-02-21 Atom, molecule model Expired - Lifetime JP2519562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040560A JP2519562B2 (en) 1990-02-21 1990-02-21 Atom, molecule model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040560A JP2519562B2 (en) 1990-02-21 1990-02-21 Atom, molecule model

Publications (2)

Publication Number Publication Date
JPH03242680A true JPH03242680A (en) 1991-10-29
JP2519562B2 JP2519562B2 (en) 1996-07-31

Family

ID=12583844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040560A Expired - Lifetime JP2519562B2 (en) 1990-02-21 1990-02-21 Atom, molecule model

Country Status (1)

Country Link
JP (1) JP2519562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261657A (en) * 1994-03-19 1995-10-13 Shozo Ishihara Crystal structure model
US6884079B2 (en) 2002-02-08 2005-04-26 Talou Co., Ltd. Molecular model representing molecular structure
JP2021015260A (en) * 2019-07-10 2021-02-12 創 田島 Molecular model

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261657A (en) * 1994-03-19 1995-10-13 Shozo Ishihara Crystal structure model
US6884079B2 (en) 2002-02-08 2005-04-26 Talou Co., Ltd. Molecular model representing molecular structure
JP2021015260A (en) * 2019-07-10 2021-02-12 創 田島 Molecular model

Also Published As

Publication number Publication date
JP2519562B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
Accascina et al. Using Cabri 3D diagrams for teaching geometry
Abdulwahed et al. The TriLab, a novel ICT based triple access mode laboratory education model
Bacharach et al. Voices from the field: Multiple perspectives on a co-teaching in student teaching model.
Paulu et al. Teachers Leading the Way. Voices From the National Teacher Forum.
Baker et al. Classroom management for successful student inquiry
Budinski et al. Ideas for using GeoGebra and Origami in teaching regular polyhedrons lessons
Duke The Getty Center for Education in the Arts and discipline-based art education
JPH03242680A (en) Atom and molecule model
Haber et al. Preparing fourth-year medical students to teach during internship
Forsblom et al. What is the Added Value of Web-based Learning and Teaching? The Case of Tampere University of Technology
Burhanuddin et al. Nature-based Islamic religious education learning in forming student character at school
An et al. Preservice Teachers’ Reflections on the Use of Visual Supports to Improve Mathematics Pedagogy: The Case Study of Fraction and Ratio
Parker et al. New approaches to learning on clinical placement
Arcavi Mathematical thinking in japanese classrooms
Daniel School and college: The need for articulation
Mac Namara et al. Merging Engineering and Architectural Pedagogy–A Trans-disciplinary Opportunity?
Knoll et al. Barn-raising an endo-pentakis-icosi-dodecahedron
Thompson A call for collaboration
Wares et al. Algebraic Thinking in the Context of Spatial Visualization
Masitoh et al. Webbed Model Integrated Learning Can Increase Motivation and Self-Regulated Learning in Kindergarten Students
Barnett THE ROLE OF SCHOOL LEADERSHIP TOWARDS CHANGING PARENTS ATTITUDE IN COVID 19 AND STUDENT EVALUATION
Sarikiya MAKING THE MOLECULAR MODELS FROM EASILY OBTAINABLE MATERIALS.
Huff The impact of interactions with students, community, colleagues and the institution of schooling on the teaching practices of secondary choral music educators: Two case studies.
Stone et al. Optimizing the structure for a multidisciplinary senior design experience
Gelfer Discovering and learning art with blocks