JPH03242305A - Drain-treating apparatus of oxygen-enriching apparatus - Google Patents

Drain-treating apparatus of oxygen-enriching apparatus

Info

Publication number
JPH03242305A
JPH03242305A JP3677090A JP3677090A JPH03242305A JP H03242305 A JPH03242305 A JP H03242305A JP 3677090 A JP3677090 A JP 3677090A JP 3677090 A JP3677090 A JP 3677090A JP H03242305 A JPH03242305 A JP H03242305A
Authority
JP
Japan
Prior art keywords
drain
oxygen
plate
evaporation
enriched air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3677090A
Other languages
Japanese (ja)
Inventor
Kyohiko Matsumura
松村 教彦
Hironobu Okuno
奥野 寛宣
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3677090A priority Critical patent/JPH03242305A/en
Publication of JPH03242305A publication Critical patent/JPH03242305A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Abstract

PURPOSE:To prolong the life of an oxygen-enriching apparatus by dropping drain separated by gas-liquid separator onto an evaporation plate made of a hydrophilic material and placed at an exhaust port and evaporating the drain on the plate. CONSTITUTION:A suction fan 12 and a vacuum pump 14 built-in a main body 1 having nearly vertically elongated rectangular parallelepiped shape are driven to introduce air from a suction port 4 through a duct 7 to a separation membrane module 9. An oxygen-enriched air having high oxygen concentration is separated through an oxygen-enriching membrane 9a, sent to the primary side of a heat-exchanger 6 from the discharging port 21 of the pump 14 through a discharging pipe 22, cooled with air introduced through the suction port 4, sent to a gas-liquid separator 25 from the secondary side 24 of the heat- exchanger through a pipeline 26 to separate drain and finally discharged from the main body 1 through a hose 27. The separated drain is dropped from the opening 29a of the pipe 29 onto the evaporation plate 30 made of a hydrophilic material and placed at the exhaust port 4 and evaporated by the oxygen- enriched air heated by the absorption of the heat generated by the pump 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸素富化機におけるドレン処理装置、詳しくは
、酸素富化膜をもつ分離膜モジュールと、該モジュール
から取出す酸素富化空気の凝縮水を分離させる気液分離
器及び窒素富化空気の排気口を備えて成る酸素富化機に
おけるドレン処理装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a drain treatment device in an oxygen enrichment machine, specifically, a separation membrane module having an oxygen enrichment membrane, and a method for condensing oxygen enriched air taken out from the module. The present invention relates to a drain treatment device for an oxygen enrichment machine, which comprises a gas-liquid separator for separating water and an exhaust port for nitrogen-enriched air.

(従 来 技 術) 従来、分離膜モジュールを用いた酸素富化機としては例
えば、特開昭62−83304号公報に見られる如(、
吸気口から導入する空気をファンの作用で膜エレメント
、即ち、分離膜モジュールへ送り込む如く成す一方、前
記酸素富化機本体に真空ポンプを設けて、該ポンプの吸
引側を前記モジュールに設けた酸素富化膜に連通させ、
前記真空ポンプの真空作用により前記モジュール内から
前記酸素富化膜を介して酸素富化空気を吸引すると共に
、前記真空ポンプの吐出側を冷却手段、即ち、熱交換器
を介して分離手段、即ち、水分離器に連通させて、該分
離器により気液分離させて除湿し、また、前記熱交換器
で降温した酸素富化空気を取出口から採取して使用目的
に供するようになっており、また、一方、前記水分離器
内で分離されたドレンは、パイプラインを介して窒素富
化空気を排気する排気口の下部に設けたドレンタンク(
A)に流下させている。
(Prior Art) Conventionally, as an oxygen enrichment machine using a separation membrane module, for example, as shown in Japanese Patent Application Laid-Open No. 62-83304,
While the air introduced from the intake port is sent to the membrane element, that is, the separation membrane module by the action of a fan, the main body of the oxygen enrichment machine is provided with a vacuum pump, and the suction side of the pump is connected to the oxygen provided in the module. communicated with the enrichment membrane;
The vacuum action of the vacuum pump draws oxygen-enriched air from inside the module through the oxygen-enriched membrane, and the discharge side of the vacuum pump is connected to the separation means, i.e., via a cooling means, i.e., a heat exchanger. The air is connected to a water separator, and the separator separates gas and liquid for dehumidification, and the oxygen-enriched air whose temperature has been lowered by the heat exchanger is collected from the outlet and used for the purpose of use. In addition, on the other hand, the drain separated in the water separator is stored in a drain tank (
A).

しかして、前記ドレンタンク(A)に、貯留されるドレ
ンの処理は、第8図に示したように、前記ドレンタンク
(A)に、該ドレンタンク(A)に貯留するドレン水に
下端を浸浴させる保水機能部材(B)及び支持部材(C
)とで構成される蒸発板(D)を設けて、該蒸発板(D
)の保水機能部材(B)に、前記ドレンを毛細管現象で
吸い上げ、この水分を窒素富化空気の排気により蒸発気
化させ、前記窒素富化空気の排気口から機外へ排出する
ことにより行っている。
As shown in FIG. 8, the drain stored in the drain tank (A) is treated by adding a lower end to the drain water stored in the drain tank (A). Water retention function member (B) and support member (C) to be immersed in the bath
) is provided, and the evaporation plate (D) is
) by sucking up the drain by capillary action, evaporating this moisture by exhausting nitrogen-enriched air, and discharging it outside the machine from the exhaust port of the nitrogen-enriched air. There is.

(発明が解決しようとする課題) ところが、前記した従来の技術によるものは、水分離器
で分離されたドレンを処理する手段は前記ドレンを貯留
するドレンタンク(A)を設け、このドレンタンク(A
)に前記蒸発板(D)を、該蒸発板(D)の下端が前記
ドレンタンク(A)内のドレン水に常に浸浴するように
設けて、該ドレン水を前記蒸発板(D)の毛細管組織に
よる毛細管現象で吸引して前記蒸発板(D)に含浸させ
、この蒸発板(D)に窒素富化空気の排気風を当てるこ
とで前記ドレン水を気化させて、前記排気風と共に排出
するごとく成しているのであるから、前記蒸発板(D)
に塵等の不純物が付着すると、前記蒸発板(D)を構成
している前記保水機能部材(8)の毛細管組織が目詰ま
りすることになり、それだけ前記ドレン水の吸引能力が
劣化して前記蒸発板(D)の機能を低下させる問題があ
った。
(Problem to be Solved by the Invention) However, in the conventional technology described above, the means for processing the drain separated by the water separator is provided with a drain tank (A) for storing the drain, and the drain tank ( A
) is provided with the evaporation plate (D) so that the lower end of the evaporation plate (D) is always immersed in the drain water in the drain tank (A), and the drain water is poured into the evaporation plate (D). The drain water is sucked by capillary action caused by the capillary structure and impregnated into the evaporation plate (D), and the drain water is vaporized by applying an exhaust air of nitrogen-enriched air to the evaporation plate (D) and discharged together with the exhaust air. Therefore, the evaporation plate (D)
If impurities such as dust adhere to the evaporation plate (D), the capillary structure of the water retention function member (8) constituting the evaporation plate (D) will become clogged, and the suction ability of the drain water will deteriorate accordingly. There was a problem that the function of the evaporation plate (D) was deteriorated.

このため、其の都度ドレンタンク(A)の清掃や、蒸発
板(D)の交換の必要があるし、また、蒸発板(D)の
機能低下により前記ドレン水が前記ドレンタンク(A)
からオーバフローして機外へ漏出し、設置床面を汚す問
題もあった。
For this reason, it is necessary to clean the drain tank (A) and replace the evaporator plate (D) each time, and the drain water may leak into the drain tank (A) due to the deterioration of the function of the evaporator plate (D).
There was also the problem that the water overflowed and leaked out of the machine, staining the installation floor.

本発明は、前記の如き問題点に鑑みて発明されたもので
あって、其の目的は、蒸発板に塵などの不純物が付着し
てもドレン処理が低下なく行えて、その耐用寿命を延長
することができると共に、排気風による騒音も解消でき
る酸素富化機におけるドレン処理装置を提供するもので
ある。
The present invention was invented in view of the above-mentioned problems, and its purpose is to extend the service life of the evaporator plate by making it possible to perform drainage treatment without deteriorating even if impurities such as dust adhere to the evaporator plate. The present invention provides a drain processing device for an oxygen enrichment machine that can eliminate noise caused by exhaust air.

(課題を解決するための手段) 本発明は、前記目的を達成するために、酸素富化M(9
a)をもつ分離膜モジュール(9)と、該モジュール(
9)から取出す酸素富化空気の凝縮水を分離させる気液
分離器(25)及び窒素富化空気の排気口(5)を備え
た酸素富化機において、前記排気口(5)に、親水性材
料から成り、多数の通気路(30a)をもつ蒸発板(3
0)を設けると共に、この蒸発板(30)の上部に、前
記分離器(25)から延びるドレン配管(28)の開口
部を臨ませていることを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides oxygen enriched M (9
a); a separation membrane module (9) having the module (a);
9) In an oxygen enrichment machine equipped with a gas-liquid separator (25) for separating condensed water from oxygen-enriched air taken out from the air and a nitrogen-enriched air exhaust port (5), the exhaust port (5) is equipped with a hydrophilic The evaporation plate (3
0), and the opening of the drain pipe (28) extending from the separator (25) is exposed above the evaporation plate (30).

又、前記蒸発板(30)の通気路(30a)に、下向き
風向板(30b)を設けるのが好ましい。
Further, it is preferable to provide a downward wind direction plate (30b) in the ventilation path (30a) of the evaporation plate (30).

更に、複数の通気孔(30c)をもつ蒸発板(30)を
複数枚所定間隔を置いて並設すると共に、前記各蒸発板
(30)の通気孔(30c)を相互にIIIMさせる如
く成しても良いのである。
Furthermore, a plurality of evaporation plates (30) having a plurality of ventilation holes (30c) are arranged in parallel at a predetermined interval, and the ventilation holes (30c) of each of the evaporation plates (30) are made to be mutually IIIM. It is okay to do so.

(作   用  ) 上記構成により、前記気液分離器(25)で分離された
ドレンを、排気口(5)に設けた親水性材料から成る前
記蒸発板(30)の上部に、ドレン配管(29)を経て
滴下させると共に、該蒸発板(30)の通気路(30a
)を通過する窒素富化空気により、前記蒸発板(30)
に、該蒸発板(30)の上部から浸透してくる前記ドレ
ンを逐次気化させることができるので、第6図に示した
従来の技術によるもの\如く、ドレンを−Hドレンタン
ク(A)に貯留すると共に、該タンク(A)に貯留され
ている前記ドレン水に下端を浸浴させた蒸発板(D)の
毛細管現象により前記ドレン水を吸引し、蒸発板(D)
に含湿させて気化するもの\如く前記蒸発板(D)に付
着する塵等の不純物で毛細管組織が目詰まりして前記毛
細管現象を劣化させ前記蒸発板(D)の機能を低下させ
る如き虞れもなく、たとえ、蒸発板(30)に塵等の不
純物が付着して、保水力が低下しても前記ドレンの蒸発
作用は行えるのであり、従って、それだけ寿命が長くな
るのである。
(Function) With the above configuration, the drain separated by the gas-liquid separator (25) is transferred to the drain pipe (29) above the evaporation plate (30) made of a hydrophilic material provided at the exhaust port (5). ), and the ventilation passage (30a) of the evaporation plate (30).
) by nitrogen-enriched air passing through the evaporator plate (30).
In addition, since the condensate penetrating from the upper part of the evaporation plate (30) can be vaporized successively, the condensate can be transferred to the -H drain tank (A) as in the conventional technique shown in FIG. At the same time, the drain water is sucked by the capillary action of the evaporator plate (D) whose lower end is immersed in the drain water stored in the tank (A), and the evaporator plate (D)
There is a risk that impurities such as dust adhering to the evaporator plate (D) may clog the capillary structure, deteriorating the capillary phenomenon and reducing the function of the evaporator plate (D). Even if impurities such as dust adhere to the evaporator plate (30) and the water retention capacity decreases, the evaporation function of the drain can still be performed, and therefore, the service life will be extended accordingly.

又、前記蒸発板(30)の通気路(30a)に下向き風
向板(30b)を設けたことで、該風向板(30b)の
作用で、前記通気路(30a)を通過する窒素富化空気
が乱流現象を呈し、排気口周辺での滞留時間が長くなり
、前記蒸発板(30)に含浸せる水分を蒸発促進させる
作用を一層良好になすことができると共に、騒音の居住
者に対する影響を少なくできるのである。
Furthermore, by providing a downward wind direction plate (30b) in the ventilation passage (30a) of the evaporation plate (30), the nitrogen-enriched air passing through the ventilation passage (30a) is exhibits a turbulent flow phenomenon, and the residence time around the exhaust port becomes longer, making it possible to further improve the effect of accelerating the evaporation of the water impregnated in the evaporation plate (30), and to reduce the impact of noise on residents. It can be done less.

更に、蒸発板(30)を複数枚所定間隔を置いて並設す
ると共に、該蒸発板(30)の通気孔(30c)を相互
にmuさせることで、騒音の機外への伝播を少なくでき
消音の効果を一層向上させることができる。
Furthermore, by arranging a plurality of evaporation plates (30) in parallel at predetermined intervals and by mutually arranging the ventilation holes (30c) of the evaporation plates (30), it is possible to reduce the propagation of noise to the outside of the machine. The silencing effect can be further improved.

(実  施  例  ) 以下、本発明による酸素富化機におけるドレン処理装置
を、図面の実施例に基づき説明する。
(Example) Hereinafter, a drain treatment device for an oxygen enrichment machine according to the present invention will be described based on an example shown in the drawings.

先ず、本発明のドレン処理装置を適用する酸素富化機の
構成を説明すると、酸素富化機本体(1)は、第1図の
ように概略縦長な角箱状を呈し、下部にキャスター(2
)を具備して移動可能とすると共に、上方にフィルタ(
3)を備えた吸気口(4)を設ける一方、下部に排気口
(5)を設けである。
First, to explain the configuration of the oxygen enrichment machine to which the drain processing device of the present invention is applied, the main body (1) of the oxygen enrichment machine has an approximately elongated square box shape as shown in Fig. 1, and has casters ( 2
) to make it movable, and a filter (
3), and an exhaust port (5) at the bottom.

しかして、前記本体(1)の内部で、前記吸気口(4)
に備えた前記フィルタ(3)の濾過面と対面する位置に
、熱交換器(6)を配設し、該熱交換器(6)をダクト
(7)で包囲している。
Therefore, inside the main body (1), the intake port (4)
A heat exchanger (6) is disposed at a position facing the filtration surface of the filter (3) provided in the filter, and the heat exchanger (6) is surrounded by a duct (7).

該ダクト(7)の下面には開口部(8)を形成し、該開
口部(8)から前記ダクト(7)内へ、シリコーン等で
構成される酸素富化Nu(9a)を内蔵した分離膜モジ
ュール(9)の−次側となる上端部(10)を潜入させ
ると共に、前記モジュール(9)を下方へ延設して、該
モジュール(9)における下端側面に、前記モジュール
(9)の二次側となる窒素富化空気の放出口(11)を
形成し、該放出口(11)を、該放出口(11)に隣接
させた吸引ファン(12)の吸込口(13)に連通させ
ると共に、前記吸引ファン(12)を、真空ポンプ(1
4)を内装するポンプケーシング(15)の天板上に固
設して、前記吸引ファン(12)の吐出口(16)を前
記ポンプケーシング(15)内と連通可能に接続してい
る。そして、前記ポンプケーシング(15)内には、そ
の底板上に防振装置(17)を介して真空ポンプ(14
)が設置されている。
An opening (8) is formed in the lower surface of the duct (7), and a separation tube containing oxygen-enriched Nu (9a) made of silicone or the like is introduced from the opening (8) into the duct (7). The upper end (10) of the membrane module (9) on the next side is infiltrated, the module (9) is extended downward, and the lower end side surface of the module (9) is coated with the upper end (10) of the module (9). A discharge port (11) for nitrogen-enriched air serving as a secondary side is formed, and the discharge port (11) is communicated with a suction port (13) of a suction fan (12) adjacent to the discharge port (11). At the same time, the suction fan (12) is
4) is fixedly installed on the top plate of the pump casing (15), and the discharge port (16) of the suction fan (12) is connected to the inside of the pump casing (15) so as to be able to communicate with the inside of the pump casing (15). A vacuum pump (14) is provided inside the pump casing (15) via a vibration isolator (17) on the bottom plate thereof.
) is installed.

しかして、前記真空ポンプ(14)の吸込側(18)を
、前記モジュール(9)の酸素富化膜(9a)の集束部
(9c)に、吸引パイプ(20)を介して連通可能に接
続する一方、前記真空ポンプ(14)の吐出側(21)
を、吐出パイプ(22)を介して前記熱交換器(6)に
おける−次側(23)に連通させると共に、該熱交換器
(6)の二次側(24)を、気液分離器(25)の入口
側へパイプライン(26)で連通させ、その出口側にホ
ース(27)を接続し、その先端側を前記本体(1)の
外部へ進出させて酸素富化空気の取出口(28)と成し
ている。
Thus, the suction side (18) of the vacuum pump (14) is communicatively connected to the convergence part (9c) of the oxygen enrichment membrane (9a) of the module (9) via the suction pipe (20). On the other hand, the discharge side (21) of the vacuum pump (14)
is connected to the downstream side (23) of the heat exchanger (6) via the discharge pipe (22), and the secondary side (24) of the heat exchanger (6) is connected to the gas-liquid separator ( A pipeline (26) is connected to the inlet side of the main body (25), and a hose (27) is connected to the outlet side of the hose (27). 28).

又、前記分離器(25)の底部にドレン液排水孔を設け
て、該排水孔にドレン配管(29)を接続すると共に、
該ドレン配管(29)の開口部(29a)を、前記本体
(1)の排気口(5)に位置するように設けた後記する
蒸発板(30)の上部に臨在する如く配設している。
Further, a drain liquid drain hole is provided at the bottom of the separator (25), and a drain pipe (29) is connected to the drain hole,
The opening (29a) of the drain pipe (29) is arranged so as to be located above the evaporation plate (30), which will be described later, and which is located at the exhaust port (5) of the main body (1). .

一方、前記ポンプケーシング(15)における前記排気
口(5)と対向する側の側壁を2重構造となして、その
内側壁(31)の上方に通風窓(32)を形成し該窓(
32)の下縁に、外方へ向けて突出する抵抗片(32a
)を設けると共に、前記内側壁(31)と離間した位置
に、該内側壁(31)と対向状に外側壁(33)を設け
、該外側壁(33)の下方に通風窓(34)を形成し、
該通風窓(34)の上縁に内方へ向けて突出する抵抗片
(34a)を設けて、前記内側壁(31)と外側壁(3
3)とで形成する空間を気体の抵抗通路(35)と成す
のである。
On the other hand, the side wall of the pump casing (15) facing the exhaust port (5) has a double structure, and a ventilation window (32) is formed above the inner wall (31).
At the lower edge of 32), there is a resistance piece (32a) that protrudes outward.
), an outer wall (33) is provided at a position away from the inner wall (31) and facing the inner wall (31), and a ventilation window (34) is provided below the outer wall (33). form,
A resistance piece (34a) protruding inward is provided on the upper edge of the ventilation window (34), and the inside wall (31) and the outside wall (3
3) forms a gas resistance path (35).

しかして、前記蒸発板(30)は、例えば不織布にフェ
ノール樹脂等を含浸させた親水性材料を用いて成形によ
り形成するもので、その蒸発作用面に複数の通気路(3
0a)を設けており、これら複数の通気路(30a)に
は下向きの風向板(30b)を設けている。又、前記蒸
発板(30)は、排気用開口部(3(3a)をもつ排気
蓋(36)の内方に配設され、前記機体(1)の排気口
(5)に対し、前記通気路(30a)が連通可能となる
如く前記機体(1)に着脱自由に支持されている。
The evaporation plate (30) is formed by molding using a hydrophilic material such as non-woven fabric impregnated with phenol resin, etc., and has a plurality of ventilation channels (30) on its evaporation surface.
0a), and these plurality of ventilation paths (30a) are provided with downward wind direction plates (30b). Further, the evaporation plate (30) is disposed inside an exhaust cover (36) having an exhaust opening (3 (3a)), and is connected to the exhaust port (5) of the body (1). It is detachably supported by the body (1) so that the passage (30a) can be communicated with the body (1).

尚、本実施例では前記蒸発板(30)における下向きの
風向板(30b)を形成するに、親水性材料を成形する
場合に、通気路(30a)の下縁と、両側縁とを完全に
切離すと同時に、その上縁部のみを残存させて、該上縁
部を折曲線として、前記切離された下縁と両縁とで形成
する面を外側へ下向きに折曲させる如く、一体内に形成
したが、前記通気路(30a)に対し、別体の風向板(
30b)を付設してもよい。
In this embodiment, when forming the downward wind direction plate (30b) of the evaporation plate (30), when molding a hydrophilic material, the lower edge and both side edges of the air passage (30a) are completely sealed. At the same time as cutting, the upper edge is left alone, and the upper edge is used as a folding line to bend the surface formed by the cut lower edge and both edges outward and downward. Although formed inside the body, a separate wind direction plate (
30b) may be added.

次に以上の如く構成された本実施例の作用について説明
する。
Next, the operation of this embodiment configured as above will be explained.

本発明の酸素富化機は、例えば、薬液を用いて毛髪にパ
ーマネント施行する場合等に、前記薬液の作用を有効に
保進させるために必要な酸素富化空気を供給するために
用いるもので、前記酸素富化空気を採取する工程で発生
するドレンは気液分離器(25)で分離されると共に、
該分離器(25)に溜ったドレン水は、次のように処理
される。即ち、前記ドレンは親水性材料で構成された蒸
発板(30)の上部に滴下して該蒸発板(30)に保水
させ、該蒸発板(30)で保水したドレンを、前記ファ
ン(12)による窒素富化空気の排気風で気化させるの
である。
The oxygen enrichment machine of the present invention is used to supply the oxygen-enriched air necessary to effectively maintain the action of the chemical solution, for example, when applying a chemical solution to hair permanently. , the drain generated in the step of collecting the oxygen-enriched air is separated in a gas-liquid separator (25),
The drain water accumulated in the separator (25) is treated as follows. That is, the drain is dripped onto the upper part of the evaporation plate (30) made of a hydrophilic material to retain water in the evaporation plate (30), and the drain retained in the evaporation plate (30) is transferred to the fan (12). It is vaporized by the exhaust air of nitrogen-enriched air.

即ち、前記本体(1)に内装せる吸引ファン(12)と
、真空ポンプ(14)との駆動で、吸気口(4)からダ
クト(7)内へ大気圧の空気が導入されると共に、前記
分離膜モジュール(9)に取入れられ、この分離膜モジ
ュール(9)の通過により、該モジュール(9)に内蔵
する酸素富化III(9a)を介して酸素濃度の高い酸
素富化空気が取出される。そして、前記真空ポンプ(工
4)に吸引された前記酸素富化空気は、該ポンプの吐出
側(21)から吐出バイブ(22)を経て熱交換器(6
)の−次側へ送られ、前記熱交換器(8)により前記吸
気口(4)から導入される空気と熱交換して常温に冷却
されると共に、前記熱交換器(6)の二次側(24)か
らバイブライン(26)を介して気液分離器(25)へ
送られ、該分離器(25)内で、ドレンが分離されるの
であり、除湿され、常温状態となった前記酸素富化空気
は、ホース(27)を介して前記機体(1〕の外部へ取
出されて各々の使途に供されるのである。
That is, by driving a suction fan (12) installed in the main body (1) and a vacuum pump (14), air at atmospheric pressure is introduced into the duct (7) from the intake port (4), and the air at atmospheric pressure is introduced into the duct (7). The air is taken into the separation membrane module (9), and by passing through the separation membrane module (9), oxygen-enriched air with a high oxygen concentration is taken out via the oxygen enrichment III (9a) built in the module (9). Ru. The oxygen-enriched air sucked into the vacuum pump (4) passes from the discharge side (21) of the pump through the discharge vibrator (22) to the heat exchanger (6).
) is sent to the next side of the heat exchanger (8) by exchanging heat with the air introduced from the intake port (4) and cooled to room temperature, and is also cooled to the secondary side of the heat exchanger (6). The drain is sent from the side (24) via the vibrate line (26) to the gas-liquid separator (25), and is separated in the separator (25). The oxygen-enriched air is taken out of the body (1) through the hose (27) and is used for various purposes.

一方、前記気液分離器(25)内に滴ったドレンは該分
離器(25)の底部に設けたドレン配管(29)から自
然落下により該配管(29)の開口部(29a)から、
排気口(4)に設けた蒸発板(30)の上部へ滴下させ
られるのである。
On the other hand, the drain dripping into the gas-liquid separator (25) naturally falls from the drain pipe (29) provided at the bottom of the separator (25) through the opening (29a) of the pipe (29).
It is dripped onto the top of the evaporation plate (30) provided at the exhaust port (4).

即ち、前記蒸発板(30)を構成する親水性材料の特性
を利用して、該蒸発板(30)に、該蒸発板(30)の
上部から次第に下部へと前記ドレン水を浸透状に含浸さ
せて保水させるのである。また、窒素富化空気は、前記
吸引ファン(12)の吐出口(16)を介してポンプケ
ーシング(15)内へ吐出され、前記排気口(5)から
機外へ排出されるのである。
That is, by utilizing the characteristics of the hydrophilic material constituting the evaporation plate (30), the evaporation plate (30) is impregnated with the drain water gradually from the top to the bottom of the evaporation plate (30). This allows it to retain water. Further, the nitrogen-enriched air is discharged into the pump casing (15) through the discharge port (16) of the suction fan (12), and is discharged outside the machine from the exhaust port (5).

しかして、該ケーシング(15)内へ吐出された前記窒
素富化空気は、前記真空ポンプ(14)の発生熱を冷却
すると共に、前記窒素富化空気自体が前記ポンプの熱量
を吸収して高温空気となって内側壁(31)に設けた通
気窓(32)から流出し、抵抗通路(35)を通って流
速を緩めながら外側壁(36)に設けた通気窓(34)
から放出され、前記蒸発板(30)の裏面に沿って上方
へ移動する、このとき、前記蒸発板(30)に含浸され
て保水している前記ドレン水が、前記高温空気によって
加熱され蒸発気化すると共に、前記空気と共に前記蒸発
板(30)に設けた通気路(30a)を介して前記排気
口(5)から外方へ排出されるのである。
Thus, the nitrogen-enriched air discharged into the casing (15) cools the heat generated by the vacuum pump (14), and the nitrogen-enriched air itself absorbs the heat of the pump, resulting in a high temperature. The air flows out from the ventilation window (32) provided on the inner wall (31), passes through the resistance passage (35), and slows down the flow through the ventilation window (34) provided on the outer wall (36).
At this time, the drain water impregnated and retained in the evaporation plate (30) is heated by the high temperature air and evaporates. At the same time, the air is discharged outward from the exhaust port (5) through the ventilation path (30a) provided in the evaporation plate (30).

尚、本実施例では、ポンプケーシング(15)に内側壁
(31)と外側壁(34)とで抵抗通路(35)を形成
したことで、該通路(35)を流れる空気の流速を緩め
て、前記ケーシング(15)内における前記窒素富化空
気の滞在時間を長くして、該空気に前記真空ポンプ(1
4)の発生熱を十分吸収させて前記窒素富化空気を高温
付加することができるので、前記蒸発板(30)に含浸
するドレン液を蒸発気化させる作用を助長することがで
きるのである。
In this embodiment, by forming the resistance passage (35) in the pump casing (15) with the inner wall (31) and the outer wall (34), the flow velocity of the air flowing through the passage (35) is reduced. , the residence time of the nitrogen-enriched air within the casing (15) is increased, and the air is supplied to the vacuum pump (15).
Since the heat generated in step 4) can be sufficiently absorbed and the nitrogen-enriched air can be added at a high temperature, the effect of evaporating the drain liquid impregnated into the evaporation plate (30) can be promoted.

又、第1図乃至第3図に示した実施例では、前記蒸発板
(30)の通気路(30a)に下向き風向板(30b)
を設けているため、前記通気路(30a)を通過する空
気が前記下向き風向板(30b)に当たって乱流現象を
発生して前記通気路(30a)を通過する時間が長くな
り、結果的には、前記蒸発板(30)に含浸して保水す
るドレン水の気化作用を向上させると共に、高温排気風
の吸気口(4)への逆流を阻止でき、その上、排気を下
向きにできるから、居住者に対する騒音の影響を少なく
できるのである。
Further, in the embodiment shown in FIGS. 1 to 3, a downward wind direction plate (30b) is provided in the ventilation passage (30a) of the evaporation plate (30).
, the air passing through the ventilation path (30a) hits the downward wind direction plate (30b) and generates a turbulent flow phenomenon, which lengthens the time it takes to pass through the ventilation path (30a). In addition to improving the vaporization effect of the drain water impregnated into the evaporation plate (30) to retain water, it is possible to prevent high-temperature exhaust air from flowing back into the intake port (4), and in addition, the exhaust air can be directed downward, making it easier to live. The impact of noise on people can be reduced.

以上説明した実施例は、単一の蒸発板(30)を用いた
が、その他第4図のように、前記蒸発板(30)を複数
枚所定間隔を置いて並設すると共に、前記各蒸発板(3
0)には通気路を形成する複数の通気孔(30c)を設
けて、これら通気孔(30c)を、各蒸発板(30)に
おいて相互に1鮎させる如く成しても良い。
In the embodiment described above, a single evaporator plate (30) was used, but as shown in FIG. Board (3
0) may be provided with a plurality of ventilation holes (30c) forming a ventilation path, and these ventilation holes (30c) may be formed so as to be mutually arranged in each evaporation plate (30).

斯く成す場合は、前記通気孔(30c)を通過する排出
空気による騒音の機外への伝播をより少なくできる消音
作用を成せるものである。又、複数の蒸発板(30)を
用いる場合、その配設方向を排気口(5)からの排気方
向に並設させてもよい。
In this case, it is possible to achieve a muffling effect that can further reduce the propagation of noise to the outside of the machine due to the exhaust air passing through the vent hole (30c). Further, when a plurality of evaporation plates (30) are used, they may be arranged in parallel in the direction of exhaust from the exhaust port (5).

尚、本実施例では示していないが、前記蒸発板(30)
の下方にドレンパンを併設してもよい。
Although not shown in this embodiment, the evaporation plate (30)
A drain pan may also be provided below.

この場合は、前記蒸発板(30)に、万一、該蒸発板(
30)の気化能力以上のドレン液が滴下されたときの機
外への漏出を防止できる。
In this case, in the unlikely event that the evaporation plate (30)
30) It is possible to prevent leakage to the outside of the machine when drain liquid exceeding the vaporization capacity is dropped.

(発明の効果) 本発明は以上説明した如く、酸素富化膜(9a)をもつ
分離膜モジュール(9)と、該モジニール(9)から取
出す酸素富化空気のドレンを分離させる気液分離器(2
5)及び窒素富化空気の排気口(5)を備えた酸素富化
機において、前記排気口(5)に、親水性材料から成り
、多数の通気路(30a)をもつ蒸発板(30)を設け
ると共に、この蒸発板(30)の上部に、前記分離器(
25)から延びるドレン配管(29)の開口部を臨ませ
ていることにより、酸素富化空気の採取工程において発
生するドレン水を蒸発板(30)上部に滴下させると共
に、該蒸発板(30)の材料特性を活用して上部から次
第に下部に浸透させて保水する一方、逐次窒素富化空気
の排風を利用して気化排出することができるので、前記
蒸発板(30)に塵等の不純物が付着して、その保水性
が低下しても、前記蒸発板(30)によるドレン蒸発は
行えるのであって、それだけ従来例に比較して前記蒸発
板(30)の耐用寿命を延長でき、酸素富化機における
ドレン処理装置の長期使用を可能とすることができるし
、また、前記蒸発板の機能の低下でドレンタンクからオ
ーバフローしたドレン液で床面を汚浸する虞も解消でき
るのである。
(Effects of the Invention) As explained above, the present invention provides a separation membrane module (9) having an oxygen-enriched membrane (9a) and a gas-liquid separator that separates the drain of oxygen-enriched air taken out from the Mogenir (9). (2
5) and an oxygen enrichment machine equipped with an exhaust port (5) for nitrogen-enriched air, in which the exhaust port (5) is provided with an evaporation plate (30) made of a hydrophilic material and having a large number of ventilation passages (30a). is provided, and the separator (
By facing the opening of the drain pipe (29) extending from the evaporator plate (30), drain water generated in the oxygen-enriched air sampling process is allowed to drip onto the upper part of the evaporator plate (30). By making use of the material properties of the material, water is retained by gradually infiltrating from the upper part to the lower part, and at the same time, it can be vaporized and discharged using the exhaust air of nitrogen-enriched air, so that impurities such as dust can be removed from the evaporation plate (30). Even if the water retention property of the evaporator plate (30) decreases due to adhesion of water, the evaporator plate (30) can still evaporate the condensate. It is possible to use the drain treatment device in the enrichment machine for a long period of time, and it is also possible to eliminate the possibility that the floor surface will be contaminated with drain liquid that overflows from the drain tank due to a decline in the function of the evaporation plate.

又、前記蒸発板(30)の通気路(30a)に下向き風
向板(30b)を設けることで、排出される窒素富化空
気が、前記通気路(30a)を通過する際、前記下向き
風向板(30b)に当たって乱流現象を呈し、前記蒸発
板(30)に接触する滞留時間を長くできるので、前記
蒸発板(30)に含浸して保水するドレンの気化作用を
向上させることができるし、また、排気を下向きにでき
るから居住者に対する騒音の影響も少なくできるのであ
る。
Further, by providing a downward wind direction plate (30b) in the ventilation passage (30a) of the evaporation plate (30), when the nitrogen-enriched air to be discharged passes through the ventilation passage (30a), the downward wind direction plate (30b) exhibits a turbulent flow phenomenon, and the residence time in contact with the evaporation plate (30) can be lengthened, so that the vaporization effect of the condensate that impregnates and retains water in the evaporation plate (30) can be improved. Additionally, since the exhaust air can be directed downward, the impact of noise on residents can be reduced.

更に、複数の通気孔(30c)をもつ蒸発板(30)を
複数枚所定間隔を置いて並設すると共に、前記各蒸発板
(30)の通気孔(30c)を相互に1鮎させることで
前記通気孔(30c)を通過する窒素富化空気、即ち、
排気空気による騒音の機外伝幡を少なくできると共に、
その消音効果により騒音を低下できるのである。
Furthermore, by arranging a plurality of evaporation plates (30) having a plurality of ventilation holes (30c) in parallel at predetermined intervals, and making the ventilation holes (30c) of each of the evaporation plates (30) mutually Nitrogen-enriched air passing through the vent (30c), i.e.
In addition to reducing the transmission of noise from exhaust air to the outside of the aircraft,
Its silencing effect can reduce noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置を適用した酸素富化機の全体を示す
断面図、第2図は要部の作用を説明する断面説明図、第
3図は第2図の側面図、第4図は別の実施例を説明する
部分斜視図、第5図は本発明を適用する酸素富化機の概
略図、第6図は従来例を示す要部断面図である。 (5)・・排気口 (9)・・分離膜モジュール (9a)・・酸素富化膜 (25)・・気液分離器 (29)・・ドレン配管 (30)・・蒸発板 (30a)・・通気路 (30b)・・下向き風向板 (30c)・・通気孔 第2図 第3図 30cl 第4図 0c 第6図
Fig. 1 is a cross-sectional view showing the entire oxygen enrichment machine to which the device of the present invention is applied, Fig. 2 is a cross-sectional explanatory view explaining the operation of the main parts, Fig. 3 is a side view of Fig. 2, and Fig. 4 5 is a schematic diagram of an oxygen enrichment machine to which the present invention is applied, and FIG. 6 is a sectional view of a main part of a conventional example. (5)... Exhaust port (9)... Separation membrane module (9a)... Oxygen enrichment membrane (25)... Gas-liquid separator (29)... Drain piping (30)... Evaporation plate (30a) ...Ventilation channel (30b) ...Downward wind direction board (30c) ...Vent hole Figure 2 Figure 3 30cl Figure 4 0c Figure 6

Claims (1)

【特許請求の範囲】 1)酸素富化膜(9a)をもつ分離膜モジュール(9)
と、該モジュール(9)から取出す酸素富化空気の凝縮
水を分離させる気液分離器(25)及び窒素富化空気の
排気口(5)を備えた酸素富化機において、前記排気口
(5)に、親水性材料から成り、多数の通気路(30a
)をもつ蒸発板(30)を設けると共に、この蒸発板(
30)の上部に、前記分離器(25)から延びるドレン
配管(29)の開口部を臨ませていることを特徴とする
酸素富化機におけるドレン処理装置。 2)通気路(30a)に下向き風向板(30b)を設け
ている請求項1記載の酸素富化機におけるドレン処理装
置。 3)複数の通気孔(30c)をもつ蒸発板(30)を複
数枚所定間隔を置いて並設すると共に、前記各蒸発板(
30)の通気孔(30c)を相互に齟齬させている請求
項1記載の酸素富化機におけるドレン処理装置。
[Claims] 1) Separation membrane module (9) having an oxygen enrichment membrane (9a)
an oxygen enrichment machine comprising: a gas-liquid separator (25) for separating condensed water from the oxygen-enriched air taken out from the module (9); and an exhaust port (5) for nitrogen-enriched air; 5) is made of hydrophilic material and has a large number of ventilation channels (30a
) is provided, and this evaporation plate (30) is provided.
30) A drain processing device for an oxygen enrichment machine, characterized in that an opening of a drain pipe (29) extending from the separator (25) is exposed to the upper part of the drain pipe (29). 2) The drain processing device for an oxygen enrichment machine according to claim 1, wherein the ventilation path (30a) is provided with a downward wind direction plate (30b). 3) A plurality of evaporation plates (30) having a plurality of ventilation holes (30c) are arranged in parallel at predetermined intervals, and each of the evaporation plates (30)
2. The drain processing device for an oxygen enrichment machine according to claim 1, wherein the vent holes (30c) of the drain holes (30) are made to be in conflict with each other.
JP3677090A 1990-02-16 1990-02-16 Drain-treating apparatus of oxygen-enriching apparatus Pending JPH03242305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3677090A JPH03242305A (en) 1990-02-16 1990-02-16 Drain-treating apparatus of oxygen-enriching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3677090A JPH03242305A (en) 1990-02-16 1990-02-16 Drain-treating apparatus of oxygen-enriching apparatus

Publications (1)

Publication Number Publication Date
JPH03242305A true JPH03242305A (en) 1991-10-29

Family

ID=12479002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3677090A Pending JPH03242305A (en) 1990-02-16 1990-02-16 Drain-treating apparatus of oxygen-enriching apparatus

Country Status (1)

Country Link
JP (1) JPH03242305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588984A (en) * 1995-07-18 1996-12-31 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen
US5611845A (en) * 1995-08-22 1997-03-18 Undersea Breathing Systems, Inc. Oxygen enriched air generation system
US5688306A (en) * 1995-07-18 1997-11-18 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen gas
US6755898B2 (en) * 2002-07-26 2004-06-29 Daewoo Electronics Corporation Oxygen-enriched air supplying apparatus
EP2323742A1 (en) * 2008-06-10 2011-05-25 Stg - Swefog Technology Group Aktiebolag A method of creating smoke, fog or haze, and a smoke, fog or haze generator assembly
US9592171B2 (en) 2011-08-25 2017-03-14 Undersea Breathing Systems, Inc. Hyperbaric chamber system and related methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588984A (en) * 1995-07-18 1996-12-31 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen
US5688306A (en) * 1995-07-18 1997-11-18 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen gas
US5611845A (en) * 1995-08-22 1997-03-18 Undersea Breathing Systems, Inc. Oxygen enriched air generation system
US5846291A (en) * 1995-08-22 1998-12-08 Undersea Breathing Systems, Inc. Oxygen enriched air generation system
US5858064A (en) * 1995-08-22 1999-01-12 Undersea Breathing Systems, Inc. Oxygen enriched air generation system
US5865877A (en) * 1995-08-22 1999-02-02 Undersea Breathing Systems, Inc. Method and apparatus for supplying a pressurized diver's breathing gas for underwater divers
US6755898B2 (en) * 2002-07-26 2004-06-29 Daewoo Electronics Corporation Oxygen-enriched air supplying apparatus
EP2323742A1 (en) * 2008-06-10 2011-05-25 Stg - Swefog Technology Group Aktiebolag A method of creating smoke, fog or haze, and a smoke, fog or haze generator assembly
EP2323742A4 (en) * 2008-06-10 2012-05-16 Stg Swefog Technology Group Aktiebolag A method of creating smoke, fog or haze, and a smoke, fog or haze generator assembly
US9592171B2 (en) 2011-08-25 2017-03-14 Undersea Breathing Systems, Inc. Hyperbaric chamber system and related methods

Similar Documents

Publication Publication Date Title
KR100819653B1 (en) Gas purifier
US20150323216A1 (en) A heat exchanger and a ventilation assembly comprising it
KR102128205B1 (en) White reduction method for cooling tower, and cooling tower for abating plume using damper type and filter and condenser combination device
WO2015064981A1 (en) Natural evaporation humidifier
WO2015156636A1 (en) Air purifier having dehumidification function and humidification function
JPH03242305A (en) Drain-treating apparatus of oxygen-enriching apparatus
JP5077292B2 (en) centrifuge
CN111728495B (en) Condensing device of cooking utensil and have its cooking utensil
JP2006118797A (en) Air conditioning system
JP4251004B2 (en) Humidity control device
KR102147161B1 (en) Heat recovering ventilator with hepa filter
KR101980284B1 (en) Dehumidification system with membrane installed in duct
JP2006258401A (en) Gas-liquid separator and liquid draining method for element for gas-liquid separation
JPH07167452A (en) Cooler
KR20190007772A (en) Air purifier
IL22299A (en) Apparatus for use in evaporative processes
KR20100058107A (en) Complex type air cleaner attached to ceiling
CN111623449A (en) Air-conditioning tower crane
CN218296812U (en) Deodorization cooling tower
CN101111300B (en) Device used for indoor air dehumidification
JPH03242304A (en) Oxygen-enriching apparatus
CN214307684U (en) Heat pump dehumidification heating unit
CN214255326U (en) Dehumidification and cooling system for distribution room
JP2005103365A (en) Dehumidification apparatus
JPS6283304A (en) Oxygen enricher