JPH0324184A - Fireproof construction of passage of large-size cable - Google Patents

Fireproof construction of passage of large-size cable

Info

Publication number
JPH0324184A
JPH0324184A JP1158643A JP15864389A JPH0324184A JP H0324184 A JPH0324184 A JP H0324184A JP 1158643 A JP1158643 A JP 1158643A JP 15864389 A JP15864389 A JP 15864389A JP H0324184 A JPH0324184 A JP H0324184A
Authority
JP
Japan
Prior art keywords
cable
floor
fireproof
sized
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158643A
Other languages
Japanese (ja)
Inventor
Yutaka Ushio
牛尾 豊
Yoshihito Munemasa
宗政 義仁
Mitsuo Takuwa
多久和 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1158643A priority Critical patent/JPH0324184A/en
Publication of JPH0324184A publication Critical patent/JPH0324184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

PURPOSE:To let the construction of a passage of a large-size cable at a floor meet the requirements of the two-hour fire-resistant grade by constructing the passage in a specific manner. CONSTITUTION:A cable passage comprises a cable passage hole installed at a floor; a large-size cable 18 passing through the cable passage hole; a fireproof material layer 14 applied to the surface of the part (ranging from the floor level to at least 100mm above) of the large-size cable; and many heat-exhausting pipes 13 installed between the cable 18 and the layer 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築物、たとえばビル、ホテル、マンシッン等
の建築物の床面を電線やケーブル(それらを以下単に以
下ケーブルと称する〉が貫通するケーブル床貫通部の防
火構造に関する.〔従来の技術〕 ビル、ホテル、マンシッン等の建築物に於いて火災が生
じると、ケーブル床貫通孔を通じて火災が他の階に波及
する.これを防止するため従来からこの貫通孔に防火構
造を設けることが行われている.. 従来の防火構造として、床貫通孔内を貫通するケーブル
の周囲に防火材を充填することが行われており、また・
第1図に示す様に防火材を充填するに際し、床貫通孔+
1+の上側(2)、即ち床面倒と下側(3)、即ち階下
の天井側とに防火パテ(4)、及び(4)゜を充填し、
その中間にロックウール(5)を充填して貫通孔が煙道
にならないように防火手段を施している.尚、図中のく
7)は床、(8)はケーブルを示す.但し上記防火構造
に於いては、防火パテ(4)、(4)゜と床面との間に
珪酸カルシウム板(6)、(6)゜ を介在させており
、防火パテ(4)、(4)゛ の積層高さ(h)、(h
〉′は5、OCm以上となっている.このような従来の
防火構造では、所謂1時間耐火といわれる防火性能を略
満足するものであるが2時間耐火の性能を満足するには
困難であり、特にケーブルとして大サイズ、たとえば1
本のケーブルの導体断面積が400fi”以上の大サイ
ズケーブルの場合には導体を通じての上方への熱移動が
極めて大きく、このために2時間耐火の要求を満たすこ
とは極めて困難である. 〔発明が解決しようとする課題〕 本発明が解決しようとする課題は、大サイズケーブルが
貫通するケーブル床貫通部であって、しかも2時間耐火
に充分耐え得る防火性能を有する防火構造を新たに開発
することである.〔課題を解決するための手段〕 この課題は、ケーブル床貫通孔、ケーブル床貫通孔を貫
通する大サイズケーブル、ケーブル床貫通孔のと面倒に
位置する大サイズケーブル根部の少なくとも長さ100
關の部分の表面に施与された防火材料層、大サイズケー
ブルと防火材料層との間に設置された多数本の排熱用パ
イプとからなることを特徴とする大サイズケーブル貫通
部の防火構造によって解決される. 〔発明の作用〕 本発明に於いては、次の様な手段を採用する.+11 
 ケーブル床貫通孔の上面側に位置する大サイズケーブ
ル根部の少なくとも長さ100fiの部分の表面、好ま
しくは少なくとも長さ300mの部分の表面には防火材
料層を設ける. (2)上記の防火材料層と大サイズケーブルとの間には
、多数本の排熱用バイブを設置する.火災は、ケーブル
床貫通孔の隙間から吹き出す階下の熱気によるケーブル
表面の加熱、並びにケーブル導体を伝わる熱によるケー
ブル内部からの加熱、の双方によりケーブル根部が延焼
し階上に伝播する場合が多いが、本発明においては上記
(11の構威によってケーブル表面の加熱に対処し、一
方上記(2)の構戒によってケーブル内部からの加熱に
対処する.即ちケーブルが内部から加熱されても多数本
の排熱用パイプによる自動的な冷気吸入と熱気排出とに
よってケーブル根部の全体が低温度に保持される.この
ケーブル内外での加熱対処によって、前記した本発明の
課題を解決することができる. 本発明に於いていう大サイズケーブルとは、それ1本の
ケーブル中に存在する導体の総断面積が400mm2以
上、特に1000mm2以上のものをいう.その際多数
本の撚線単位が1つの絶縁層を共有しているようなケー
ブルにおいて、それら多数本の撚線単位の各断面積の合
計が400mmm2以上である場合、かかるケーブルも
本発明に於ける大サイズケーブルである.本発明は平型
ケーブルに対して効果が大きいので平型大サイズケーブ
ルに適用することが特に好ましい.以下に第2図を参照
しつつ本発明を詳しく説明する. 第2図は本発明の肪火構造の一例を示し、その(イ)は
縦断面図、(ロ)は(イ)のx−x’線断面図を示す. 第2図に於いては、床Q7)に設けられたケーブル床貫
通孔αυに3本の大サイズ平型ケーブルα●が貫通して
おり、床(1?)の上面(自)上にはケーブル床貫通孔
aDと大サイズ平型ケーブルα●との間隙を狭隘化する
ための珪酸カルシウム板等の耐火板αQがアンカーボル
ト止めされている.ケーブル床貫通孔αυの上面側に位
置する大サイズケーブル根部の少なくとも長さ100鵡
の部分の表面には防火材料層(自)が施与されており、
防火材料層(社)と3本の大サイズ平型ケーブル(自)
の束との間に多数本の排熱用パイプ(至)が図示する通
り均等に分散配置されている.排熱用パイプα−は、耐
火板(至)に平行に伸びる水平部とケーブル(自)に平
行に伸びる垂直部とからなるL字型をしており、下端A
及び上端B共に開口している.火災時にケーブル(自)
の温度上昇があると、排熱用バイブ(至)垂直部内の空
気が加熱されて上端Bより排出され、同時に下端Aより
冷気の吸入が生じてかくして排熱用パイプ(至)による
放熱作用により、ケーブルa●全体が低温度に保持され
る.本発明に於いて使用される排熱用パイプQlとして
は、第2図では8本の例を示しているが、必ずしもこれ
に限定されることはなく2本以上あれば良いが、出来る
だけケーブルa鴫の周囲に均等に設けることが好ましく
、この点から4本以上が好ましい.パイプα●のサイズ
もケーブルの大きさに合わせて適宜に決定されれば良く
、材質としても熱排出に充分耐える材質であればよく、
金属パイプを代表例として挙げることが出来る.防火材
料層(自)の長さは、好ましくは少なくとも500fi
である. 耐火板α−の下のケーブル床貫通孔αD内は未充填でも
よいが、防火材料層(自)についての後記する構戒材と
同様の防火材料やその他の各種耐熱性あるいは不燃性の
材料、たとえばロックウール、砂、マイカ粉等にて充填
することが好ましい.防火材料層(自)の構戒材料とし
ては、酸素指数30以上、望ましくは35以上の難燃性
有機高分子材料、発泡性防火材料等が用いられ得る.酸
素指数30以上、望ましくは35以上の難燃性有機高分
子材料の代表的な具体例としては、有機高分子樹脂に各
種の難燃剤を配合した組戒物が用いられる.有機高分子
樹脂の例としては、従来公知のものを広く使用でき、例
えばポリエチレン、ポリブロビレン、ボリスチレン等の
オレフィンのjl独L&体、エチレンープロピレンゴム
、エチレンープロピレンージエンゴム等のオレフィンの
共重合体、スチレンーブタジエンゴム、インブチレンー
イソブレンゴム、アクリロニトリルーブタジエンゴム、
エチレンーエチルアクリレート共重合体、エチレンー酢
酸ビニル共重合体等のビニル系・モノマーとオレフィン
との共重合体等、ポリ塩化ビニル、塩素化ポリエチレン
、ポリクロロプレン、クロロスルホン化ポリエチレン、
エビクロルヒドリン等の含ハロゲンボリマー類、ナイロ
ン、ポリエステル、ポリウレタン等のその他のプラスチ
ックスやゴム等が用いられる. 難燃剤としては、デカブロモジフエニルオキサイド、ヘ
キサプロモベンゼン、ヘキサブロモシクロドデカン、ド
デカクロロベンタシクロオクタデカ7,15ジエン、テ
トラブロモビスフェノールA1トリブロモフェノール、
テトラプロモ無水フタル酸、ジブロモネオペンテルグリ
コール、テトラブロモビスフェノールA−ピスー(アリ
ールエーテル)、塩素化ポリエチレン、等の含ハロゲン
有機難燃剤、二酸化アンチモン、二酸化モリブデン等の
金属酸化物、アルξナ水和物、マグネシア水和物、塩基
性硫酸グネシュウム水和物、塩基性炭酸マグネシェウム
水和物、塩基性リン酸マグネシュウム水和物等の水和金
属酸化物の1種または2種以上が用いられる.特に水和
金属酸化物が好ましいが、含ハロゲン有機難燃剤と金属
酸化物との併用系も好ましい. 難燃剤の使用量は、使用する難燃剤や有機高分子樹脂の
種類によって異なるが、一般的には、有機高分子樹脂1
00重量部あたり10〜100重量部程度である.難燃
性有機高分子&l1戒物は、上記の各威分を、更に必要
に応じてその他の戒分、たとえば酸化防止剤、充填剤、
顔料、加工助剤、難燃助剤(たとえば3ZnO−28x
Os−3HgO 、2ZnO−38tOsJ.5HxO
 SZnO−ZnM*O*、CaO−ZnM。o*、Z
ns(PO*)s−4HtO、ZnOとMgOの復合焼
或物、ZnO s ZnCOs、メタ硼酸バリウムなど
含亜鉛化合物類、酸化チタン、ケイ酸ジルコニウム、炭
酸マグネシウム、ペンナイト、赤燐、等)を一緒に混合
して均一組底物とし、架橋してもしくは非架橋のままで
用いられる. 酸素指数30以上、望ましくは35以上の難燃性有機高
分子材料の他の具体例としては、高ハロゲン含有樹脂、
たとえば硬質ポリ塩化ビニル、47フ化ポリエチレン、
四フフ化エチレン・プロピレン共重合体、ボリフッ化ビ
ニリデン等が例示される. またボリブテン、シリコン油、流動パラフィン、液状ク
ロロプレン重合体等の常温で液状のバインダーに上記し
た難燃剤、特に水和金属酸化物の1種または2種以上を
混合分散した難燃性パテ状物(非発泡性パテ)も好まし
い. 発泡性防火材料は、高温度に熱せられると自ら熱分解し
て発泡炭化物を生威する材料の総称であって、たとえば
ペンタエリスリトール等の炭化水素系多価アルコール類
の少なくともl種、メラ壽ン、ジシアンジアミド等の発
泡剤の少なくとも1種、並びにモノリン酸アンモニウム
、ポリリン酸アンモニウム等の難燃性脱水剤の少なくと
も1種とを常温で固体の高分子量ボリマーバインダーあ
るいはボリブテン、シリコン油、流動パラフィン、液状
クロロプレン重合体等の常温で液状のバインダーに混合
分散した組或物が例示される.使用するバインダーが常
温で固体の高分子量ポリマーである場合は押出戒形が可
能な&IlrIi.物が得られ、使用するバインダーが
液状である場合は、パテ状物が得られる. 上記した非発泡性パテや発泡性パテとしては、従来より
ケーブル床貫通部の防火材や電線、ケーブルの防火材と
して現に広く使用されているものが特に好適である.特
公昭55−39190号公報、特公昭55−33’79
5号公報等に記載されている発泡性パテ、特公昭63−
460号公報、特開昭56−106935号公報等に記
載されている発泡性パテは、それらの例であり、特に液
状ポリクロロフブレンをベースとするもの、就中それに
更にアルξナ水和物、マグネシア水和物等の水和金属酸
化物と、クレー、硼酸亜鉛、ペンナイト等の無機質充填
剤と、ガラス繊維、アスベスト繊維、フェノール繊維等
の耐熱繊維から或る防火パテがノンドリップ性で、灰化
物の形状保持強靭性に秀れ本発明に於いても好適に用い
得る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a structure in which electric wires or cables (hereinafter simply referred to as cables) penetrate the floor of a building, such as a building, a hotel, or a building. Regarding the fire protection structure of cable floor penetrations. [Prior art] When a fire occurs in a building such as a building, hotel, or building, the fire spreads to other floors through the cable floor penetration holes.To prevent this, Conventionally, a fireproof structure has been installed in this through-hole.As a conventional fireproof structure, fireproofing material is filled around the cable that passes through the floor through-hole.
As shown in Figure 1, when filling with fireproof material,
Fill the upper side (2) of 1+, that is, the floor area, and the lower side (3), that is, the downstairs ceiling side, with fire prevention putty (4) and (4)°,
Rock wool (5) is filled in the middle to prevent the through hole from becoming a flue. Note that 7) in the figure indicates the floor, and (8) indicates the cable. However, in the above fire prevention structure, calcium silicate plates (6), (6) degrees are interposed between the fire prevention putty (4), (4) degree and the floor surface. 4) The stacking height (h) of ゛, (h
〉' is 5, OCm or more. Such conventional fire protection structures generally satisfy the fire protection performance of so-called one-hour fire resistance, but it is difficult to satisfy the performance of two-hour fire resistance.
In the case of large-sized cables with a conductor cross-sectional area of 400 fi" or more, upward heat transfer through the conductor is extremely large, and for this reason it is extremely difficult to meet the requirement of 2-hour fire resistance. [Invention [Problems to be solved by the present invention] The problem to be solved by the present invention is to develop a new fireproof structure for cable floor penetration parts through which large-sized cables pass, and which has fireproof performance sufficient to withstand fire resistance for two hours. [Means for solving the problem] This problem consists of a cable floor penetration hole, a large cable passing through the cable floor penetration hole, and at least the length of the large cable root portion that is cumbersomely located in the cable floor penetration hole. Sa100
Fire protection for a large-sized cable penetration part characterized by comprising a layer of fire-preventing material applied to the surface of the lock part, and a large number of heat exhaust pipes installed between the large-sized cable and the layer of fire-preventing material. Solved by structure. [Operation of the invention] In the present invention, the following means are employed. +11
A layer of fire-retardant material is provided on the surface of at least a 100 fi long portion of the large cable root located on the upper side of the cable floor penetration hole, preferably at least a 300 m long portion. (2) A large number of heat exhausting vibes are installed between the above fireproof material layer and the large-sized cable. In most cases, a fire spreads to the base of the cable and spreads upstairs due to both the heating of the surface of the cable by the hot air blowing out from the gap in the cable floor penetration hole, and the heating from inside the cable due to the heat transmitted through the cable conductor. In the present invention, the heating of the cable surface is dealt with by the structure (11) above, while the heating from inside the cable is dealt with by the structure (2) above.In other words, even if the cable is heated from the inside, a large number of cables are heated. The entire root of the cable is maintained at a low temperature by automatically sucking in cold air and discharging hot air by the heat exhaust pipe.By dealing with heating inside and outside the cable, the above-mentioned problems of the present invention can be solved. In the present invention, a large-sized cable refers to one in which the total cross-sectional area of the conductors in one cable is 400 mm2 or more, particularly 1000 mm2 or more. If the total cross-sectional area of a large number of stranded wire units is 400 mm2 or more in a cable that shares a common cable, such a cable is also a large-sized cable according to the present invention.The present invention is a flat cable. It is particularly preferable to apply the present invention to flat large-sized cables because it has a large effect on cables.The present invention will be explained in detail below with reference to Fig. 2. Fig. 2 shows an example of the fat-fired structure of the present invention. , (a) shows a vertical cross-sectional view, and (b) shows a cross-sectional view taken along the line x-x' of (a). The large size flat cable α● of this book passes through it, and on the upper surface (self) of the floor (1?) there is a hole for narrowing the gap between the cable floor penetration hole aD and the large size flat cable α●. A fireproof plate αQ such as a calcium silicate plate is secured with anchor bolts. A fireproof material layer (self) is applied to the surface of at least a 100 mm long portion of the large cable root located on the upper side of the cable floor penetration hole αυ,
Fireproof material layer (company) and three large flat cables (company)
As shown in the diagram, a large number of heat exhaust pipes are evenly distributed between the bundles. The heat exhaust pipe α- is L-shaped, consisting of a horizontal part extending parallel to the fireproof plate (to) and a vertical part extending parallel to the cable (self).
Both the upper end B and the upper end B are open. Cable (own) in case of fire
When the temperature rises, the air in the vertical part of the heat exhaust pipe (end) is heated and discharged from the upper end B, and at the same time, cold air is sucked in from the lower end A, and thus due to the heat dissipation effect by the heat exhaust pipe (end). , the entire cable a● is maintained at a low temperature. FIG. 2 shows an example of eight exhaust heat pipes Ql used in the present invention, but it is not necessarily limited to this and two or more pipes are sufficient, but cable It is preferable to provide them evenly around the a-shape, and from this point of view, four or more are preferable. The size of the pipe α● should be determined appropriately according to the size of the cable, and the material should be of a material that can withstand heat discharge sufficiently.
A typical example is metal pipes. The length of the fire retardant material layer is preferably at least 500 fi
It is. The inside of the cable floor penetration hole αD under the fireproof plate α- may not be filled, but it may be filled with the same fireproofing material as the structural material described later for the fireproofing material layer (self) or other various heat-resistant or non-combustible materials, For example, it is preferable to fill it with rock wool, sand, mica powder, etc. As the material for the fireproofing material layer (self), flame-retardant organic polymeric materials, foaming fireproofing materials, etc., having an oxygen index of 30 or more, preferably 35 or more, may be used. Typical examples of flame-retardant organic polymer materials having an oxygen index of 30 or higher, preferably 35 or higher include kumikaimono, which is a combination of organic polymer resin and various flame retardants. As an example of the organic polymer resin, a wide variety of conventionally known ones can be used. Combined, styrene-butadiene rubber, inbutylene-isobrene rubber, acrylonitrile-butadiene rubber,
Copolymers of vinyl monomers and olefins such as ethylene-ethyl acrylate copolymers and ethylene-vinyl acetate copolymers, polyvinyl chloride, chlorinated polyethylene, polychloroprene, chlorosulfonated polyethylene,
Halogen-containing polymers such as shrimp chlorohydrin, other plastics such as nylon, polyester, polyurethane, and rubber are used. Flame retardants include decabromodiphenyl oxide, hexapromobenzene, hexabromocyclododecane, dodecachlorobentacyclooctadeca 7,15 diene, tetrabromobisphenol A1 tribromophenol,
Halogen-containing organic flame retardants such as tetrapromophthalic anhydride, dibromoneopentyl glycol, tetrabromobisphenol A-pisu (aryl ether), chlorinated polyethylene, metal oxides such as antimony dioxide and molybdenum dioxide, alumina hydration One or more of hydrated metal oxides such as magnesium oxide, magnesia hydrate, basic magnesium sulfate hydrate, basic magnesium carbonate hydrate, and basic magnesium phosphate hydrate are used. Hydrated metal oxides are particularly preferred, but combinations of halogen-containing organic flame retardants and metal oxides are also preferred. The amount of flame retardant used varies depending on the type of flame retardant and organic polymer resin used, but in general, the amount of organic polymer resin 1
It is about 10 to 100 parts by weight per 00 parts by weight. Flame-retardant organic polymers &l1 substances have all the above-mentioned properties and, if necessary, other substances such as antioxidants, fillers, etc.
Pigments, processing aids, flame retardant aids (e.g. 3ZnO-28x
Os-3HgO, 2ZnO-38tOsJ. 5HxO
SZnO-ZnM*O*, CaO-ZnM. o*, Z
ns(PO*)s-4HtO, condensation sintered product of ZnO and MgO, ZnO s ZnCOs, zinc-containing compounds such as barium metaborate, titanium oxide, zirconium silicate, magnesium carbonate, pennite, red phosphorus, etc.) together. It can be mixed with other materials to form a uniform bottom material, and used either cross-linked or uncross-linked. Other specific examples of flame-retardant organic polymer materials having an oxygen index of 30 or more, preferably 35 or more include high halogen-containing resins,
For example, hard polyvinyl chloride, 47-fluorinated polyethylene,
Examples include tetrafluorinated ethylene/propylene copolymer and polyvinylidene fluoride. In addition, flame-retardant putty-like materials are prepared by mixing and dispersing one or more of the above-mentioned flame retardants, especially hydrated metal oxides, in a binder that is liquid at room temperature, such as polybutene, silicone oil, liquid paraffin, and liquid chloroprene polymer. Non-foaming putty) is also preferred. Foaming fireproofing material is a general term for materials that thermally decompose on their own when heated to high temperatures to produce foamed carbides. , at least one blowing agent such as dicyandiamide, and at least one flame retardant dehydrating agent such as ammonium monophosphate or ammonium polyphosphate, and a high molecular weight polymer binder that is solid at room temperature, polybutene, silicone oil, liquid paraffin, An example is a composition mixed and dispersed in a binder that is liquid at room temperature, such as a liquid chloroprene polymer. If the binder used is a high molecular weight polymer that is solid at room temperature, extrusion is possible. If the binder used is liquid, a putty-like product is obtained. As the above-mentioned non-foaming putty and foaming putty, those that have been widely used as fireproofing materials for cable floor penetrations, electric wires, and cables are particularly suitable. Special Publication No. 55-39190, Special Publication No. 55-33'79
Foaming putty described in Publication No. 5 etc., Special Publication No. 63-
The foamable putties described in JP-A No. 460, JP-A No. 56-106935, etc. are examples thereof, especially those based on liquid polychlorofubrene, especially those based on alumina hydrate. A certain fireproof putty is made of a hydrated metal oxide such as magnesia hydrate, an inorganic filler such as clay, zinc borate, and pennite, and a heat-resistant fiber such as glass fiber, asbestos fiber, and phenol fiber, and is non-drip. It is excellent in shape retention and toughness of the ash, and can be suitably used in the present invention.

防火材料が常温で固体のものである場合は、厚さ0.5
〜5簡程度のシートやテープとして用いて排熱用パイプ
α場をケーブル表面に沿わせた状態で1〜5層縦添えや
横巻きにて施与してよい.防火材料が常温でパテ乃至パ
テ状のもの、例えば上記の非発泡性パテや発泡性パテで
ある場合は、排熱用パイプα$をケーブル表面に沿わせ
た状態でその上から0.5〜25簡厚さで塗着すればよ
い.なお本発明においては、防火材料層(自)は、ケー
ブル(至)の表面に出来るだけ気密に設けられているこ
とが好ましく、この観点から訪火材料層の構威材料とし
ては非発泡性パテや発泡性パテが好ましい.更にかかる
バテをを塗着した上に上記のシートやテープを更に施す
ことが好ましい.    多数本の大サイズケーブル束
が貫通しており、ケーブル束間に隙間がある場合は、こ
れら隙間を充填性防火材料にて気密に充填することが好
ましく、かかる充填性防火材料としては、上記の非発泡
性パテや発泡性パテが好ましい. 〔実施例〕 以下に実施例を示して本発明を具体的に説明する. 実施例1〜4、比較例1〜2 厚さが100fiのコンクリート床に設けられた300
fi角のケーブル床貫通孔に、導体断面積が250mm
2の断面円形撚線銅導体の6本を並列し、その上に1つ
の絶縁層及びポリ塩化ビニルシースを施した平型大サイ
ズケーブル(合計導体断面積1500mm2)の3本を
纏めて第2図に示すように貫通設置し、ケーブル床貫通
孔に半割の鉄製受具を設置した.この受金具内にロック
ウールを充填し、受金具上に厚さ40鶴の珪酸カルシウ
ム板をケーブル床貫通孔の開口部を塞ぐように置いた.
ケーブル3本の珪酸カルシウム板上根部に第2図に示す
ように8本の口径15mφの鉄製排熱パイプを沿わせ、
その上に第1表に示す構戒の防火材料層を長さ300m
にわたって施した.なお比較例1、比較例2においては
排熱パイプを使用していない. 上記の通り構威した実施例及び比較例の各ケーブル床貫
通部の防火構造について、日本建築センターが規定す防
火試験に基づいて防火試験を行った.即ちJIS A 
1304号.に定められている耐火曲線に合致するよう
に床の下部をバーナで2時間加熱し、2時間加熱後にお
いて貫通ケーブルΦ床面からの高さ340fiの点に於
けるケープルシースの温度を測定した.この測定温度が
340℃未満である場合を合格とし、それ以上である場
合、あるいは2時間加熱の間または直後に床面上側に火
炎が現れた場合は不合格とした. 結果を第l表に示す.なお同表に示す材料A−1〜A−
5については、下記の通りである.A−1:酸素指数8
0の非発泡性防火パテであって、液状クロロプレン重合
体(25℃の粘度が50,000 c.st.、末端ア
ルキルザンテート基)100重量部、アルミナ水和物(
平均粒径60μII )200重量部、アル竃ナ水和物
(平均粒径3.5μ−)300重量部、ガラス繊維(繊
維径13μ曽、長さ6−、三酸化アンチモンlO重量部
とからなるもの.A−2:酸素指数60の非発泡性防火
パテであって、液状クロロブレン重合体(25℃の粘度
が100,000 c.st. 、末端カルボキシル基
)100重量部、アルミナ水和物(平均粒径3.5μ−
)300重量部、ガラス繊維(繊維径13μ園、長さ1
3 mm ,ベントナイト10重量部とからなるもの.
A−3二発泡性防火パテであって、ポリプテン( 98
.9℃の粘度4,050 c.st.) 100重量部
、ポリリン酸アンモニウム270重量部、メラξン27
0重量部、モノペンタエリスリトール270重量部とか
らなるもの. A−4:クロロプレンゴム100重量部、デカブロモジ
フェニルオキサイド20重量部、二酸化アンチモンlO
重量部、2−メルカブトイミダゾリン1重量部とからな
る組戒物を150℃、30分の条件で加硫した酸素指数
80の加硫物. A−5=塩素化ポリエチレン30重量部、エチレンーブ
ロビレンージエン三元共重合ゴム15重量部、ポリリン
酸アンモニウムII重量部、メラミン13.8重量部、
ジベンタエリスリトール30.2重量部、ジクjルパー
オキシド3.5重量部とからなる組戒物を170℃、2
0分の条件で加硫した発泡性加硫物. 〔以下余白〕 第1表 〔効果〕 本発明が解決しようとする課題は、大サイズケーブルが
貫通するケーブル床貫通部であって、しかも2時間耐火
に充分耐え得る防火性能を有する防火構造を新たに開発
することである.〔課題を解決するための手段〕 この!I!題は、ケーブル床貫通孔、ケーブル床貫通孔
を貫通する大サイズケーブル、ケーブル床貫通孔の上面
側に位置する大サイズケーブル根部の少なくとも長さ1
00鶴の部分の表面に施与された防火材料層、大サイズ
ケーブルと防火材料層との間に設置された多数本の排熱
用パイプとからなることを特徴とする大サイズケーブル
貫通部の防火構造によって解決される. 〔発明の作用〕 本発明によれば、ケーブル床貫通孔の上面側に位置する
大サイズケーブル根部の少なくとも長さ100fiの部
分の表面を防火材料層を施し、また上記の防火材料層と
大サイズケーブルとの間には多数本の排熱用パイプを設
置することにより大サイズケーブルが貫通するケーブル
床貫通孔を2時間の耐火試験に合格する防火性となし得
る.
If the fireproof material is solid at room temperature, the thickness is 0.5
It may be used as a sheet or tape of about 5 strips and applied in 1 to 5 layers vertically or horizontally with the heat exhaust pipe alpha field along the cable surface. If the fireproof material is putty or putty-like at room temperature, such as the above-mentioned non-foaming putty or foaming putty, place the heat exhaust pipe α$ along the cable surface and apply 0.5~ Just apply it to a thickness of 25 mm. In the present invention, it is preferable that the fire prevention material layer (self) be provided on the surface of the cable (end) as airtightly as possible, and from this point of view, non-foaming putty is used as the constituent material of the fire prevention material layer. or foaming putty is preferable. Furthermore, it is preferable to apply the above-mentioned sheet or tape on top of applying the batt. If a large number of large-sized cable bundles pass through the cable bundles and there are gaps between the cable bundles, it is preferable to fill these gaps airtight with a filler fireproofing material. Non-foaming putty or foaming putty is preferred. [Example] The present invention will be specifically explained with reference to Examples below. Examples 1 to 4, Comparative Examples 1 to 2 300 mm installed on a concrete floor with a thickness of 100 fi
The conductor cross-sectional area is 250 mm in the fi-angle cable floor through hole.
Figure 2 shows a combination of six flat large-sized cables (total conductor cross-sectional area of 1500 mm2) in which six circular cross-section stranded copper conductors of No. The cable was installed through the cable floor as shown in Figure 2, and a half-split iron support was installed in the cable floor penetration hole. This receiving fitting was filled with rock wool, and a calcium silicate plate with a thickness of 40 mm was placed on the receiving fitting so as to close the opening of the cable floor penetration hole.
As shown in Figure 2, eight iron heat exhaust pipes with a diameter of 15 mφ were placed along the roots of the three calcium silicate plates.
On top of that, a layer of fireproof material with the structure shown in Table 1 is placed for a length of 300 m.
It was applied over a period of time. Note that no heat exhaust pipe was used in Comparative Examples 1 and 2. A fire protection test was conducted on the fire protection structure of each cable floor penetration part of the example and comparative example constructed as described above, based on the fire protection test prescribed by the Building Center of Japan. That is, JIS A
No. 1304. The lower part of the floor was heated with a burner for 2 hours to match the fire resistance curve specified in .. If the measured temperature was less than 340°C, it was considered a pass; if it was higher than that, or if flames appeared on the upper side of the floor during or immediately after 2 hours of heating, the test was judged to be a failure. The results are shown in Table I. In addition, materials A-1 to A- shown in the same table
5 is as follows. A-1: Oxygen index 8
0 non-foaming fireproof putty containing 100 parts by weight of liquid chloroprene polymer (viscosity at 25°C: 50,000 c.st., terminal alkylzantate group), alumina hydrate (
Consisting of 200 parts by weight of average particle size 60μII), 300 parts by weight of alumina hydrate (average particle size 3.5μ), glass fiber (fiber diameter 13μ, length 6μ, 10 parts by weight of antimony trioxide) A-2: Non-foaming fireproof putty with an oxygen index of 60, containing 100 parts by weight of liquid chloroprene polymer (viscosity at 25°C: 100,000 c.st., terminal carboxyl group), alumina hydrate ( Average particle size 3.5μ-
) 300 parts by weight, glass fiber (fiber diameter 13μ, length 1
3 mm, and 10 parts by weight of bentonite.
A-3 Bi-foaming fireproof putty, made of polybutene (98
.. Viscosity at 9°C: 4,050 c. st. ) 100 parts by weight, 270 parts by weight of ammonium polyphosphate, 27 parts by weight of ammonium polyphosphate
0 parts by weight and 270 parts by weight of monopentaerythritol. A-4: 100 parts by weight of chloroprene rubber, 20 parts by weight of decabromodiphenyl oxide, 1O antimony dioxide
A vulcanized product with an oxygen index of 80 was obtained by vulcanizing a combination consisting of 1 part by weight and 1 part by weight of 2-merkabutimidazoline at 150°C for 30 minutes. A-5 = 30 parts by weight of chlorinated polyethylene, 15 parts by weight of ethylene-brobylene-diene ternary copolymer rubber, ammonium II polyphosphate, 13.8 parts by weight of melamine,
A combination consisting of 30.2 parts by weight of diventaerythritol and 3.5 parts by weight of dichlorperoxide was heated at 170°C for 2 hours.
Expandable vulcanizate cured under conditions of 0 minutes. [Margins below] Table 1 [Effects] The problem to be solved by the present invention is to create a new fireproof structure for cable floor penetration parts through which large-sized cables pass, and which has fireproof performance sufficient to withstand fire resistance for two hours. The goal is to develop [Means to solve the problem] This! I! The problem is a cable floor penetration hole, a large cable passing through the cable floor penetration hole, and at least 1 length of the root of the large cable located on the top side of the cable floor penetration hole.
A large-sized cable penetration part characterized by consisting of a fireproofing material layer applied to the surface of the 00 Tsuru part, and a large number of heat exhaust pipes installed between the large-sized cable and the fireproofing material layer. This problem can be solved by fireproof construction. [Operation of the Invention] According to the present invention, a fireproofing material layer is applied to the surface of at least a 100-fi portion of the root portion of the large size cable located on the upper side of the cable floor through hole, and the fireproofing material layer and the large size cable are coated with a fireproofing material layer. By installing a large number of heat exhaust pipes between the cable and the cable, the cable floor through hole through which the large cable passes can be made fireproof enough to pass a two-hour fire resistance test.

【図面の簡単な説明】 第1図は従来の、第2図は本発明の防火構造を示す図面
であり、第2図(イ)はその縦断面図、第2図(口〉は
そのX−X線断面図である.+11       ケー
ブル床貫通孔防火パテ ロンクウール 床 ケーブル 防火パテの積層高さ ケーブル床貫通孔 防火材料層 ロックウール 耐火板 床 大サイズケーブル 排熱用パイプ 第2図 (イ)
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a diagram showing a conventional fire protection structure, and Fig. 2 is a drawing showing a fire protection structure according to the present invention. - This is an X-ray cross-sectional view. +11 Cable floor penetration hole Fire protection putty Ron Kuwool floor Lamination height of cable fire protection putty Cable floor penetration hole Fire protection material layer Rock wool fireproof board Floor large size cable Heat exhaust pipe Figure 2 (A)

Claims (3)

【特許請求の範囲】[Claims] (1)ケーブル床貫通孔、ケーブル床貫通孔を貫通する
大サイズケーブル、ケーブル床貫通孔の上面側に位置す
る大サイズケーブル根部の少なくとも長さ100mmの
部分の表面に施与された防火材料層、大サイズケーブル
と防火材料層との間に設置された多数本の排熱用パイプ
とからなることを特徴とする大サイズケーブル貫通部の
防火構造。
(1) A fireproofing material layer applied to the surface of a cable floor penetration hole, a large cable passing through the cable floor penetration hole, and a portion of at least 100 mm in length of the large cable root located on the upper side of the cable floor penetration hole. A fireproof structure for a large-sized cable penetration part, characterized by comprising a large number of heat exhaust pipes installed between the large-sized cable and a layer of fireproof material.
(2)大サイズケーブルは、それ1本の導体断面積が4
00mm^2以上のケーブルである請求項1に記載の大
サイズケーブル貫通部の防火構造。
(2) For large size cables, the cross-sectional area of each conductor is 4
The fireproof structure of a large-sized cable penetration part according to claim 1, which is a cable of 00 mm^2 or more.
(3)多数本の大サイズケーブル束が貫通しており、ケ
ーブル束間の隙間は充填性防火材料にて気密に充填され
てなる請求項1に記載の大サイズケーブル貫通部の防火
構造。
(3) The fireproof structure of a large-sized cable penetration part according to claim 1, wherein a large number of large-sized cable bundles pass through the cable bundle, and the gaps between the cable bundles are airtightly filled with a filling fire-proofing material.
JP1158643A 1989-06-21 1989-06-21 Fireproof construction of passage of large-size cable Pending JPH0324184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158643A JPH0324184A (en) 1989-06-21 1989-06-21 Fireproof construction of passage of large-size cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158643A JPH0324184A (en) 1989-06-21 1989-06-21 Fireproof construction of passage of large-size cable

Publications (1)

Publication Number Publication Date
JPH0324184A true JPH0324184A (en) 1991-02-01

Family

ID=15676192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158643A Pending JPH0324184A (en) 1989-06-21 1989-06-21 Fireproof construction of passage of large-size cable

Country Status (1)

Country Link
JP (1) JPH0324184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253828A (en) * 2001-02-27 2002-09-10 Takeya Co Ltd Separator for pachinko ball passage
KR102404847B1 (en) * 2022-04-15 2022-06-02 유홍근 Grommet closeure device for access floor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253828A (en) * 2001-02-27 2002-09-10 Takeya Co Ltd Separator for pachinko ball passage
KR102404847B1 (en) * 2022-04-15 2022-06-02 유홍근 Grommet closeure device for access floor

Similar Documents

Publication Publication Date Title
US4273821A (en) Fire protective tape
JP3363156B2 (en) Fire-resistant sheet-like molded product, fire-resistant laminate for steel frame coating, fire-resistant structure for wall, and method of construction of fire-resistant steel frame and fire-resistant wall
US4189619A (en) Fire protective mastic and fire stop
EP1414928B1 (en) Fire stop article
PT91644A (en) PROCESS FOR THE PREPARATION OF POLIMERIC COMPOSITIONS WITH A FLAME AND SMOKE RETARDANT INSULATION AND JACKETING FOR CABLES CONTAINING THE SAME
JP3838780B2 (en) Refractory sheet-like molded body and sheet laminate
USRE32131E (en) Fire protective tape
US20030008119A1 (en) Fire-resistant sheetlike molding, fire-resistant laminate for covering steel, fire-resistant structure for wall, and method for constructing fire-resistant steel and fire-resistant wall
JP2007332715A (en) Fire resistive coating structure
JP4268338B2 (en) Fireproof structure of embedded box
JP3673482B2 (en) Refractory sheet and refractory steel structure and wall refractory structure using the same
JPH0324184A (en) Fireproof construction of passage of large-size cable
WO1982004419A1 (en) Fire protective tape
JP3329191B2 (en) Fireproof sealant for fire spread prevention
USRE31428E (en) Fire protective tape
JPH0374126A (en) Fireproof structure of vertical through hole for cable
JP2000345638A (en) Fireproofing composite face bar, folded plate external wall, and fireprotection and fireproofing wall constitutive body
WO1980002086A1 (en) Fire protective mastic and fire stop
JP2002054250A (en) Wall structure
JP2002173994A (en) Fire-resisting sound insulating floor
JP2000282597A (en) Steel frame structure with fireresistant covering
JPH1060448A (en) Fireproofing seal composition
JP2729512B2 (en) Fire protection structure at cable floor penetration
JPS63273693A (en) Fireproofing material
JPH0340709A (en) Fireproof structure of floor penetrated with cable