JPH03241612A - Heat resisting insulated wire - Google Patents
Heat resisting insulated wireInfo
- Publication number
- JPH03241612A JPH03241612A JP2036169A JP3616990A JPH03241612A JP H03241612 A JPH03241612 A JP H03241612A JP 2036169 A JP2036169 A JP 2036169A JP 3616990 A JP3616990 A JP 3616990A JP H03241612 A JPH03241612 A JP H03241612A
- Authority
- JP
- Japan
- Prior art keywords
- short fibers
- conductor
- phosphoric acid
- insulated wire
- inorganic short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011247 coating layer Substances 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims abstract description 20
- 239000000835 fiber Substances 0.000 claims abstract description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000004020 conductor Substances 0.000 claims abstract description 16
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 11
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- -1 phosphoric acid compound Chemical class 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 238000009413 insulation Methods 0.000 claims abstract description 9
- 239000000945 filler Substances 0.000 claims abstract description 7
- 239000003973 paint Substances 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims 2
- 239000011651 chromium Substances 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 18
- 239000002966 varnish Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- 230000003746 surface roughness Effects 0.000 abstract 1
- 230000003313 weakening effect Effects 0.000 abstract 1
- 239000004677 Nylon Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical class N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002320 enamel (paints) Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical class [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- GIOZLVMCHDGNNZ-UHFFFAOYSA-N magnesium;oxido-(oxido(dioxo)chromio)oxy-dioxochromium Chemical compound [Mg+2].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O GIOZLVMCHDGNNZ-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電気機器のコイル等などに使用される電線で
あって、熱劣化等に対する優れた抵抗性を有する耐熱性
絶縁電線に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant insulated wire that is used for coils of electrical equipment, etc., and has excellent resistance to thermal deterioration.
従来、電気機器のマグネットワイヤ、トランスコイル、
モータコイル、発電機コイル等の巻線として使用される
絶縁電線には、ホルマール、ナイロン、ポリウレタン、
ポリエステル等の有機樹脂を主成分とする絶縁ワニスを
銅線の表面に塗布焼付して成るエナメル線が汎用されて
いる。Conventionally, magnet wires, transformer coils,
Insulated wires used as windings for motor coils, generator coils, etc. include formal, nylon, polyurethane,
Enameled wires are commonly used, which are made by coating and baking an insulating varnish containing an organic resin such as polyester on the surface of a copper wire.
また、信号ゲーブル用の絶縁電線としては、銅線の周囲
に射出成形によって塩化ビニル樹脂等を被覆したビニル
線が汎用されている。Furthermore, as insulated wires for signal cables, vinyl wires in which a copper wire is coated with vinyl chloride resin or the like by injection molding are commonly used.
しかるに、最近の電気機器1通信機器は、小型軽量化の
要請に伴って機器内の温度上昇を招来するため、機器内
で用いられる絶縁電線の耐熱性を高めることが強く望ま
れている。However, in recent years, the demand for smaller and lighter communication equipment has led to an increase in the temperature within the equipment, so it is strongly desired to improve the heat resistance of insulated wires used within the equipment.
ここで、従来の耐熱性絶縁電線としては、工業的に実用
されているエナメル塗料の中で最も優れた耐熱性を有す
るポリイミドエナメル塗料を銅線の表面に塗布3焼付し
たものが一般的であるが、ポリイミドは本質的に炭素、
水素、酸素及び窒素を骨格とする有機物質であるから、
250′c以上の高温下では耐熱性が十分ではない。Conventional heat-resistant insulated wires are generally made by coating the surface of copper wire with polyimide enamel paint, which has the highest heat resistance among the enamel paints used industrially. However, polyimide is essentially carbon,
Since it is an organic substance with skeletons of hydrogen, oxygen, and nitrogen,
Heat resistance is not sufficient at high temperatures of 250'c or higher.
また、300℃程度の耐熱性を持たせるために無機材料
100%がら成るセラミックエナメル線も提案されてい
るが、これは可撓性や絶縁破壊電圧特性が著しく劣るた
め実用化されるに至っていない。Additionally, a ceramic enamelled wire made of 100% inorganic material has been proposed in order to have heat resistance of around 300°C, but this has not been put into practical use because its flexibility and dielectric breakdown voltage characteristics are significantly inferior. .
また、電気機器コイルの巻線作業を行う間だけ可撓性を
保有させるセラミックエナメル線として、例えばシリコ
ン塗料系の有機材料バインダに、高温下でセラミックに
変換できるホーローフリット等の無機粉末絶縁材料をブ
レンドし、そのブレンド塗料を銅線の表面に塗布、焼付
して成るセラミック変換エナメル線もあるが、これはコ
イルの巻線作業を終了した後に400℃〜800°Cの
高温下で有機材料バインダを灰化させると共に、無機粉
末絶縁材料をセラミ・7りに変換しなげればならないと
いう面倒がある。In addition, for ceramic enamelled wire that retains its flexibility only during the winding work of electrical equipment coils, for example, an inorganic powder insulating material such as enamel frit, which can be converted into ceramic at high temperatures, is added to an organic material binder such as silicone paint. There is also ceramic conversion enamelled wire, which is made by blending, applying the blended paint to the surface of the copper wire, and baking it, but this is done by applying an organic material binder at a high temperature of 400°C to 800°C after completing the coil winding work. There is the trouble of having to ash the inorganic powder insulating material and converting it into ceramic.
また、このように巻線作業終了後にセラミック変換を行
う面倒を無くするために、有機材料バインダに、酸化ア
ルミニウムや水酸化アルミニウム等の金属酸化物粉末絶
縁材料を混ぜ合わせたものを導体上に塗布、焼付してセ
ラミック層を形成するエナメル線も開発されているが、
この場合は高温時にバインダの接着性が低下してセラミ
ック層が脆弱化するため、200℃〜300℃以上の高
温域で金属酸化物粉末と導体との膨張係数の相違による
セラミック層のひび割れや剥げ落ちが生じて絶縁性が損
なわれるという欠点があった。In addition, in order to eliminate the trouble of performing ceramic conversion after the winding work is completed, a mixture of an organic material binder and a metal oxide powder insulating material such as aluminum oxide or aluminum hydroxide is applied onto the conductor. , enamelled wires that are baked to form a ceramic layer have also been developed;
In this case, the adhesiveness of the binder decreases at high temperatures and the ceramic layer becomes brittle, so in the high temperature range of 200°C to 300°C or higher, the ceramic layer may crack or peel due to the difference in expansion coefficient between the metal oxide powder and the conductor. There was a drawback that the insulation properties were impaired due to drop-off.
そこで、本発明は、導体上に500℃の高温下でもひび
割れや剥げ落ちを生じないセラミック層を設けることを
技術的課題とし、この課題を解決して耐熱性絶縁電線の
品質を向上させることを目的とする。Therefore, the present invention aims to solve the technical problem of providing a ceramic layer on a conductor that does not crack or peel off even at high temperatures of 500°C, and to improve the quality of heat-resistant insulated wires. purpose.
この課題を解決するために、本発明は、導電性の良好な
導体の表面に、無機質短繊維を充填剤とし重クロム酸系
化合物とリン酸又はリン酸系化合物とをバインダとして
含有する塗料を塗布、焼付処理して成る絶縁被覆層が形
成されていることを特徴としている。In order to solve this problem, the present invention applies a paint containing inorganic short fibers as a filler and a dichromate compound and phosphoric acid or a phosphoric acid compound as a binder to the surface of a conductor with good conductivity. It is characterized by an insulating coating layer formed by coating and baking.
本発明によれば、重クロム酸系化合物とリン酸又はリン
酸系化合物とをバインダとして含有する塗料を使用して
おり、これを導電性の良好な導体の表面に塗布、焼付す
ると塗料が焼成され、絶縁被覆層としてのセラミック層
が形成される。According to the present invention, a paint containing a dichromate compound and phosphoric acid or a phosphoric acid compound as a binder is used, and when this is applied to the surface of a conductor with good conductivity and baked, the paint is baked. A ceramic layer is formed as an insulating coating layer.
また、塗料には充填剤として無機質短繊維が含有されて
いるので、焼成されたセラミック層は、無機質短繊維が
絡み合った構造となる。Further, since the paint contains inorganic short fibers as a filler, the fired ceramic layer has a structure in which the inorganic short fibers are entangled.
これにより、セラミンク層の脆弱化が防止され、強固且
つ可撓性の良い被覆層を形成することができ、電気機器
に装着後に加熱されても、セラミック層のひび割れや剥
げ落ちを防止して絶縁性を損なうことがなく耐熱性を向
上させることができる。This prevents the ceramic layer from becoming brittle and forms a strong and flexible coating layer, preventing the ceramic layer from cracking or peeling off and providing insulation even when heated after being installed in electrical equipment. Heat resistance can be improved without impairing properties.
また、無機質短繊維の長さを5〜30μm、直径0.2
〜1.0μmに選定すれば、導体に塗布、焼付したとき
に表面に肌あれのない良好な仕上げ面が得られる。In addition, the length of the inorganic short fibers is 5 to 30 μm, and the diameter is 0.2 μm.
If the thickness is selected to be 1.0 μm, a good finished surface without roughness can be obtained when the conductor is coated and baked.
さらに、焼付処理によって前記導体の表面に絶縁被覆層
を形成した上に、更に耐熱性、可撓性及び電気絶縁性に
優れた樹脂から成る最外層を形成すれば、表面がより滑
らかになるので、絶縁電線の巻線作業性を著しく向上さ
せることができる。Furthermore, by forming an insulating coating layer on the surface of the conductor by baking, and then forming an outermost layer made of a resin with excellent heat resistance, flexibility, and electrical insulation, the surface will become smoother. , the winding workability of insulated wires can be significantly improved.
まず、重クロム酸マグネシウム25部、リン酸又はトリ
メチルフォスフェート30部及び無機質短繊維(例えば
9 A 7!zO+2 B2O3、長さ10〜20μm
、直径0.5μm)45部を混合して無機系塗料を作成
し、この塗料を直径1I11のニッケルメッキ銅線に塗
布した後、200〜300℃で直ちに乾燥焼付する工程
を数回繰り返し行い、当該銅線の表面に約25μmの絶
縁被覆層を形成して絶縁電線を得た。First, 25 parts of magnesium dichromate, 30 parts of phosphoric acid or trimethyl phosphate, and inorganic short fibers (for example, 9 A 7!zO+2 B2O3, length 10-20 μm
, 0.5 μm in diameter) to create an inorganic paint, apply this paint to a nickel-plated copper wire with a diameter of 1I11, and then immediately dry and bake it at 200 to 300 ° C several times. An insulating coating layer of about 25 μm was formed on the surface of the copper wire to obtain an insulated wire.
乾燥焼付温度は、絶縁被覆層に可撓性をもたせるためK
2O0〜300℃が好ましく、これ以上の温度で焼付を
行うと、当該被覆層の焼結が進行するため、高温で焼付
した場合に比して可撓性が低下する。The dry baking temperature is set to K in order to give flexibility to the insulation coating layer.
2O0 to 300°C is preferable, and if baking is performed at a temperature higher than this, sintering of the coating layer will proceed, resulting in lower flexibility than when baking is performed at a high temperature.
また、無機質塗料に混合される無機質短繊維は、短か過
ぎると繊維間の結合が弱くなって被覆層が脆弱化し、ま
た長すぎると被覆層表面のザラツキが大きくなるばかり
でなく、被覆層が厚くなり割れやすくなるという問題が
あるので、10〜30μm程度以内にすることが望まし
い。In addition, if the inorganic short fibers mixed in the inorganic paint are too short, the bond between the fibers will be weak and the coating layer will become brittle, and if it is too long, not only will the surface of the coating layer become rough, but the coating layer will also be damaged. Since there is a problem that it becomes thick and easily cracks, it is desirable that the thickness be within about 10 to 30 μm.
前記方法で製造した絶縁電線において、無機系塗料のみ
を塗布焼付したものは、絶縁被覆層の絶縁耐圧10kV
以上、体積抵抗率10”Ω・Cl11以上、硬度(鉛筆
硬度)5H以上であった。Among the insulated wires manufactured by the above method, those coated with only inorganic paint and baked have a dielectric strength voltage of 10 kV of the insulation coating layer.
As described above, the volume resistivity was 10"Ω·Cl11 or more, and the hardness (pencil hardness) was 5H or more.
また、曲率は、絶縁電線の直径(1mm)の約6倍の直
径(6mrn)まで屈曲しても、絶縁被覆層がひび割れ
したり剥げ落ちたすせず、絶縁耐圧が劣化しないという
優れた特性が得られた。In addition, the curvature has an excellent property that even if the wire is bent to a diameter (6 mrn) that is approximately six times the diameter of the insulated wire (1 mm), the insulation coating layer will not crack or peel off, and the dielectric strength voltage will not deteriorate. was gotten.
更にその後、500℃で200時間加熱することによっ
て、絶縁被覆層はますます強固なものとなり、絶縁耐圧
12kV以上、体積抵抗率10′4Ω・cm以上に向上
した。Thereafter, by heating at 500° C. for 200 hours, the insulating coating layer became even stronger, and the dielectric strength was improved to 12 kV or more and the volume resistivity to 10'4 Ω·cm or more.
これは、絶縁電線が電気機器等のコイルとして使用され
た際に、短時間の過電流の通電による電線温度の上昇に
伴って、被覆層の無機系成分の結合が強化され、耐熱性
が向上することを示している。This is because when insulated wires are used as coils in electrical equipment, the wire temperature rises due to short-term overcurrent flow, which strengthens the bonding of inorganic components in the coating layer, improving heat resistance. It shows that.
また、25μmの無機質被覆層の上に、さらにナイロン
樹脂ワニスを塗布したのち、これを乾燥して焼付け、外
周面に最外層として例えば厚さ3μmのナイロン被覆層
を形成した。Further, a nylon resin varnish was further applied on the 25 μm thick inorganic coating layer, and then dried and baked to form a nylon coating layer with a thickness of, for example, 3 μm on the outer peripheral surface as the outermost layer.
このwA縁電電線、最外層を設けない場合と比して、曲
率が絶縁電線の直径の6倍の直径(6mm)から3倍の
直径(3mm)まで向上した。The curvature of this wA electric wire was improved from six times the diameter of the insulated wire (6 mm) to three times the diameter (3 mm) compared to the case where no outermost layer was provided.
また、表面のナイロン被覆層は、その厚さが3μmと非
常に薄いので、表面が滑らかで滑り性が向上され、また
可撓性もよく、絶縁電線の巻き付は作業性を著しく向上
させることができるというメリットがある。In addition, the nylon coating layer on the surface has a very thin thickness of 3 μm, so the surface is smooth and slippery, and has good flexibility, so wrapping the insulated wires can significantly improve workability. It has the advantage of being able to
さらに、絶縁電線に形成されたナイロン被覆層は通電加
熱されて約300℃で仮焼されると熱分解されて、その
下層の無機質短繊維複合層の結合が強化されるというメ
リットがある。Furthermore, when the nylon coating layer formed on the insulated wire is electrically heated and calcined at about 300° C., it is thermally decomposed and the bonding of the inorganic short fiber composite layer below it is strengthened.
なお、充填剤として使用する無機質短繊維としては、9
Aβzot2Bzoaの他に、電気抵抗の高いAり20
3.Si、N4,5iOz、MgO又はK2O・6 T
i O□等の短繊維を用いてもよい。In addition, as the inorganic short fiber used as a filler, 9
In addition to Aβzot2Bzoa, A20 with high electrical resistance
3. Si, N4,5iOz, MgO or K2O・6T
Short fibers such as iO□ may also be used.
また、導電性の良好な導体としては、ニッケル被覆した
銅線に限らず、ステンレス鋼、クロム。In addition, good conductors include not only nickel-coated copper wire, but also stainless steel and chrome.
銀などを被覆した銅線や、銀線、金線、白金線。Copper wire coated with silver, silver wire, gold wire, platinum wire.
Cu−Ni合金線等を用いてもよい。なお、耐熱性条件
がそれほど厳しくない用途に用いる場合は、通常の電気
銅のみからなる線条体を使用し、これに直接無機質塗料
を塗布して焼き付る場合であってもよい。A Cu-Ni alloy wire or the like may also be used. In addition, when used in applications where heat resistance conditions are not so strict, a wire body made only of ordinary electrolytic copper may be used, and an inorganic paint may be directly applied thereto and baked.
直径1mmのニッケルメッキ銅線に、ポリイミド系ワニ
ス塗布乾燥し、30μmの絶縁被覆を形成した。A polyimide varnish was applied to a nickel-plated copper wire having a diameter of 1 mm and dried to form an insulating coating of 30 μm.
この絶縁電線は、絶縁耐圧12kv以上、電気体積抵抗
率10′4Ω・cm以上で且つ硬度(鉛筆硬度)5H以
上と、その電気的2機械的性質は前記実施例のものと同
等であるが、耐熱性において実施例より劣る。即ち、5
00℃で200時間加熱すると、被覆層が熱分解(劣化
)し、電気絶縁性が無くなった。This insulated wire has a dielectric strength voltage of 12 kV or more, an electrical volume resistivity of 10'4 Ω·cm or more, and a hardness (pencil hardness) of 5H or more, and its electrical and mechanical properties are the same as those of the above example. Inferior to Examples in heat resistance. That is, 5
When heated at 00°C for 200 hours, the coating layer thermally decomposed (degraded) and lost its electrical insulation properties.
したがって、通電されて過熱されないような場合にはそ
の使用に耐えることができるが、イグニッションコイル
のように通電されて過熱される場合や、高温中で使用さ
れるコイルやトランス等の0
場合には、故障を生ずる原因となる。Therefore, it can withstand use if it is not overheated when energized, but it can withstand use when it is energized and overheated, such as in ignition coils, or when coils and transformers are used in high temperatures. , causing failure.
これに対し、本発明の耐熱性絶縁電線は、通電されて過
熱された場合であっても、絶縁被覆層は熱分解(劣化)
することなく、絶縁性が維持されるので、故障を生ずる
ことがない。On the other hand, even when the heat-resistant insulated wire of the present invention is energized and overheated, the insulation coating layer does not thermally decompose (degrade).
Since the insulation is maintained without any damage, no breakdown occurs.
以上述べたように、本発明によれば、500℃の高温中
に長時間放置されても、導体表面に形成された絶縁被覆
層は無機質短繊維が絡み合ってひび割れや剥げ落ちを生
ずることがなく、また、これに起因する絶縁耐圧の低下
を生ずることもないので、耐熱性の優れた高品質の絶縁
電線を提供することができるという優れた効果を有する
。As described above, according to the present invention, even if the insulating coating layer formed on the conductor surface is left in a high temperature of 500°C for a long time, the inorganic short fibers will not become entangled and cause cracking or peeling. Further, since there is no reduction in dielectric strength voltage caused by this, it has the excellent effect of being able to provide a high quality insulated wire with excellent heat resistance.
Claims (6)
填剤とし重クロム酸系化合物とリン酸又はリン酸系化合
物とをバインダとして含有する塗料を塗布,焼付処理し
て成る絶縁被覆層が形成されていることを特徴とする耐
熱性絶縁電線。(1) An insulating coating made by applying and baking a paint containing inorganic short fibers as a filler and a dichromate compound and phosphoric acid or a phosphoric acid compound as a binder to the surface of a conductor with good conductivity. A heat-resistant insulated wire characterized by having a layer formed thereon.
.2〜1.0μmである前記特許請求の範囲第1項記載
の耐熱性絶縁電線。(2) The inorganic short fibers have a length of 5 to 30 μm and a diameter of 0.
.. The heat-resistant insulated wire according to claim 1, which has a thickness of 2 to 1.0 μm.
O_3,Al_2O_3,Si_3N_4,SiO_2
,MgO又はK_2O・6TiO_2である前記特許請
求の範囲第1項記載の耐熱性絶縁電線。(3) The inorganic short fibers are 9Al_2O_32B_2
O_3, Al_2O_3, Si_3N_4, SiO_2
, MgO or K_2O.6TiO_2 according to claim 1.
体である前記特許請求の範囲第1項記載の耐熱性絶縁電
線。(4) The heat-resistant insulated wire according to claim 1, wherein the conductor having good conductivity is a filament of copper, copper alloy, or silver.
線条体の表面にニッケル,クロム又はステンレス鋼を被
覆した構造である前記特許請求の範囲第1項記載の耐熱
性絶縁電線。(5) The heat-resistant insulation according to claim 1, wherein the conductor having good conductivity has a structure in which the surface of a filament made of copper, copper alloy, or silver is coated with nickel, chromium, or stainless steel. Electrical wire.
填剤とし重クロム酸系化合物とリン酸又はリン酸系化合
物をバインダとして含有する塗料を塗布,焼付処理して
成る絶縁被覆層が形成され、その外周面に耐熱性,可撓
性及び電気絶縁性に優れた樹脂から成る最外層を形成し
たことを特徴とする耐熱性絶縁電線。(6) An insulating coating layer formed by applying and baking a paint containing inorganic short fibers as a filler and a dichromate compound and phosphoric acid or a phosphoric acid compound as a binder to the surface of a conductor with good conductivity. 1. A heat-resistant insulated wire, characterized in that the outermost layer is formed on the outer peripheral surface of the resin and is made of a resin having excellent heat resistance, flexibility, and electrical insulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2036169A JPH03241612A (en) | 1990-02-19 | 1990-02-19 | Heat resisting insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2036169A JPH03241612A (en) | 1990-02-19 | 1990-02-19 | Heat resisting insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03241612A true JPH03241612A (en) | 1991-10-28 |
Family
ID=12462254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2036169A Pending JPH03241612A (en) | 1990-02-19 | 1990-02-19 | Heat resisting insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03241612A (en) |
-
1990
- 1990-02-19 JP JP2036169A patent/JPH03241612A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2975078A (en) | Ceramic coated wire | |
US5436409A (en) | Electrical conductor member such as a wire with an inorganic insulating coating | |
US4429007A (en) | Electrical wire insulation and electromagnetic coil | |
US5105531A (en) | Method of manufacturing a coil of insulated wire | |
US3223553A (en) | Electrical insulating glass composition and apparatus encapsulated therewith | |
JPH03241612A (en) | Heat resisting insulated wire | |
JPH11345523A (en) | Heat resistant wire, heat resistant insulating material, and manufacture of heat resistant wire | |
JPH02123618A (en) | Heat resistant insulated electric wire | |
EP0729157B1 (en) | Electrical conductor member such as a wire with an inorganic insulating coating | |
JPS621242B2 (en) | ||
JPS63195912A (en) | Enamelled twisted wire | |
CN212208933U (en) | Corona-resistant enameled flat wire | |
JP3228520B2 (en) | Vacuum wire | |
JPH0757558A (en) | Heat-resistant insulated electric wire | |
JP2000011768A (en) | Inorganic winding wire | |
US20110147038A1 (en) | Oxidation-resistant high temperature wires and methods for the making thereof | |
JPH0963359A (en) | Heat resisting electric wire | |
JP2909768B2 (en) | Heat-resistant insulated wire and method of manufacturing heat-resistant insulated wire | |
JPH0656723B2 (en) | Heat resistant wire | |
JPH08264275A (en) | Induction heating coil | |
JPH07282645A (en) | Heat resistant insulated wire and its manufacture | |
KR20230002294A (en) | heat-resistant insulated wire | |
JPH06309946A (en) | Heat resistant electric wire | |
JPH0982547A (en) | Induction heating coil | |
JPH07296643A (en) | Insulated wire |