JPH0324137A - Raidation-resistant resin composition - Google Patents

Raidation-resistant resin composition

Info

Publication number
JPH0324137A
JPH0324137A JP15753089A JP15753089A JPH0324137A JP H0324137 A JPH0324137 A JP H0324137A JP 15753089 A JP15753089 A JP 15753089A JP 15753089 A JP15753089 A JP 15753089A JP H0324137 A JPH0324137 A JP H0324137A
Authority
JP
Japan
Prior art keywords
radiation
resin
salicylate
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15753089A
Other languages
Japanese (ja)
Other versions
JP2608782B2 (en
Inventor
Shingo Fukuda
福田 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP1157530A priority Critical patent/JP2608782B2/en
Publication of JPH0324137A publication Critical patent/JPH0324137A/en
Application granted granted Critical
Publication of JP2608782B2 publication Critical patent/JP2608782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a radiation-resistant resin composition which is low in the bleed of additives and can be prevented from decreasing in the mechanical properties of the resin by mixing a polyolefin resin with a specified antioxidant and a salicylate UV absorber. CONSTITUTION:A resin composition obtained by mixing 100 pts.wt. polyolefin resin with 0.1-1.0 pt.wt. antioxidant 4,4'-thiobis(3-methyl-6-t-butylphenol) and 0.1-1.0 pt.wt. salicylate UV absorber of the formula (wherein X is 0-4; and R is a 1-10C linear or branched alkyl). An example of the polyolefin resin used is a low-density polyethylene of an MI of 3.0. Examples of the UV absorbers used include 2,4-di-t-butylphenyl 3',5'-di-t-butyl-4'-hydroxybenzoate, phenyl salicylate and 4-t-butylphenyl salicylate.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電線・ケーブルの絶縁体・シース等の樹脂組
成物,樹脂製パイプ及びその他の樹脂製品の樹脂組成物
に係り、特に、放射線の存在する場所で使用しても、添
加剤のブリードが少なく、樹脂の機械的特性の低下を招
くことの少ない耐放射線性樹脂組成物に関する.
The present invention relates to resin compositions such as insulators and sheaths for electric wires and cables, resin compositions for resin pipes, and other resin products, and particularly relates to resin compositions for resin compositions such as insulators and sheaths for electric wires and cables. This invention relates to a radiation-resistant resin composition that is less likely to cause deterioration in the mechanical properties of the resin.

【従来の技術】[Conventional technology]

原子力発電所、放射性廃棄物貯蔵施設及び放射性物質を
扱う研究、医療施設等の放射線が存在する場所に布設、
設置された電線・ケーブルの絶縁体・シース及びその他
の樹脂製品は、放射線を受けて酸化などの劣化を生じ、
その電気・機械特性が次第に低下してきて絶縁破壊など
に到る可能性がある.そこで、電線・ケーブルの絶縁体
・シースを例に取って従来の耐放射線方法を見てみる。 第lの方法として、このような放射線の発生している場
所に布設して用いられるケーブル等は、放射線による劣
化が起きないように、耐放射線性の絶縁材料を棲用して
放射線的影春を受けに(くしでいる6例えば、従来の耐
放射線性か・−ブル(3心低圧電力ケー・プルを例{7
、採ってある)は、第1−同に示す如舞祷或を有し丁い
る。すなわち、耐放射線性ケ゛・一・ブル1、00は6
感体1 3.. Oに耐放射線性絶縁体1,20を押出
し被覆した絶縁線ノらSを3本合わせ、介在物1、30
を・介在させで撚り合わせ、そのLから押え巻きテーブ
140を巻含同して施している。この介在物130を介
在させることにより耐放射線性多心電線ケーブルの断面
形状を円形状に整形し、しかる後、押さえ巻テー・ブ1
40のヒにシース】、50を被覆して形成している.し
たがって、耐放射線性多心電線ケーブル1. 0 0は
、電線ケーブル向が濃体1 ].. O、絶縁体120
、介在物130、押え巻きテープI40、シースl50
とによって密にW或されでいる. 第2の方法として、従来の導体の上に押出し被覆される
絶縁体材料に特殊な放射線訪御刑を配合して、導体の上
に押出し,被覆するも的である。 第3の方法として、従来の導体のLに押帛し被覆される
絶縁体材料に酸化防止剤なJ−.の既知の添加剤で放射
線防御効果を持つものを従来より多く配合し1,、導体
の1二に押出し被環するものである。 [発明が解決し、Lうとする課題】 しかしながら,従来の第1の方法の耐放射線性の絶縁材
料を使用して放射線の影響を受けt;’:. < <し
たもの、及び従来の第2の方法的導体の1−.に押出し
被rM.キれる絶縁体材料に特殊な放躬線防御剤を配合
して,灘体の上に押出し被覆するものにあっては6放射
線の影響を受けにくくする):=いう効果は大きいため
原発の炉心付近などの多量の放射線が存在する場所に布
設すると充分有効であるが、電線・ケーブルのコス!一
が高いため原発周辺施設などの放射線レベルの低い場所
では、、コス1一的に見合わなくなってし2まうという
問題点を有している。 また、従来の第3の方法の導体の上に押高し被覆;され
る絶縁体材料に酸化防止剤なピの既知の添加剤で放射線
防獅効果を持′つものを従来より多く配合して、導体の
上に押出し被覆するものにあっては、第1及び第2の方
法に比較して放射線の影響を受けにくくする性能は低い
が電線・ケーブルのコス1・が低く、低放射線レベルで
の使用には極めて有効であるがしかし、絶縁体材料に従
来より多くの量の添加剤を配合するヒ、濃体の上に押出
し被覆した後,絶縁体材料から添加剤のブリード(樹脂
からの染み吊し)が生じたり、絶縁体材料である樹脂の
機械的特性の低下を来すなどの副作用生じるという問題
点を有している。 本発明唸、放射線の存在する場所で決用しても、添加剤
のブリードが少なく、樹脂の機械的特性の低下を招くこ
との少ない耐放射線性樹脂組成物を提供することを閂的
εしている.
Installed in places where radiation is present, such as nuclear power plants, radioactive waste storage facilities, research and medical facilities that handle radioactive materials, etc.
The insulators, sheaths, and other resin products of installed wires and cables will undergo deterioration such as oxidation due to exposure to radiation.
Its electrical and mechanical properties may gradually deteriorate, leading to dielectric breakdown. So, let's take a look at conventional radiation-proofing methods, taking the insulators and sheaths of electric wires and cables as an example. The first method is to use radiation-resistant insulating materials to protect cables, etc. installed in places where such radiation is generated, so that they do not deteriorate due to radiation. For example, a conventional radiation-resistant cable (3-core low-voltage power cable) {7
, has been taken) has a similar prayer shown in the first verse. In other words, the radiation-resistant cable 1, 00 is 6
Sensation 1 3. .. O and three insulated wires S coated with radiation-resistant insulators 1 and 20 by extrusion are combined, and inclusions 1 and 30 are
The fibers are twisted together with an interposition, and a presser winding tape 140 is wrapped around the L of the fibers. By interposing this inclusion 130, the cross-sectional shape of the radiation-resistant multi-core electric wire cable is shaped into a circular shape, and then the pressure winding tape 1
It is formed by covering the sheath of 40 mm and 50 mm. Therefore, radiation-resistant multi-conductor cable 1. 0 0 means that the wire/cable direction is dense 1]. .. O, insulator 120
, inclusion 130, pressure winding tape I40, sheath l50
It is closely covered by W. A second method is to mix a special radiation absorbent into the insulating material that is extruded and coated onto the conventional conductor and extrude and coat it onto the conductor. A third method is to apply antioxidant J-. In this method, a larger amount of known additives having a radiation protection effect than before is blended into the conductor (1) and extruded into the conductor (12). [Problems to be Solved and Solved by the Invention] However, using the radiation-resistant insulating material of the first conventional method, it is not affected by radiation. << and the conventional second method conductor 1-. Extruded to rM. A special radiation protection agent is added to a breakable insulator material to make it less susceptible to the effects of radiation when it is extruded on top of the Nada body. It is quite effective when installed in a place where there is a large amount of radiation, such as nearby, but the cost of electric wires and cables! The problem is that the cost 1 is not worth the cost in places with low radiation levels, such as facilities around nuclear power plants, because the radiation level is high. In addition, in the conventional third method, the insulator material that is pressed and coated on the conductor contains a larger amount of known additives such as antioxidants that have a radiation-proofing effect than before. Compared to the first and second methods, the extrusion coating on the conductor has a lower performance in making the wire/cable less susceptible to the effects of radiation, but the cost of the wire/cable is lower and the radiation level is lower. However, it is extremely effective for use in insulating materials, but it is difficult to incorporate additives into the insulating material in larger amounts than before, and after extrusion coating on the concentrated material, additive bleed from the insulating material (from the resin). However, there are problems in that side effects such as staining (removal of stains) and deterioration of the mechanical properties of the resin, which is an insulator material, occur. An object of the present invention is to provide a radiation-resistant resin composition that exhibits less bleeding of additives and less deterioration of the mechanical properties of the resin even when used in a place where radiation is present. ing.

【課題を解決するための手段】[Means to solve the problem]

一般に、耐放射線性物質を使用する場所は原子炉の周辺
や核廃棄物の貯蔵施設などであり,これらの場所での放
射線の発失源は、限られた特定の場所(R子炉でいえば
、その炉心)である。そして、放射線の発生源からγ線
などの放射線が発生之れ当たると、ほだんどの物質が、
このγ線などの放射線を透過あるいは吸収I.、、放射
線を反射させたり、あるいは屈折させたりすることはほ
とんどない.このような場所で使用される樹脂製品は,
γ線などの放射線を受けると劣化を生じ、その電気・機
械特性が次第に低下してくることが明らかになっている
。そして、樹脂製品に、従来の混合比よりも多くの量の
添加剤を配合することにより電気・機械特性の低下を防
止することができることは知られている.しかしながら
、1穐類の添加剤を多量に添加すると樹脂がら添加剤の
ブリード(4I4脂からの染み吊し)が生じ、樹脂の機
械的持性の低下を来すなどの問題がイi 1),この添
加剤のブリードを防ぐために種類の異なる複数の添加剤
をブレンドするという方法が考えられるが、相乗効果の
ある良い組合仕は少なし1。 以ヒの点に鑑みて本発明者は、本発明をなすに至った。 すな4)ち、上記目的を達或するために、本発明におけ
る耐放射線性樹脂組成物は、ポリオレフィン系樹脂10
0重量部に対して、酸化防止剤4,4′−チオビス(3
−メチル−6 − t−ブチルフェノール)を0.1〜
1.0重量部、及びサルチレート系紫外線吸収剤を0.
1〜1.0重量部配合して構或したものである. そして、上記サルチレート系紫外線吸収剤を、一般式: 但し、Xは0〜4の整数,Rは炭素数1〜10までの直
鎖又は分枝鎖のアルキル基 で表されるものにしたものである。
In general, radiation-resistant materials are used in areas such as the vicinity of nuclear reactors and nuclear waste storage facilities, and the sources of radiation in these locations are limited to specific locations (not applicable to R sub-reactors). In other words, the reactor core). When radiation such as gamma rays is emitted from a radiation source, most materials become
Transmits or absorbs radiation such as γ-rays. , , hardly any radiation is reflected or refracted. Resin products used in such places are
It has become clear that exposure to radiation such as gamma rays causes deterioration, and that its electrical and mechanical properties gradually decline. It is known that deterioration of electrical and mechanical properties can be prevented by incorporating additives into resin products in a larger amount than the conventional mixing ratio. However, if a large amount of 1) additives is added, problems such as bleeding of the additive (stains from the 4I4 fat) will occur, resulting in a decrease in the mechanical durability of the resin.1) In order to prevent this additive from bleeding, a method of blending different types of additives is considered, but there are only a few good combinations that have a synergistic effect1. In view of the following points, the present inventor has accomplished the present invention. 4) In other words, in order to achieve the above object, the radiation-resistant resin composition of the present invention contains polyolefin resin 10
0 parts by weight, the antioxidant 4,4'-thiobis(3
-methyl-6-t-butylphenol) from 0.1 to
1.0 parts by weight, and 0.0 parts by weight of the salicylate ultraviolet absorber.
1 to 1.0 parts by weight. The above salicylate ultraviolet absorber has the general formula: where X is an integer of 0 to 4, and R is a straight or branched alkyl group having 1 to 10 carbon atoms. be.

【作用】[Effect]

上記のように構成される耐放射線性樹脂組成物にあって
は,ポリオレフイン系樹脂100重量部に対して、4,
4′−チオビス(3−メチル−6一t−ブチルフェノー
ル)を0.1〜1.0重量部,及びサルチレート系紫外
線吸収剤を0.1〜1.0重量部配合しているため、添
加剤のブリードを少なくすることができ、添加剤を配合
した樹脂の機械的特性の低下を防止することができる。
In the radiation-resistant resin composition configured as described above, 4,
Since it contains 0.1 to 1.0 parts by weight of 4'-thiobis(3-methyl-6-t-butylphenol) and 0.1 to 1.0 parts by weight of salicylate ultraviolet absorber, it is an additive. Bleed can be reduced, and deterioration of the mechanical properties of the resin containing additives can be prevented.

【実施例】【Example】

以下,本発明の実施例について説明する。 本実施例において基本となる樹脂製品の耐放射線性樹脂
組成物は,ポリオレフィン系樹脂100重量部に対して
、4,4′−チオビス(3−メチル−6 − t−ブチ
ルフェノール)を0.1〜l.O重量部,及びサルチレ
ート系紫外線吸収剤を0.1〜1.0重量部配合して構
成したものである。 本実施例においては、第1表に掲げる各種組或について
170℃(但し、実施例1及び比較例2は200℃)の
熱ロールにて均一に混練し、圧縮戒形機で165℃、1
50}cgf/.ffl、5分の条件で厚さlmのプレ
スシ一トを作製して.実施例、比較例の特性評価を行っ
た。 これらの実施例に基づく耐放射線性樹脂組成物と,比較
例の耐放射線性樹脂組成物とのそれぞれについて、プレ
スシ一トからJIS3号ダンベルを打ち抜き、温度24
℃、湿度60%の雰囲気中で200mm/分の速度で引
張試験を行った比較結果を第1表に示してある.この引
張試験の試料数は、それぞれの実施例で各15片づつで
、この15片の平均値によって破断時伸び(初期)を示
してある.また、実施例に基づく耐放射線性樹脂組成物
と、比較例の耐放射線性樹脂組成物とのそれぞれについ
てのプレスシ一トにコバルト60を線源とするγ線を室
温,空気中で10KGy/hrの腺量でIMGy照射し
た後,初期と同じ条件で引張試験を行った比較結果が第
1表の破断時伸び(1.0MGy照射後)の値として示
されている.なお、本実施例及び比較例の樹脂には、ポ
リオレフィンを用い、このポリオレフィンとしては、M
I=3.0の低密度ポリエチレンを用いている.また,
M化防止剤として具体的には、4,4′一チオビス(3
−メチル−6 − t−ブチルフェノール)である. そして、紫外線吸収剤として具体的には、2,4−ジー
t−プチルフェニール−3’,5’−ジーt−ブチルー
4′−ヒドロキシベンゾエート(第1表における紫外線
吸収剤A)、フェニルサリシレート(第1表における紫
外線吸収剤B),4−t−プチルーフェニールサリシレ
ート(第工表における紫外線吸収剤C),の3種である
6第1表中、比較例5(=添加剤なし)と比べて比較例
2〜4は、コバルト60を線源とするγ線を室温、空気
中で1 0 K Gy/hrの線量でIMGy照射した
後の特性が128%〜133%とほとんど向上していな
いのが判る。また、比較例lは,比較例5(133%)
に比べてγ線をIMGy照射した後の破断時伸びが16
4%と向Lしているが、破断・時伸びの向.ヒが大きく
なく、その効果は期待するほどでない。 これらに対し、実施例l〜3は,照射後の破断時伸びが
200%以−ヒ(205%〜216%)あり、耐放射線
性が著しく向上している。これは酸化防止剤とサルチレ
ート系紫外線吸収剤との相乗効果である. なお、各添加剤の添加量は、ポリオレフイン樹脂100
重量部に対して、各々0.L〜1.0重量部が望ましい
。O。1重量部以下の場合、効果が充分現われず、1.
0重量部を超えるとブリードが発生し、実用的でなくな
る。 また、酸化防止剤とサルチレート系票外線吸収剤の添加
量は同じである必要はなく、前記した範囲内であればい
くらでもよい。しかし、相乗効果を充分に引き出すため
には、できるだけ同量に近い方がよい。 また,ポリオレフィン系樹脂としては,実施例で示した
ポリオレフインをはじめとして,ポリプロピレン、エチ
レンー酢酸ビニル共重合体、エチレンーエチルアクリレ
ート共重合体、エチレンープロピレン共重合体などがあ
り、これらは単独又は2種以上を組合せて使用すること
もできる.また、サルチレート系紫外線吸収剤は、実施
例で示した3種類の他に、4−オクチルフェニルサリシ
レートなどがある.
Examples of the present invention will be described below. The radiation-resistant resin composition of the basic resin product in this example contains 0.1 to 4,4'-thiobis(3-methyl-6-t-butylphenol) to 100 parts by weight of polyolefin resin. l. It is composed of 0.1 to 1.0 parts by weight of O and a salicylate ultraviolet absorber. In this example, the various compositions listed in Table 1 were uniformly kneaded with a heated roll at 170°C (200°C in Example 1 and Comparative Example 2), and then kneaded with a compression molding machine at 165°C and 100°C.
50}cgf/. A press sheet with a thickness of lm was prepared under the conditions of ffl and 5 minutes. Characteristics of Examples and Comparative Examples were evaluated. For each of the radiation-resistant resin compositions based on these examples and the radiation-resistant resin compositions of comparative examples, JIS No. 3 dumbbells were punched out from press sheets and heated at a temperature of 24°C.
Table 1 shows the comparative results of a tensile test conducted at a speed of 200 mm/min in an atmosphere of 60% humidity and 60% humidity. The number of samples for this tensile test was 15 pieces for each example, and the elongation at break (initial stage) was expressed as the average value of these 15 pieces. In addition, in the press sheets for the radiation-resistant resin compositions based on the examples and the radiation-resistant resin compositions of the comparative examples, gamma rays from a cobalt-60 source were irradiated at 10 KGy/hr in air at room temperature. After IMGy irradiation with a glandular amount of 1.0 MGy, a tensile test was performed under the same conditions as the initial stage, and the results are shown in Table 1 as elongation at break (after 1.0 MGy irradiation). In addition, polyolefin was used as the resin of the present example and comparative example, and this polyolefin was M
Low density polyethylene with I=3.0 is used. Also,
Specifically, 4,4'monothiobis(3
-methyl-6-t-butylphenol). Specifically, the UV absorbers include 2,4-di-t-butylphenyl-3',5'-di-t-butyl-4'-hydroxybenzoate (UV absorbent A in Table 1), phenyl salicylate ( In Table 1, there are three types of ultraviolet absorber B), 4-t-butylphenyl salicylate (UV absorber C in Table 1), Comparative Example 5 (= no additive) and In comparison, in Comparative Examples 2 to 4, the properties were almost improved by 128% to 133% after IMGy irradiation with γ rays using cobalt 60 as a radiation source at a dose of 10 K Gy/hr in air at room temperature. I can see that there isn't. In addition, Comparative Example 1 is Comparative Example 5 (133%)
The elongation at break after IMGy γ-ray irradiation was 16 compared to
4%, but the direction of elongation at break and elongation is 4%. The effect is not as large as expected. On the other hand, in Examples 1 to 3, the elongation at break after irradiation was 200% or more (205% to 216%), and the radiation resistance was significantly improved. This is a synergistic effect between antioxidants and salicylate UV absorbers. The amount of each additive added is 100% of the polyolefin resin.
Each part by weight is 0. L~1.0 part by weight is desirable. O. If the amount is less than 1 part by weight, the effect will not be sufficient.1.
If it exceeds 0 parts by weight, bleeding will occur, making it impractical. Furthermore, the amounts of the antioxidant and the salicylate-based extraneous absorber do not need to be the same, and may be any amount within the above-mentioned range. However, in order to fully bring out the synergistic effect, it is better to keep the amounts as close to the same as possible. Examples of polyolefin resins include polyolefins shown in Examples, as well as polypropylene, ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, and ethylene-propylene copolymers, which may be used alone or in combination. It is also possible to use a combination of more than one species. In addition to the three types of salicylate ultraviolet absorbers shown in the examples, there are also 4-octylphenyl salicylate and the like.

【発明の効果】【Effect of the invention】

本発明は、以上説明したように構或されているので、以
下に記載されるような効果を奏する,ポリオレフィン系
樹脂100重量部に対して、4f4′−チオビス(3−
メチル−6 − t−ブチルフェノール)を0.1〜1
.0重量部,及びサルチレート系紫外線吸収剤を0.1
〜1.0重量部配合して構或しているため、添加剤のブ
リードを少なくすることができ、添加剤を配合した樹脂
の機械的特性の低下を防止することができる。 また、本発明によれば、2種類の添加剤の相乗効果によ
り、l種類の添加剤を多量に添加するのに比べてブリー
ドなどの副作用が少ない耐放射線性ポリオレフィンを得
ることができる。
Since the present invention is constructed as described above, 4f4'-thiobis(3-
Methyl-6-t-butylphenol) from 0.1 to 1
.. 0 parts by weight, and 0.1 parts by weight of salicylate ultraviolet absorber.
Since the additive is blended in an amount of up to 1.0 parts by weight, bleeding of the additive can be reduced, and deterioration in the mechanical properties of the resin containing the additive can be prevented. Further, according to the present invention, due to the synergistic effect of two types of additives, it is possible to obtain a radiation-resistant polyolefin with fewer side effects such as bleeding than when a large amount of one type of additive is added.

【図面の簡単な説明】 第1図は従来の耐放射線性ケーブルの一部断面拡大斜視
同である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged perspective view of a partial cross section of a conventional radiation-resistant cable.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリオレフィン系樹脂100重量部に対して、酸
化防止剤4,4’−チオビス(3−メチル−6−t−ブ
チルフェノール)を0.1〜1.0重量部、及びサルチ
レート系紫外線吸収剤を0.1〜1.0重量部配合して
なることを特徴とする耐放射線性樹脂組成物。
(1) 0.1 to 1.0 parts by weight of antioxidant 4,4'-thiobis(3-methyl-6-t-butylphenol) and salicylate ultraviolet absorber to 100 parts by weight of polyolefin resin. A radiation-resistant resin composition comprising 0.1 to 1.0 parts by weight of.
(2)上記サルチレート系紫外線吸収剤は、一般式: ▲数式、化学式、表等があります▼  但し、Xは0〜4の整数、Rは炭素数1〜10までの
直鎖又は分枝鎖のアルキル基 で表されるものである請求項1記載の耐放射線性樹脂組
成物。
(2) The above salicylate ultraviolet absorber has the general formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, The radiation-resistant resin composition according to claim 1, which is represented by an alkyl group.
JP1157530A 1989-06-20 1989-06-20 Radiation resistant resin composition Expired - Fee Related JP2608782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157530A JP2608782B2 (en) 1989-06-20 1989-06-20 Radiation resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157530A JP2608782B2 (en) 1989-06-20 1989-06-20 Radiation resistant resin composition

Publications (2)

Publication Number Publication Date
JPH0324137A true JPH0324137A (en) 1991-02-01
JP2608782B2 JP2608782B2 (en) 1997-05-14

Family

ID=15651685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157530A Expired - Fee Related JP2608782B2 (en) 1989-06-20 1989-06-20 Radiation resistant resin composition

Country Status (1)

Country Link
JP (1) JP2608782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179755A (en) * 2006-12-28 2008-08-07 Fujikura Ltd Radiation-resistant resin composition and radiation-resistant wire and cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036946B1 (en) 2007-09-14 2015-06-17 Fujikura Ltd. Radiation resistant resin composition and radiation-proof wire/cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120733A (en) * 1983-12-05 1985-06-28 Nippon Telegr & Teleph Corp <Ntt> Polyethylene composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120733A (en) * 1983-12-05 1985-06-28 Nippon Telegr & Teleph Corp <Ntt> Polyethylene composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179755A (en) * 2006-12-28 2008-08-07 Fujikura Ltd Radiation-resistant resin composition and radiation-resistant wire and cable

Also Published As

Publication number Publication date
JP2608782B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US4612139A (en) Semi-conductive polyolefin compositions and cables covered with same
US4260661A (en) Polyolefin compounds having improved heat curing stability, method of improving heat aging stability therein, an electrical conductor insulated therewith and method of forming
EP1000981B1 (en) Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
JP5691818B2 (en) Radiation-resistant insulated wire
DE112017002294T5 (en) electric wire
DE112004002371T5 (en) A crosslinked flame retardant resin composition and an insulated wire and a wiring harness using the same
DE69726102T2 (en) Flame retardant plastic mass, and insulated wire, shielded wire and insulated sleeve made of it
JP2593715B2 (en) Coaxial cable and method of manufacturing the same
JPH0324137A (en) Raidation-resistant resin composition
DE2947332C2 (en)
JPH0912786A (en) Radiation-resistant resin composition
EP0148416A2 (en) Polymer composition for sheathing cables and conductors
JP2956064B2 (en) Neutron shielding material
JPH08161942A (en) Flame-resisting cable
DE3312794A1 (en) Polymer-insulated electrical power cable, in particular high-voltage cable
JPH01100803A (en) Electric insulator for wire and cable
DE3347196A1 (en) Electrical insulation
JP3409466B2 (en) Polyolefin composition and insulated wire coated therewith
US3826781A (en) Primary insulation for waterproofed cable
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JP2847540B2 (en) Insulation composition for radiation-resistant flame-retardant electric wires and cables
DE2921859A1 (en) MULTI-WIRE LOW VOLTAGE CABLE WITH RADIO-NETWORKED ADERISOLATION
DE2809294A1 (en) FLAME RESISTANT HALOGEN-FREE POLYMER BLEND
JPS63301414A (en) Rubber plastic insulated power cable
JPH0892426A (en) Polyolefin composition and insulated wire coated therewith

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees