JPH0324120A - Production of conductive polymer - Google Patents

Production of conductive polymer

Info

Publication number
JPH0324120A
JPH0324120A JP15855589A JP15855589A JPH0324120A JP H0324120 A JPH0324120 A JP H0324120A JP 15855589 A JP15855589 A JP 15855589A JP 15855589 A JP15855589 A JP 15855589A JP H0324120 A JPH0324120 A JP H0324120A
Authority
JP
Japan
Prior art keywords
oxidation
monomer
light
pyrrole
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15855589A
Other languages
Japanese (ja)
Inventor
Fuyuhiko Kubota
冬彦 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP15855589A priority Critical patent/JPH0324120A/en
Publication of JPH0324120A publication Critical patent/JPH0324120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a conductive polymer having both a high electric conductivity and excellent processability by converting an oxidation-unpolymerizable compound into an oxidation-polymerizable monomer with light or heat and polymerizing the obtained monomer through oxidation. CONSTITUTION:This process comprises the steps of converting an oxidation- unpolymerizable compound into an oxidation-polymerizable monomer with light or heat and polymerizing the obtained monomer through oxidation. Examples of the oxidation-polymerizable monomers include compounds having a five-membered heterocyclic structure such as pyrrole, isoindole, naphtho[1,2- c]pyrrole, pyrrolo[3,4-b]pyridine, [3,4-c]pyrrole, pyrrolo[3,4-c]pyrrole and 1,3- dihydro derivatives thereof. Although the precursor compound used in the formation of the above monomer is not particularly limited so far as it can be converted into the above monomer with light or heat, an example includes the formation of the above monomer by a photo-reaction of an aromatic sulfonamide compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ドーピング状態で高い導電性と優れた安定性
を有する導電性重合体の製造方法に関する.本発明の方
法により製造される導電性重合体は、電気・電子工業の
分野において、導電材料、半導体材料、電極材料、表示
材料、電磁波遮蔽材料として用いられる. (従来の技術) 近年、導電性高分子は、金属にはない様々な特性を有す
る新素材として注目されている,.代表的な導電性高分
子であるポリ(アセチレン)では、金属並みの導電性が
達威されているものの、その安定性における問題は依然
として残されている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a conductive polymer having high conductivity and excellent stability in a doped state. The conductive polymer produced by the method of the present invention is used as a conductive material, a semiconductor material, an electrode material, a display material, and an electromagnetic wave shielding material in the fields of electrical and electronic industries. (Prior Art) In recent years, conductive polymers have attracted attention as new materials that have various properties not found in metals. Although poly(acetylene), a typical conductive polymer, has achieved conductivity comparable to that of metals, problems with its stability still remain.

一方、ポリ(アニリン)が二次電池の電極材料として、
ポリ(ビロール)がアルミ電解コンデンサにおいてそれ
ぞれ実用化されている.これら諸点を鑑みるに導電性高
分子は、金属の代替材料としてではなく、より低い導電
性でも応用が可能な用途において、今後も用途開発が進
むものと考えられる. 従来において、導電性高分子の実用化に大きな障害とな
っていた問題点として、殆どの導電性高分子が不溶、不
融であり、加工性が極めて低いという欠点が挙げられる
.この問題点を解決する代表的な手段として、下記の方
法が提案されている.(1)  高分子の側鎖にアルキ
ル基、親水性置換基等を導入することによって、溶剤に
対する溶解性及び溶融性を発現させる方法. (2)  加工性に優れた前駆体高分子を合或し、これ
を任意の形状に加工して後、熱処理等によって導電性を
有するものに変換ず力法。
On the other hand, poly(aniline) is used as an electrode material for secondary batteries.
Poly(virol) has been put into practical use in aluminum electrolytic capacitors. Considering these points, it is thought that the development of applications for conductive polymers will continue in the future, not only as a substitute for metals, but also in applications where they can be applied even with lower conductivity. Up until now, a major problem that has been a major obstacle to the practical application of conductive polymers is that most conductive polymers are insoluble and infusible, and have extremely low processability. The following method has been proposed as a typical means to solve this problem. (1) A method of developing solubility and meltability in solvents by introducing an alkyl group, a hydrophilic substituent, etc. into the side chain of a polymer. (2) A force method in which precursor polymers with excellent workability are combined, processed into an arbitrary shape, and then converted into a conductive material through heat treatment or the like.

(3)酸化重合性モノマー、光増感剤、酸化剤からなる
光重合性紐威物を基板」二に適用し、光照射により照射
部分に導電層を形戒させる方法。
(3) A method in which a photopolymerizable material consisting of an oxidative polymerizable monomer, a photosensitizer, and an oxidizing agent is applied to a substrate, and a conductive layer is formed in the irradiated area by light irradiation.

しかしながら、上記(1)の方法においては、置換基の
導入が容易でない、加工牲の改暮に伴って、RM性が低
下する等の問題点があった。また(2)の方法において
は、高い導電性を有するものが得られるものの、高温熱
処理が必要になる、限定された構造の高分子にのみ適用
され得る等問題点があった。さらに(3)の方法におい
ては、導電性高分子による導電層のパターン形戒が容易
であるものの、導lmの導電率が低いという問題点があ
るなと、上記いずれの方法も、導電性高分子の加王性を
改咎するには十分と言えるものではなかった.(発明が
解決しようとする!lJal)本発明は、高い導電性と
優れた加工性を併せもつ導電性高分子を得るという課題
を解決するものである。
However, the above method (1) has problems such as difficulty in introducing substituents and a decrease in RM properties due to changes in processability. In addition, although the method (2) can obtain a product having high conductivity, there are problems such as requiring high-temperature heat treatment and being applicable only to polymers with a limited structure. Furthermore, in method (3), although it is easy to form a pattern of the conductive layer using a conductive polymer, there is a problem that the conductivity of the conductive layer is low. It could not be said that it was sufficient to change the molecular resistance. (What the invention seeks to solve! lJal) The present invention solves the problem of obtaining a conductive polymer having both high conductivity and excellent processability.

(課題を解決するための手段) 本発明者はJ二記諸点に渇み観.意検酎し,た結果、酸
化重合性をもたない化合物を光又は熱によ,,て酸化重
合可能な単量体とずるT稈、及び得られた単量体を酸化
重合する工程を組合わせることによって、上記の課題を
臀決できることを見出し、本発明を完成するに至った。
(Means for Solving the Problems) The present inventors are satisfied with the points mentioned in J.2. After much research, we found that a compound that does not have oxidative polymerizability is treated with light or heat to form a monomer that can be oxidatively polymerized, and the process of oxidatively polymerizing the obtained monomer. We have discovered that the above problems can be solved by combining them, and have completed the present invention.

本発明における、酸化重合可能な単量体としては、ビロ
ール、イソインドール、ナット(1.2−e]ビローノ
レ、ナフl・[2.3−clビローノレ、ビr!lコE
3.4−b]ビリジン、ビロロ[3.4−clビリジン
、フラノ[3.4−1−.]ビロール、チエノ[3.4
−e3ピロール、セレノ[3.4−clビ口ール、テル
ロ[3.4−clビロール、ビロロ[3.4−clビロ
ール及びこれらの1.3−ジ吐ドロ体等の複素五員環構
造を有する化合物が挙げられる。
In the present invention, oxidatively polymerizable monomers include virol, isoindole, nut (1.2-e) virol, naphl/[2.3-cl virol, and virol!
3.4-b] pyridine, virolo[3.4-cl pyridine, furano[3.4-1-. ] Virol, Chieno [3.4
-Hetero5-membered rings such as e3-pyrrole, seleno[3.4-cl-bytol, telluro[3.4-cl-byrol, vilolo[3.4-cl-virol, and their 1,3-dioxetol] Examples include compounds having a structure.

L記の単量体は、通常の電解酸化重合又は、酸化剤によ
る化学酸化重合によって、導電性を有ずる重合体に変換
するこ占ができる。
The monomers listed in L can be converted into conductive polymers by ordinary electrolytic oxidative polymerization or chemical oxidative polymerization using an oxidizing agent.

その具体的な手段については、上記単量体の生戒におい
て用いられる前駆体化合物が、酸化重合性をもたず、さ
らに光照射又は熱照射によって酸化璽合可能な上記単I
体に変換されるものであれば、特に限定されないが、そ
の具体例としては、芳香族スルホンアミド系化合物の光
反応による上記単量体の生威が挙げられる。
As for the specific means, the precursor compound used in the preparation of the monomer has no oxidative polymerizability and is capable of oxidative polymerization by light irradiation or heat irradiation.
Although it is not particularly limited as long as it is converted into a monomer, a specific example thereof includes the production of the above-mentioned monomer by a photoreaction of an aromatic sulfonamide compound.

バラートルエンスルホンアミド、ナフクレンスルホンア
ミド等の芳香族スルホンアミド系化合物は、光照射によ
って窒素一硫黄結合の解裂反応を起こし、アミン化合物
を生或する。上記単量体の5員環側に含まれる窒素原子
に、芳香族スルホンアミド基を導入した構造を有する化
合物は、一般に酸化電位が高く、容易には酸化されない
.従って、これらの化合物を前駆体として用いて光照射
するこεによって、位置選択的に重合可能な上記単量体
を生或させることが可能となる.さらにこの状態で引続
き酸化重合し、導電性重合体を位置選択的に生或させる
ことができる. 光照射に用いられる光の波長は、特に限定されるもので
はないが、より効率的な単量体生戒を行うためには、紫
外m 81域の波長を有する光を用いることか好ましい
。光照射ヌは熱照射によって、酸化重合可能な単量体を
生威し得る前駆体化合物は、気体状態、固体状態、液体
状態、溶液状態のいずれであってもよく、さらに他のマ
トリックスポリマーに分散された状態であってもよい.
光照射又は熱照射によって得られた単量体の酸化重合反
応は、電解酸化重合の場合は、通常のビロール、チオフ
ェン等の電解重合で用いられる方法によって行い得る.
電解重合で用いられる溶媒としては一般的に、アセトニ
トリル、ペンゾニトリル、ブロビオニトリル、ジオキサ
ン、テトラヒドロフラン、スルホラン、プロピレンカー
ボネート、ニトロベンゼン、N.N−ジメチルホルムア
ミド、ジメチルスルホキシド等が挙げられる.また使用
される電解質としては、テトラエチルアンモニウムブロ
ミド、テトラエチルアンモニウムクロリド、テトラn−
プチルアンモニウムブロミド、テトラn−ブチルアンモ
ニウムクロリド、テトラフェニルホスホニウムブロミド
、テトラフェニルホスホニウムクロリド、テトラn一・
プチルアンモニウムバーク口レート、リチウムバークロ
レート、リチウムテトラフロ口ボレート、テトラエチル
アンモニウムテトラフ口口ボレート、テトラn−プチル
アンモニウムへキサフロロアンチモン、テトラn−プチ
ルアンモニウムへキサフ口ロホスフェート、ベンゼンス
ルホン酸カリウム塩、トルエンスルホン酸ナトリウム塩
、硫黄、塩酸、トリフロ口酢酸等が挙げられる.これら
の電解質の陰イオンは、電解重合時にドーバントとして
重合体中に取り込まれる. また、酸化剤を用いる化学酸化重合の場合は、生成した
単量体を酸化剤と接触させることによって、当該重合体
に変換することができる.その際、酸化剤は気体状態、
液体状態、固体状態、溶液状態のいずれであってもよい
.酸化剤が溶液状態である場合、用いられる溶媒として
は、ジクロロメタン、クロロホルム、四塩化炭素、ジク
ロルエタン、テトラクロルエタン、ニトロメタン、ニト
ロエタンニトロベンゼン、クロルベンゼン、N−メチル
−2−ビロリドン、二硫化炭素等が挙げられる.また酸
化重合で使用される酸化剤としては、テトラクロル−1
.2−ペンゾキノン、テトラクロル−1.4−ペンゾキ
ノン、2.3−ジクロル−5,6−ジシアノ−1.4ペ
ンゾキノン等のキノン系酸化剤、ヨウ素、臭素、塩素等
のハロゲン系酸化剤、硝酸、塩酸、硫酸等の無機酸又は
アルξニウム、錫、クロム、マンガン、鉄、銅、モリブ
デン、タングステン、ルテニウム、パラジウム白金など
の金属の塩化物、硫酸塩及び硝酸塩、さらに過硫酸ナト
リウム、過硫酸カリウム、過硫酸アンモニウム等の過硫
酸塩が挙げられる. 光照射による単量体生威過程においては、水、アルコー
ル系溶剤、還元剤、さらに電子供与性を有する化合物の
中から選ばれる1種以上のものを共存させることによっ
て、より効率的に単量体を生戒させることが可能となる
.また単量体の前駆体に、置換基としてアルコキシ基等
の電子供与性基を有するものを用いることによって、ま
り高収率で高い導電性を有する重合体を得ることも可能
である. (実施例) 以下、実施例を示し、本発明をさらに具体的に説明する
が、これらの実施例をもって本発明の技術的範囲を限定
するものではない. 実施例1 α,α−ジプロモーオルトーキシレンとパラートルエン
スルホンアξドとを水素化ナトリウム存在下、N,N−
ジメチルホルムアミド中で反応させ、N−パラトリルス
ルホニル−1.3−ジヒドロイソインドールを得た.得
られた白色針状結晶5.0gと、ポリ(メチルメタクリ
レート)(分子量: 10,000)50.0gをクロ
ロホルム200−に溶解し、キャスト法によってフィル
ム形威した. 次に200 W高圧水銀燈を用いて、このフィルムに部
分的に紫外線を2時間照射し、引続きフィルムを0.1
M塩化第2鉄水溶液に浸漬したところ、光照財部分が黒
色に変化していた.この部分の導電率を直流四端子法で
測定したところ、3.OX10−’S/ellであった
. 実施例2 実施例1で用いたN−バラトリルスルホニル−l,3−
ジヒドロイソインドールの代,わりに、N−バラトリル
スルホニルイソインドールを用いて同様にフィルム形戒
、紫外線照射さらに酸化剤処理を行ったところ照射部分
が黒緑色に変化していた。
Aromatic sulfonamide compounds such as balatluenesulfonamide and napucrenesulfonamide undergo a cleavage reaction of nitrogen-sulfur bonds when irradiated with light to produce amine compounds. Compounds having a structure in which an aromatic sulfonamide group is introduced into the nitrogen atom contained in the five-membered ring of the above monomer generally have a high oxidation potential and are not easily oxidized. Therefore, by using these compounds as precursors and irradiating them with light, it becomes possible to produce the above-mentioned monomers that can be polymerized regioselectively. Furthermore, oxidative polymerization can be carried out in this state to regioselectively produce a conductive polymer. The wavelength of the light used for light irradiation is not particularly limited, but in order to more efficiently control the monomer, it is preferable to use light having a wavelength in the ultraviolet m81 region. The precursor compound capable of producing an oxidatively polymerizable monomer by thermal irradiation may be in any of the gas, solid, liquid, or solution states, and may be added to other matrix polymers. It may be in a distributed state.
In the case of electrolytic oxidative polymerization, the oxidative polymerization reaction of monomers obtained by light irradiation or thermal irradiation can be carried out by a method commonly used for electrolytic polymerization of virol, thiophene, etc.
Solvents used in electropolymerization generally include acetonitrile, penzonitrile, brobionitrile, dioxane, tetrahydrofuran, sulfolane, propylene carbonate, nitrobenzene, N. Examples include N-dimethylformamide and dimethyl sulfoxide. In addition, the electrolytes used include tetraethylammonium bromide, tetraethylammonium chloride, tetra n-
butylammonium bromide, tetra n-butylammonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium chloride, tetra n-
Butylammonium bark chlorate, lithium bark chlorate, lithium tetrafluoroborate, tetraethylammonium tetraphroborate, tetra n-butylammonium hexafluoroantimony, tetra n-butylammonium hexafluorophosphate, benzenesulfonic acid potassium salt , toluenesulfonic acid sodium salt, sulfur, hydrochloric acid, trifluoroacetic acid, etc. These electrolyte anions are incorporated into the polymer as dopant during electrolytic polymerization. Furthermore, in the case of chemical oxidative polymerization using an oxidizing agent, the produced monomer can be converted into the polymer by contacting it with the oxidizing agent. At that time, the oxidant is in a gaseous state,
It may be in a liquid state, solid state, or solution state. When the oxidizing agent is in a solution state, the solvent used includes dichloromethane, chloroform, carbon tetrachloride, dichloroethane, tetrachloroethane, nitromethane, nitroethanenitrobenzene, chlorobenzene, N-methyl-2-pyrrolidone, carbon disulfide, etc. can be mentioned. In addition, as an oxidizing agent used in oxidative polymerization, tetrachlor-1
.. Quinone oxidizing agents such as 2-penzoquinone, tetrachlor-1,4-penzoquinone, 2,3-dichloro-5,6-dicyano-1.4penzoquinone, halogen oxidizing agents such as iodine, bromine, chlorine, nitric acid, hydrochloric acid , chlorides, sulfates and nitrates of inorganic acids such as sulfuric acid or metals such as aluminum, tin, chromium, manganese, iron, copper, molybdenum, tungsten, ruthenium, palladium and platinum, as well as sodium persulfate, potassium persulfate, Examples include persulfates such as ammonium persulfate. In the monomer biochemical process by light irradiation, monomers can be more efficiently grown by coexisting one or more compounds selected from water, alcoholic solvents, reducing agents, and electron-donating compounds. It becomes possible to keep the body in good health. Furthermore, by using a monomer precursor having an electron-donating group such as an alkoxy group as a substituent, it is also possible to obtain a polymer having high electrical conductivity in a high yield. (Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the technical scope of the present invention is not limited by these Examples. Example 1 N,N-
The mixture was reacted in dimethylformamide to obtain N-paratolylsulfonyl-1,3-dihydroisoindole. 5.0 g of the obtained white needle-shaped crystals and 50.0 g of poly(methyl methacrylate) (molecular weight: 10,000) were dissolved in 200 g of chloroform and formed into a film by a casting method. Next, the film was partially irradiated with ultraviolet rays for 2 hours using a 200 W high-pressure mercury lamp, and then the film was heated to 0.1
When it was immersed in an aqueous M ferric chloride solution, the light source part had turned black. When the conductivity of this part was measured using the DC four-probe method, it was found to be 3. OX10-'S/ell. Example 2 N-valatrylsulfonyl-l,3- used in Example 1
When N-valatrylsulfonylisoindole was used in place of dihydroisoindole and film formation, ultraviolet ray irradiation, and oxidizing agent treatment were performed in the same manner, the irradiated area turned dark green.

この部分の導電率を直流四端子法で測定したところ、5
.OX10−’S/cmであった.実施例3 実施例1で用いたN−パラトリルスルホニル=1.3−
ジヒドロイソインドールの代わりに、N−パラトリルビ
ロロ[3.4−c]ピリジンを用いて同様にフィルム形
威、紫外線照射さらに酸化剤処理を行ったところ照射部
分が黒緑色に変化していた。
When the conductivity of this part was measured using the DC four-terminal method, it was found to be 5.
.. It was OX10-'S/cm. Example 3 N-paratolylsulfonyl used in Example 1 = 1.3-
When N-paratolylbyroro[3.4-c]pyridine was used in place of dihydroisoindole and film formation, ultraviolet ray irradiation, and oxidizing agent treatment were performed in the same manner, the irradiated area turned dark green.

この部分の導電率を直流四端子法で測定したところ、?
.8 X 10一寞S/c璽であった.実施例4 実施例lで調製した前駆体及びマトリ・冫クスボリマー
を溶解したクロロホルム溶液を用いて、ネサガラス板上
にキャストフイルム形成し、次にこれに実施例1と同様
に紫IA線照射した。引続きこれを陥極とし、内金電極
を対極、銀/塩化線電極を参照電極として、テトラn−
プチルアンモニウムブロ泉ド0.IMアセトニトリル溶
液を電解液として、i.ov c対銀/塩化銀電極)で
電解重合したところ、光照射部分が黒色に変化していた
。この部分の導電率を直滓四端子法で測定したところ、
1.1x 10−’ S / c馴であった.実施例5 N−バラトリルスルホニル−1.3−ジヒドロナフ1・
[2.3−C]ビロールを前駆体と1,て用い、以下実
施例4と同様に電解重合したところ、光照射部分に黒褐
色に変化していた.この部分の導電率を直流四端子法で
測定したところ、3.OX10−’ S /’CIであ
った. 比較例1 ルテニウムトリスビビリジン錯体をスルホン化フ,素化
ボリオレフィン1l膜(膜厚50μ−)をに吸着させて
得られた色素含漫膜をビロール(0.3■ol/l及び
コバルトクロロペンタアミン錯体(0.04mol/ 
l )を含む水溶液に浸漬した。次いでこの膜に490
nmの光を照射したところ、照射部分が黒色変化した.
この部分の導電率を直流四@T法で測定したところ、1
.O X 10−’ S / cmであった。
When the conductivity of this part was measured using the DC four-terminal method, what was the result?
.. It was an 8 x 10 one-piece S/c seal. Example 4 A cast film was formed on a Nesa glass plate using a chloroform solution in which the precursor prepared in Example 1 and the matrix/diaphragm polymer were dissolved, and then the same as in Example 1 was irradiated with violet IA rays. Subsequently, using this as a pit electrode, the inner gold electrode as a counter electrode, and the silver/chloride wire electrode as a reference electrode, a tetra n-
Ptylammonium chloride 0. Using IM acetonitrile solution as the electrolyte, i. When electrolytically polymerized using ov c vs. silver/silver chloride electrode), the light-irradiated area turned black. When the conductivity of this part was measured using the direct slag four-probe method, it was found that
It was 1.1x 10-' S/c familiar. Example 5 N-valatrylsulfonyl-1,3-dihydronaf 1.
When [2.3-C]virol was used as a precursor and electrolytically polymerized in the same manner as in Example 4, the light-irradiated area turned blackish brown. When the conductivity of this part was measured using the DC four-probe method, it was found to be 3. OX10-'S/'CI. Comparative Example 1 A dye-containing film obtained by adsorbing a ruthenium tris-biviridine complex onto sulfonated polyolefin and a 1 liter film (thickness: 50 μm) of dioxidized polyolefin was adsorbed onto virol (0.3 μol/l and cobalt chloride). Pentaamine complex (0.04mol/
1) was immersed in an aqueous solution containing. This film was then coated with 490
When irradiated with nm light, the irradiated area turned black.
When the conductivity of this part was measured using the DC 4@T method, it was found to be 1
.. OX 10-'S/cm.

(発明の効果) 本発明の製造方法を採用するこどにより、It性高分子
の加工性における問題点を解決することが出来、複雑な
形状も容易に成形、加工することが出来、また本発明の
方法により得られる導電性重合体は、例えば電気・電子
工業の分野においては、導電材料、半導体材料、電極材
料、表示材料、@磁波遮蔽材料として用いられ、その他
、その応用は測りしれなく、産業界に寄bすること大で
ある.
(Effects of the Invention) By adopting the manufacturing method of the present invention, problems in the processability of It-based polymers can be solved, complex shapes can be easily molded and processed, and the present invention The conductive polymer obtained by the method of the invention is used, for example, in the electrical and electronic industries as a conductive material, semiconductor material, electrode material, display material, @magnetic wave shielding material, and has countless other applications. It is a great contribution to the industry.

Claims (1)

【特許請求の範囲】 酸化重合性をもたない化合物を光又は熱に よって酸化重合可能な単量体とする工程、及び得られた
単量体を酸化重合する工程を含むことを特徴とする導電
性重合体の製造方法。
[Claims] A conductive material comprising the steps of: converting a compound that does not have oxidative polymerizability into a monomer that can be oxidatively polymerized by light or heat; and oxidatively polymerizing the obtained monomer. method for producing a synthetic polymer.
JP15855589A 1989-06-21 1989-06-21 Production of conductive polymer Pending JPH0324120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15855589A JPH0324120A (en) 1989-06-21 1989-06-21 Production of conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15855589A JPH0324120A (en) 1989-06-21 1989-06-21 Production of conductive polymer

Publications (1)

Publication Number Publication Date
JPH0324120A true JPH0324120A (en) 1991-02-01

Family

ID=15674266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15855589A Pending JPH0324120A (en) 1989-06-21 1989-06-21 Production of conductive polymer

Country Status (1)

Country Link
JP (1) JPH0324120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498371A (en) * 1991-12-30 1996-03-12 Dsm N.V. Process for the production of an assembly conducting article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498371A (en) * 1991-12-30 1996-03-12 Dsm N.V. Process for the production of an assembly conducting article

Similar Documents

Publication Publication Date Title
Zeng et al. Azulene in polymers and their properties
JP3413956B2 (en) Method for producing conductive polymer
Feng et al. A simple fluorescent film probe for the detection of fluoride anion in organic solution
Hsiao et al. Highly stable electrochromic polyamides based on N, N‐bis (4‐aminophenyl)‐N′, N′‐bis (4‐tert‐butylphenyl)‐1, 4‐phenylenediamine
Gu et al. Design of twisted conjugated molecular systems towards stable multi-colored electrochromic polymers
JPH04102831A (en) Polyviologen modified electrode and application thereof
US6833432B2 (en) Conjugated poly(2,7-carbazole) derivatives and process for the preparation thereof
Schmitz et al. Synthesis and characterization of oligonaphthylamines
Manisankar et al. Electrochemical synthesis and spectroelectrochemical behavior of poly (diphenylamine-co-4, 4′-diaminodiphenyl sulfone)
Taranu et al. Adsorbed functionalized porphyrins on polyaniline modified platinum electrodes. Comparative electrochemical properties
JPH0324120A (en) Production of conductive polymer
Kurtay et al. Synthesis and computational bandgap engineering of new 3, 4-Alkylenedioxypyrrole (ADOP) derivatives and investigation of their electrochromic properties
Beouch et al. Optical and electrochemical properties of soluble N-hexylcarbazole-co-3, 4-ethylenedioxythiophene copolymers
JPH02180922A (en) Conductive polymer
Hacioglu et al. Multipurpose acetic acid functionalized carbazole derivatives: Synthesis, electrochemical properties and electrochromic device applications
JP4283815B2 (en) Aqueous solution and organic solution containing conductive polymer, and support containing conductive polymer obtained from the solution
JPH02218716A (en) Organic semiconductor and production thereof
JPH0338588A (en) Thiophene derivative, complex containing the derivative as component and its production
JPS63199727A (en) Organic semiconductor
Bell Simplified Synthesis of Conjugated Polymers Enabled via 1, 4-Dihydropyrrolo [3, 2-b] pyrrole
JP3188545B2 (en) Insoluble polyviologen-modified semiconductor and its manufacturing method
ES2254918T3 (en) POLYMERIZATION PROCEDURE, POLYMERS AND ITS USES.
JPS63307604A (en) Manufacture of electrically-conductive composite material
JPH0720514A (en) Nonlinear optical material
Salgado¹ et al. Check for updates Investigation of the Conductive Properties of the Electro-Polymerized Thiophene and Pyrrole Derivatives: Correlation Between