JPH0324103A - Solid catalyst component for production of ultrahigh molecular weight polyethylene - Google Patents

Solid catalyst component for production of ultrahigh molecular weight polyethylene

Info

Publication number
JPH0324103A
JPH0324103A JP1158202A JP15820289A JPH0324103A JP H0324103 A JPH0324103 A JP H0324103A JP 1158202 A JP1158202 A JP 1158202A JP 15820289 A JP15820289 A JP 15820289A JP H0324103 A JPH0324103 A JP H0324103A
Authority
JP
Japan
Prior art keywords
molecular weight
solid catalyst
catalyst component
weight polyethylene
titanium tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1158202A
Other languages
Japanese (ja)
Other versions
JP2772978B2 (en
Inventor
Takuo Kataoka
拓雄 片岡
Minoru Terano
稔 寺野
Takeyasu Maruyama
丸山 健康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP1158202A priority Critical patent/JP2772978B2/en
Publication of JPH0324103A publication Critical patent/JPH0324103A/en
Application granted granted Critical
Publication of JP2772978B2 publication Critical patent/JP2772978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide the title component which has high catalytic activity and excellent retentivity of activity and can give an ultrahigh molecular weight polyethylene in high yields by bringing diethoxymagnesium into contact with titanium tetrachloride in two specified stages. CONSTITUTION:Diethoxymagnesium is brought into contact with an aromatic dicarboxylic acid ester (e.g. phthalic diester) and titanium tetrachloride in the presence of an aliphatic dihalohydrocarbon (e.g. dichloroethane). The obtained composition is further brought into contact with titanium tetrachloride in the presence of an aromatic hydrocarbon (e.g. toluene) to produce a solid catalyst component. An ultrahigh molecular weight polyethylene of an average mol.wt. >=2000000 can be obtained in high yields by polymerizing ethylene by using a catalyst obtained by combining the obtained solid catalyst component with an organoaluminum compound (e.g. diethylaluminum chloride).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、エチレンの重合に供した隙、重量平均分子
量が200万以上の超高分子量ポリエチレンを高収率で
得ることのできる高性能固体触媒成分に間するものであ
る. (従来の技wI) 従来、La高分子量ポリエチレンは耐衝撃性、耐鷹粍性
、耐薬品性に優れ、かつ自己潤滑性を有することからラ
イニング材、各種@夏、パッキン、スキー板の裏張りや
スケートリンクなどに至るまで幅広く利用されている. 斯かるμ高分子量ポリエチレンを得るためには適切な固
体蝕媒成分と有機アルミニウム化合物の選択が必要であ
ることはよく知られている.近時、固体触媒成分に間し
てはMg担持Ti系触媒がエチレン、プロピレンなどの
オレフィン類の重合に用いた場合、高活性を示すことが
一般的に周知である.具体的には特開昭59−683 
11号、I!1161−286414号に間示されてい
る通りである. (発明が解決しようとする課題〉 しかしながら前記特開昭59−683 1 1号、同6
1−268414号公報に間示されている固体触瞑成分
は担体物質として塩化マグネシウムを使用し、活性成分
としてチタンハロゲン化物を用いることが構成要件の主
流となっている.この塩化マグネシウムに含有される塩
素は、チタンハロゲン作物中の塩素と同様に生成共重合
体に悪影響を及ぼすという欠点を有しており、そのため
に事実上塩素の影響を無視し得る程度の高活性が要求さ
れkり、或はまた、塩化マグネシウムそのものの濃度を
低く抑えなければならないという未解決な部分があった
● また、これら従来公知の固体触媒成分をυ高分子量ポリ
エチレンの製造に用いる際にはボリマーの重合度を高く
するために重合温度を低下させる場合が多く、結果とし
て単位触媒量当りの重合体の収fi(以下触媒活性とい
う.)は低下する.従って得られるボリマー中に含まれ
る残留触媒を除去して脱色するための所謂脱灰工程が不
可一である.この脱灰工程は多量のアルコールまたはキ
レート剤を使用するために、それらの回収装置または再
生WINKが不可欠であり、ilfi.  エネルギー
その他不随する問題が多く、当業者にとって早急に解決
を望まれる重要な!!題であった.また、これら従来公
知の固体触媒成分は譚高分子量ポリエチレンの製造に供
した際、重合期間の触媒活性は高いものの重合時間の経
一に伴って著しく低下するという欠点もあった, さらに従来公知の固体触媒成分を用いて13高分子量ポ
リエチレンの聾造を行った場合、iit平均分子量が5
0万から200万程度が限界で、より高い値を得るため
には固体触媒成分そのものに改良の余地が残されており
、また、超高分子量ポリエチレンは汎用ポリエチレンと
比較すると著しく粘度が高いために、その成形加工性が
悪いことで知られている.その成形加工性よくするため
には、得られるポリエチレンパウダーの粒径が小さく、
かつその粒度分布がせまいことが要求されている.(課
題を解決するための手段) 本発明者等は斯かる従来技術に残された課題を解決し得
る超高分子量ポリエチレン製造用固体触媒成分を間発す
るためにtIi買研究を進めた結果、この発明に達し、
ここに提案するものである.すなわち、この発明は(a
)ジエトキシマグネシウムを、 (t)) N肪族ジハ
ロゲン化炭化水素の存在下で、 (c)芳香族ジカルボ
ン.酸ジエステルおよび(d)四塩化チタンと接触させ
、得られた紐成物をさらに、 (e)芳香族炭化水素の
存在下で(d)四塩化チタンと接触させることを特徴と
する超高分子量ポリエチレン製造用固体触媒成分を提供
するものである. この発明において使用される(b) lit肪誇ジハロ
ゲン化炭化水素(以下(b)物質という.)としては、
たとえば塩化メチレン、ジクロロエタン、ジクロロブロ
バン、ジクロロブタン、ジプロムブタン等があげられる
. この発明において使用され4(c)芳香族ジカルボン酸
ジエステル(以下(c)物質という.)としては、フタ
ル酸ジエステルが好ましく、例えば、ジメチルフタレー
ト、ジェチルフタレート、ジブロビルフタレート、ジブ
チルフタレート、ジイソプチルフタレート、ジアミルフ
タレート、ジイソアミルフタレート、エチルプチルフタ
レート、エチルイソブチルフタレート、エチルプロピル
フタレートなどをあげることができる. この発明において使用される(e)芳香族炭化水素(以
下(e) #J質という.)としては、トルエン、キシ
レン、ベンゼンなどをあげることができる. この発明において得られる固体触媒成分は、有機アルミ
ニウム化合物と組合わせて使用することにより、餠高分
子量ポリエチレン製造用触媒を構成する.この陽用いら
れる有機アルミニウム化合物は,一般式RnA I X
3−n (ここでRは炭化水素基、Xはハロゲン原子、
1≦n≦3 )で表される。
Detailed Description of the Invention (Industrial Application Field) This invention is a high-performance solid that can obtain ultra-high molecular weight polyethylene with a weight average molecular weight of 2 million or more in high yield using a gap subjected to ethylene polymerization. It is interposed between catalyst components. (Conventional technique wI) Conventionally, La high molecular weight polyethylene has excellent impact resistance, oxidation resistance, and chemical resistance, and has self-lubricating properties, so it has been used as lining materials, various @summer materials, packing, and ski linings. It is used in a wide range of places, including skating rinks and other places. It is well known that in order to obtain such μ high molecular weight polyethylene, it is necessary to select appropriate solid etchant components and organoaluminium compounds. Recently, among solid catalyst components, it is generally known that Mg-supported Ti catalysts exhibit high activity when used in the polymerization of olefins such as ethylene and propylene. Specifically, Japanese Patent Publication No. 59-683
No. 11, I! As shown in No. 1161-286414. (Problem to be solved by the invention) However, the above-mentioned Japanese Patent Application Laid-open Nos. 59-683 11 and 6
The main constituent requirements of the solid contact component disclosed in Japanese Patent No. 1-268414 are to use magnesium chloride as a carrier material and titanium halide as an active ingredient. The chlorine contained in this magnesium chloride has the disadvantage of having an adverse effect on the produced copolymer, similar to the chlorine in titanium halogen crops, and therefore has a high activity that can virtually ignore the effect of chlorine. In addition, there was an unresolved issue that the concentration of magnesium chloride itself must be kept low.Also, when using these conventionally known solid catalyst components in the production of high molecular weight polyethylene, In many cases, the polymerization temperature is lowered in order to increase the degree of polymerization of the polymer, and as a result, the yield of the polymer per unit amount of catalyst (hereinafter referred to as catalytic activity) decreases. Therefore, a so-called deashing step for removing the residual catalyst contained in the obtained polymer and decolorizing it is not necessary. Since this demineralization process uses a large amount of alcohol or chelating agent, a recovery device or a regenerating WINK for these is indispensable, and ilfi. There are many energy and other related problems, and it is an important issue that requires immediate resolution by those skilled in the art! ! That was the issue. In addition, when these conventionally known solid catalyst components were used to produce high molecular weight polyethylene, they had the disadvantage that although their catalytic activity was high during the polymerization period, it significantly decreased as the polymerization time progressed. When a solid catalyst component is used to make a hearing aid of 13 high molecular weight polyethylene, the iit average molecular weight is 5.
The limit is about 0,000 to 2,000,000, and there is still room for improvement in the solid catalyst component itself in order to obtain a higher value.Also, because ultra-high molecular weight polyethylene has a significantly higher viscosity than general-purpose polyethylene, It is known for its poor moldability. In order to improve its moldability, the particle size of the resulting polyethylene powder must be small;
Moreover, the particle size distribution is required to be narrow. (Means for Solving the Problems) The present inventors have carried out tIi purchasing research in order to produce a solid catalyst component for the production of ultra-high molecular weight polyethylene that can solve the problems remaining in the prior art. reached an invention,
This is what I propose here. That is, this invention (a
) diethoxymagnesium, (t)) in the presence of N aliphatic dihalogenated hydrocarbon, (c) aromatic dicarbonate. An ultra-high molecular weight product characterized by contacting with an acid diester and (d) titanium tetrachloride, and further contacting the obtained ligated product with (d) titanium tetrachloride in the presence of (e) an aromatic hydrocarbon. This product provides a solid catalyst component for polyethylene production. The (b) lit dihalogenated hydrocarbon (hereinafter referred to as (b) substance) used in this invention is as follows:
Examples include methylene chloride, dichloroethane, dichlorobroban, dichlorobutane, and diprombutane. The 4(c) aromatic dicarboxylic acid diester used in this invention (hereinafter referred to as (c) substance) is preferably a phthalic acid diester, such as dimethyl phthalate, jetyl phthalate, dibrobyl phthalate, dibutyl phthalate, dibutyl phthalate, Examples include isobutyl phthalate, diamyl phthalate, diisoamyl phthalate, ethylbutyl phthalate, ethyl isobutyl phthalate, and ethylpropyl phthalate. Examples of (e) aromatic hydrocarbons (hereinafter referred to as (e) #J quality) used in this invention include toluene, xylene, and benzene. The solid catalyst component obtained in this invention constitutes a catalyst for producing high molecular weight polyethylene when used in combination with an organoaluminum compound. This explicitly used organoaluminum compound has the general formula RnA I
3-n (where R is a hydrocarbon group, X is a halogen atom,
1≦n≦3).

具体的には、トリエチルアルミニウム、トリイソブチル
アルミニウム、ジェチルアルミニウムクロリド、エチル
アルミニウムセスキクロリドなどがあげられるが、これ
らを混合して用いることも可能である. この発明における固体触媒成分を得る際、 (a)ジエ
トキシマグネシウム(以下(a)物質という.)および
(b)物質の接触は、通常0’Cから200℃までの温
度で100時間以下、好ましくは10時間以下の範囲で
行われる.このFD,(a〉物質および(b)物質の使
用割合は任意であるが、懸濁液を形成し得る量であるこ
とが好ましい。
Specific examples include triethylaluminum, triisobutylaluminum, diethylaluminum chloride, and ethylaluminum sesquichloride, but it is also possible to use a mixture of these. When obtaining the solid catalyst component in this invention, (a) diethoxymagnesium (hereinafter referred to as (a) substance) and (b) substance are brought into contact, preferably at a temperature of 0'C to 200C for 100 hours or less. The duration is 10 hours or less. The ratio of the FD, substance (a) and substance (b) to be used is arbitrary, but it is preferable that the amount is such that a suspension can be formed.

(a)物質および(b)物質の接触によって得られる懸
濁液と(c)物質および(d)四塩化チタン(以下(d
) 物質という.)との接触条件は、通常50℃から2
00’Cまでの温度で5分以上、好ましくは30分以上
100時間以下のQWRである.t*懸湧液と(c)物
質および(d)物質の接触順序は任意であるが、接触は
攪拌下で行うことが好ましい.各成分は任意の割合で用
いられるが、通常(a)I?lI1gC:対し、 (b
)物質t.to.1−2gのif!li1であり、 (
d)物質は0.1g以上好ましくは1g以上のi1!開
である.また、この際希釈剤としてヘキサン、ヘプタン
、デヵン、ベンゼン、トルエン、キシレン等の炭化水x
m媒を使用してもよい.ts固体生成物に(e)物質の
存在下で繰り返し(d)物質を接触させる際の接触条件
は、通常50℃から200’Cまでの温度で5分以上好
ましくはaO分以上100時間以下の9+1!+であり
、 (e)!質は任意の割合で使用することができる.
またn−へブタン等の有lII溶媒を用いて洗浄するζ
とも可能である. 以上の如くしてl!遺された触媒成分は、前記有機アル
ミニウム化合物と組合せて超高分子量ポリエチレン製造
用触媒を形成する.使用される有機アルミニウム化合物
は触媒成分中のチタン原子のモル当リモル比で1〜1 
000のi!開で用いられる. 通常、重合は炭什水素ないしはハロゲン化炭化水素溶椹
中で行われ、重合温度はO〜150℃、重合圧力は0−
100kg/e+s2・Gである.この際、必要に応じ
てエステル類、ケトン類、アミン類、Si−0−C結合
を有するケイ素化合物等の電子供与性化合物を添加して
用いることも可能である.(発明の作用と効果) この発明によって得られた固体触媒成分を用いて超高分
子量ポリエチレンの製造を行った場合、触媒活性が極め
て高く、しかもその活性の持続性が優れているために長
時間を要する重合反応において劣化することが少ないと
いう利点を有する.さらに残留塩素量が微量であるため
に脱灰工程は全く必要としない程度にまで生成ボリマー
に対する塩素の影響を低減することができる.また、こ
の発明によって得られたボリマーの粒径は従来公知のも
のと比較して小さく、かつ粒度分布がせまいために成形
後の加工性においても優れている.しかも重量平均分子
量が200万以上の超高分子量ポリエチレンを安定して
製造することができることなど、性能上の触媒特性に加
えて、操作上および装置上のコスト減等の付加的効果を
も奏するものである. (実k例) 以下本発明を実旋例により具体的に説明する.[実施例
1] く固体触媒成分のill製〉 窒素ガスで充分にI!換され、攪拌機を具備した容量3
00mlの丸底フラスコにジェトキシマグネシウム5g
および1.2−ジクロ口エタン80mlを装入して襲濁
状態とし、20℃で15分攪拌しながら処理することに
よりスラリー状の懸濁液を得た.ついでこの#!渭液を
、攪拌l1を具備した500mlの丸底フラスコ中に装
入したO℃の四塩化チタン20ml中に系内の温度をO
℃に保ちつつ30分かけて滴下した.次に、系内の温度
を70℃に昇福してジーn−プチルフタレート3.0m
lを加え、さらに昇温して還流下で2時間反応させた.
その後、90℃のトルエン100mlで3回洗浄し、上
澄み液を除去した後、トルエン80m!および四塩化チ
タン20mlを加え、再度110℃で2時間反応させた
.最後に、40℃のn一へブタン200mlでlO回洗
浄することにより固体触媒成分を得た. この固体触媒成分中のチタン含有量は2.7重量%、ジ
・n−プチルフタレート含有量は16.7重量%であっ
た. く重 合〉 エチレンガスで完全に置換された内容積1500mlの
攪拌装置付きステンレス製オートクレープにn−へブタ
ン7 0 0 m lを装入し、20℃においてエチレ
ンガス雰囲気下に保ちつつトリエチルアルミニウム0.
70mmolを装入した.ついで、前記固体触媒成分を
チタン原子として0.0052mmol装入し、系内の
圧力がIkg/c+s’・Gになるようにエチレンで加
圧し20℃で30分間予備重合を行った.その後、系内
の圧力が4kg / I1!1I2・Gになるようにエ
チレンを供給しつつ70℃に昇温しで3時間重合を行っ
た. 得られたポリエチレンパウダーを濾別し減圧屹燥したと
ころ232.5gであり、重合時間3時間における触#
&1g”lりのボリマー収量(以下触媒活性という)は
25.OOOg/x−cat.であった.得られたボリ
マーの嵩比重は0.32z / ays ”であり、積
算重量50%で表される平均粒径は140μmであった
.また、このボリマーのデカリン(135℃〉中におけ
る極限粘度から求めた平均分子量は30Q万であった.
[実旋例2〕 実施例1における固体触媒成分を用い、エチレン重合の
際の重合温度を60℃としたところ触媒活性は17.3
00g/g−cat.  であった.得られたボリマー
の嵩比重は0.  3 1 g/c+s”であり、平均
粒径は130μmであった.また、このボリマーのデカ
リン(135℃)における極限粘度から求めた平均分子
量は460万であった.[実施例31 実施例1における固体触媒成分を用い、エチレン重合の
際の重合温度を65℃としたところ触媒活性は10.3
00g/g−cat.  であった.得られたボリマー
の嵩比重は0.  3 1 g/x3であり、平均粒径
は110μmであった.まk,このボリマーのデカリン
(135℃)における極限粘度から求めた平均分子量は
590万であった.[実施例4] 窒素ガスで充分にlIF換され、攪拌機を具備しk容量
3 0 0 m lの丸底フラスコにジェトキシマグネ
シウム5gおよび1.2−ジクロ口エタン80mlを装
入して懸濁状態とし、20℃で15分攪拌しながら処理
することによりスラリー状のp.濁液を得た.ついでこ
の!!3濁液を、攪拌機をj[t,た500mlの丸底
フラスコ中に装入しkO℃の四塩化チタン100ml中
に系内の温度なO℃に保ちつつ30分かけて滴下し、ジ
ーn・プチルフタレ−}1.5mlを添加した褥1時間
保持した.次に、系内の4rrLを90℃に昇温して、
2時間反応させた. その後、90℃のトルエン100mlで3回洗浄し、上
澄み液を除去した後、トルエン80mlおよび四塩化チ
タン20mlを加え、再度110℃で2時間反応させた
.最後に、40℃のn−へブタン200mlで10回洗
浄することにより固体触媒成分を得た.この固体触媒成
分中のチタン含有量は3.  0重量%であった. 上記固体成分を用い、実施例1と同様にエチレンの重合
を行ったところ、触媒活性は20.000g/g−ca
t.  であった.得られたポリマーの嵩比重は0.3
1g/c−m’であり、平均粒径は380μmであった
.また、このボリマーのデカリン(l35℃〉中におけ
る#!!限粘度から求めた平均分子量は250万であっ
た. 「実vf例5] 窒素ガスで充分に置換され、攪拌機を具備した容113
00mlの丸底フラスコにジエトキシマグネシウム5g
および1.2−ジクロ口エタン80mlを装入して懸濁
状態とし、20℃で15分攪拌しながら処理することに
よりスラリー状の懸J液を得た.ついでこの懸濁液を、
攪拌機を具備した500mlの丸底フラスコ中に装入し
たO℃の四塩化チタン100ml中に系内の温度を0℃
に保ちつつ30分かけて滴下し、ジーn−プチルフタレ
ート0.  75ml1ty!.7Jffシた後1時間
保持した.次に、系内の温度を100℃に昇温しで、2
時間反応させた.その後、90℃のトルエン100ml
で3回洗浄し、上澄み液を除去した後、トルエン80m
lおよび四塩化チタン20mlを加え、再度110℃で
2時間反応させた.最後に、40℃のn−へブタン20
0mlで10回洗浄することにより固体触媒成分を得た
.この固体触媒成分中のチタン含有量は2.7重量%で
あった.上記固体成分を用い、実施例lと同様にエチレ
ンの重合を行ったところ、触媒活性は19,000g/
g−cat.  であった.得られたボリマーの嵩比重
は0.  33g/cm’であり、平均粒径は3 0 
0 )t mであった.また、このボリマーのデカリン
(135℃)中における極限粘度から求めた平均分子量
は260万であった. [実施例6] 窒素ガスで充分に置換され、攪拌機を具備した容量30
0mlの丸底フラスコにジエトキシマグネシウム5gお
よび1.2−ジクロロプロパン80mlを装入して懸濁
状態とし、20℃で15分攪拌しながら処理することに
よりスラリー状のRgA液を得た.ついでこの懸8I液
を、攪拌機を具備した500mlの丸底フラスコ中に装
入した0℃の四塩化チタン100ml中に系内の温度を
O℃に保ちつつ30分かけて湾下し、70℃に昇混した
ところでジイソプ口ビルフタレート2.0mlを添加し
、さらに90℃に昇濯して2時間反応させた.その後、
90℃のトルエン100mlで3回洗浄し、上澄み液を
除去した後、トルエン80mlおよび四塩化チタン20
mlを加え、再度110℃で2時間反応させた.R後に
、40℃のn−へブタン200mlで10回洗浄するこ
とにより固体M媒成分を得た.この固体触媒成分中のチ
タン含有量は3.6!量%あった. 上記固体成分を用い、実磨例1と同様にエチレンの重合
を行ったところ、触媒活性は24.000g/g−ca
t.  であった.得られたボリマーの嵩比重は0.3
3g/(至)3であり、平均粒径は230amであった
.また、このポリマーのデカリン(135℃)中におけ
る極限粘度から求めた平均分子量は270万であった. [実施例7] 窒素ガスで充分に右換され、攪拌機を具備した容量50
0mlの丸底フラスコにジエトキシマグネシウム5gお
よび1.2−ジクロロエタン80mlを装入して懸濁状
態とし、20℃で6分攪拌した.この縣濁液にジーn−
プチルフタレー}2.7mlを添加し、さらに10分間
処理することによりスラリー状の懸濁液を得々.ついで
この襲濁濠中に四塩化チタン20ml中を系内の温度を
35℃に保ちつつ30分かけて滴下した.次に、系内の
温度を昇温し、90℃で2時間反応させた.その後、9
0℃のトルエンloom+で3回洗浄し、上澄み液を除
去した後、トルエン80mlおよび四塩化チタン2 0
 m lを加え、再度110℃で2時間反応させk.最
後に、40℃のn−へブタン200mlで10回洗浄す
ることにより固体触媒成分を得た.この固体触媒成分中
のチタン含有量は3.  0重量%であつk. 上記固体成分を用い、実施例1と同様にエチレンの重合
を行ったところ、触媒活性は30,000g/g−ca
t.  であった.得られたボリマーの嵩比重は0− 
 3 1 g / eII”であり、平均粒径は270
μmであった.また、このボリマーのデカリン(l35
℃〉中における極限粘度から求めた平均分子量は290
万であった.
A suspension obtained by contacting (a) the substance and (b) the substance with (c) the substance and (d) titanium tetrachloride (hereinafter (d)
) It is called a substance. ) contact conditions are usually from 50°C to 2°C.
QWR of 5 minutes or more, preferably 30 minutes or more and 100 hours or less at temperatures up to 00'C. The order in which the t* suspension liquid is brought into contact with the substances (c) and (d) is arbitrary, but it is preferable that the contact be carried out under stirring. Each component is used in any proportion, but usually (a) I? lI1gC: whereas (b
) substance t. to. 1-2g if! li1 and (
d) The substance is at least 0.1 g, preferably at least 1 g, i1! It is open. In addition, as a diluent, hydrocarbons such as hexane, heptane, decane, benzene, toluene, xylene, etc.
m medium may also be used. The contact conditions for repeatedly contacting the (d) substance with the ts solid product in the presence of the (e) substance are usually at a temperature of 50°C to 200'C for 5 minutes or more, preferably aO minutes or more and 100 hours or less. 9+1! +, (e)! Quality can be used in any proportion.
Alternatively, ζ may be washed using a lII solvent such as n-hebutane.
Both are possible. As above, l! The remaining catalyst components are combined with the organoaluminum compound to form a catalyst for producing ultra-high molecular weight polyethylene. The organoaluminum compound used has a molar ratio of 1 to 1 titanium atoms in the catalyst component.
000 i! Used in open. Polymerization is usually carried out in a hydrocarbon or halogenated hydrocarbon solution, with a polymerization temperature of 0 to 150°C and a polymerization pressure of 0 to 150°C.
It is 100kg/e+s2・G. At this time, it is also possible to add and use electron-donating compounds such as esters, ketones, amines, and silicon compounds having Si-0-C bonds, if necessary. (Operations and Effects of the Invention) When ultra-high molecular weight polyethylene is produced using the solid catalyst component obtained by this invention, the catalytic activity is extremely high and the sustainability of the activity is excellent. It has the advantage of being less likely to deteriorate in polymerization reactions that require Furthermore, because the amount of residual chlorine is so small, the effect of chlorine on the produced polymer can be reduced to such an extent that a deashing process is not required at all. Furthermore, the particle size of the polymer obtained by this invention is smaller than that of conventionally known polymers, and because the particle size distribution is narrow, it is also excellent in processability after molding. Furthermore, in addition to the catalytic properties in terms of performance, such as being able to stably produce ultra-high molecular weight polyethylene with a weight average molecular weight of 2 million or more, it also has additional effects such as reduced operational and equipment costs. It is. (Actual example) The present invention will be specifically explained below using an actual example. [Example 1] Solid catalyst component made by Ill> Nitrogen gas is sufficient for I! capacity 3, equipped with a stirrer
5g jetoxymagnesium in a 00ml round bottom flask
Then, 80 ml of 1,2-dichloroethane was charged to create a turbid state, and the mixture was treated at 20° C. for 15 minutes with stirring to obtain a slurry-like suspension. Next, this #! The residual liquid was placed in 20 ml of titanium tetrachloride at 0°C, which was placed in a 500 ml round-bottomed flask equipped with a stirrer, and the temperature inside the system was reduced to 0.
The solution was added dropwise over 30 minutes while keeping the temperature at ℃. Next, the temperature in the system was raised to 70°C and 3.0 m
1 was added, the temperature was further raised, and the reaction was allowed to proceed under reflux for 2 hours.
After that, it was washed three times with 100 ml of toluene at 90°C, and after removing the supernatant, 80 ml of toluene! Then, 20 ml of titanium tetrachloride was added, and the mixture was reacted again at 110°C for 2 hours. Finally, a solid catalyst component was obtained by washing 10 times with 200 ml of n-hebutane at 40°C. The titanium content in this solid catalyst component was 2.7% by weight, and the di-n-butyl phthalate content was 16.7% by weight. Polymerization> 700 ml of n-hebutane was charged into a stainless steel autoclave with an internal volume of 1500 ml and equipped with a stirrer, which was completely purged with ethylene gas, and triethylaluminum was added at 20°C while being kept under an ethylene gas atmosphere. 0.
70 mmol was charged. Next, 0.0052 mmol of the solid catalyst component as titanium atoms was charged, and prepolymerization was carried out at 20° C. for 30 minutes under pressure with ethylene so that the pressure in the system became I kg/c+s'·G. Thereafter, while supplying ethylene so that the pressure in the system became 4 kg/I1!1I2.G, the temperature was raised to 70°C and polymerization was carried out for 3 hours. When the obtained polyethylene powder was filtered and dried under reduced pressure, the weight was 232.5 g.
The polymer yield (hereinafter referred to as catalytic activity) per 1g"l was 25.00g/x-cat. The bulk specific gravity of the obtained polymer was 0.32z/ays", expressed as 50% of the cumulative weight. The average particle size was 140 μm. Further, the average molecular weight of this polymerer determined from the intrinsic viscosity in decalin (135°C) was 30,000 Q.
[Example 2] When the solid catalyst component in Example 1 was used and the polymerization temperature during ethylene polymerization was set to 60°C, the catalyst activity was 17.3
00g/g-cat. Met. The bulk specific gravity of the obtained polymer is 0. 31 g/c+s" and the average particle size was 130 μm. Also, the average molecular weight determined from the intrinsic viscosity of this polymer in decalin (135°C) was 4.6 million. [Example 31 Example 1 When the solid catalyst component was used and the polymerization temperature during ethylene polymerization was set to 65°C, the catalyst activity was 10.3.
00g/g-cat. Met. The bulk specific gravity of the obtained polymer is 0. 31 g/x3, and the average particle size was 110 μm. The average molecular weight of this polymer, determined from the intrinsic viscosity in decalin (135°C), was 5.9 million. [Example 4] 5 g of jetoxymagnesium and 80 ml of 1,2-dichloroethane were charged into a round bottom flask with a capacity of 300 ml, which had been thoroughly exchanged with nitrogen gas and equipped with a stirrer, and suspended. By processing at 20°C for 15 minutes with stirring, a slurry of p. A cloudy liquid was obtained. Next, this! ! 3. The suspension was placed in a 500 ml round bottom flask equipped with a stirrer and added dropwise over 30 minutes into 100 ml of titanium tetrachloride at kO ℃ while keeping the system temperature at 0 ℃.・1.5 ml of Butylphthale was added and kept for 1 hour. Next, the temperature of 4rrL in the system was raised to 90°C,
The reaction was allowed to proceed for 2 hours. Thereafter, the mixture was washed three times with 100 ml of toluene at 90°C, the supernatant liquid was removed, 80 ml of toluene and 20 ml of titanium tetrachloride were added, and the mixture was reacted again at 110°C for 2 hours. Finally, a solid catalyst component was obtained by washing 10 times with 200 ml of n-hebutane at 40°C. The titanium content in this solid catalyst component is 3. It was 0% by weight. When ethylene was polymerized using the above solid component in the same manner as in Example 1, the catalyst activity was 20.000 g/g-ca.
t. Met. The bulk specific gravity of the obtained polymer was 0.3
1 g/cm', and the average particle size was 380 μm. In addition, the average molecular weight of this polymerer determined from #!! limiting viscosity in decalin (135°C) was 2,500,000.
5g diethoxymagnesium in a 00ml round bottom flask
Then, 80 ml of 1,2-dichloroethane was charged to form a suspension, and the suspension was treated at 20° C. for 15 minutes with stirring to obtain a slurry-like suspended liquid J. Then this suspension,
The temperature inside the system was reduced to 0°C in 100ml of titanium tetrachloride at 0°C placed in a 500ml round bottom flask equipped with a stirrer.
It was added dropwise over 30 minutes while keeping the temperature at 0.0%. 75ml1ty! .. After 7Jff, it was held for 1 hour. Next, the temperature in the system was raised to 100°C, and 2
A time reaction was performed. Then, 100ml of toluene at 90℃
After washing three times with
1 and 20 ml of titanium tetrachloride were added, and the mixture was reacted again at 110°C for 2 hours. Finally, 20 ml of n-hebutane at 40°C
A solid catalyst component was obtained by washing 10 times with 0ml. The titanium content in this solid catalyst component was 2.7% by weight. When ethylene was polymerized in the same manner as in Example 1 using the above solid component, the catalyst activity was 19,000g/
g-cat. Met. The bulk specific gravity of the obtained polymer is 0. 33g/cm', and the average particle size is 30
0)tm. Furthermore, the average molecular weight of this polymerer determined from the intrinsic viscosity in decalin (135°C) was 2.6 million. [Example 6] Capacity 30 fully purged with nitrogen gas and equipped with a stirrer
A 0 ml round bottom flask was charged with 5 g of diethoxymagnesium and 80 ml of 1,2-dichloropropane to form a suspension, and treated at 20° C. for 15 minutes with stirring to obtain a slurry of RgA liquid. Next, this suspension 8I solution was poured into 100 ml of titanium tetrachloride at 0°C, which was placed in a 500 ml round bottom flask equipped with a stirrer, while maintaining the temperature inside the system at 0°C, and then poured down to 70°C. When the mixture was heated to 90° C., 2.0 ml of diisopropyl phthalate was added, and the mixture was further heated to 90° C. and reacted for 2 hours. after that,
After washing three times with 100 ml of toluene at 90°C and removing the supernatant, 80 ml of toluene and 20 ml of titanium tetrachloride were added.
ml was added, and the reaction was again carried out at 110°C for 2 hours. After R, a solid M medium component was obtained by washing 10 times with 200 ml of n-hebutane at 40°C. The titanium content in this solid catalyst component is 3.6! There was a quantity%. When ethylene was polymerized using the above solid component in the same manner as in Practical Example 1, the catalyst activity was 24.000 g/g-ca.
t. Met. The bulk specific gravity of the obtained polymer is 0.3
3 g/(to) 3, and the average particle size was 230 am. Furthermore, the average molecular weight of this polymer determined from the intrinsic viscosity in decalin (135°C) was 2.7 million. [Example 7] A 50-liter tank fully purged with nitrogen gas and equipped with a stirrer.
A 0 ml round bottom flask was charged with 5 g of diethoxymagnesium and 80 ml of 1,2-dichloroethane to form a suspension, and the mixture was stirred at 20°C for 6 minutes. In this suspension,
By adding 2.7 ml of phthalate and treating for an additional 10 minutes, a slurry-like suspension was obtained. Next, 20 ml of titanium tetrachloride was dripped into the moat over 30 minutes while maintaining the temperature inside the system at 35°C. Next, the temperature in the system was raised and the reaction was carried out at 90°C for 2 hours. After that, 9
After washing three times with toluene room+ at 0°C and removing the supernatant, 80 ml of toluene and 20 ml of titanium tetrachloride were added.
ml and reacted again at 110°C for 2 hours k. Finally, a solid catalyst component was obtained by washing 10 times with 200 ml of n-hebutane at 40°C. The titanium content in this solid catalyst component is 3. At 0% by weight k. When ethylene was polymerized using the above solid component in the same manner as in Example 1, the catalyst activity was 30,000 g/g-ca.
t. Met. The bulk specific gravity of the obtained polymer is 0-
31 g/eII” and the average particle size is 270
It was μm. In addition, this polymer decalin (l35
The average molecular weight determined from the intrinsic viscosity in <℃> is 290
It was 10,000.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の工程を示すフローチャートである. Figure 1 is a flowchart showing the process of this invention.

Claims (1)

【特許請求の範囲】[Claims] (1)(a)ジエトキシマグネシウムを(b)脂肪族ジ
ハロゲン化炭化水素の存在下で、(c)芳香族ジカルボ
ン酸ジエステルおよび(d)四塩化チタンと接触させ、
得られた組成物をさらに、(e)芳香族炭化水素の存在
下で(d)四塩化チタンと接触させることを特徴とする
超高分子量ポリエチレン製造用固体触媒成分。
(1) contacting (a) diethoxymagnesium with (b) an aromatic dicarboxylic diester and (d) titanium tetrachloride in the presence of an aliphatic dihalogenated hydrocarbon;
A solid catalyst component for producing ultra-high molecular weight polyethylene, characterized in that the obtained composition is further brought into contact with (d) titanium tetrachloride in the presence of (e) an aromatic hydrocarbon.
JP1158202A 1989-06-22 1989-06-22 Solid catalyst component for ultra high molecular weight polyethylene production Expired - Fee Related JP2772978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158202A JP2772978B2 (en) 1989-06-22 1989-06-22 Solid catalyst component for ultra high molecular weight polyethylene production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158202A JP2772978B2 (en) 1989-06-22 1989-06-22 Solid catalyst component for ultra high molecular weight polyethylene production

Publications (2)

Publication Number Publication Date
JPH0324103A true JPH0324103A (en) 1991-02-01
JP2772978B2 JP2772978B2 (en) 1998-07-09

Family

ID=15666511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158202A Expired - Fee Related JP2772978B2 (en) 1989-06-22 1989-06-22 Solid catalyst component for ultra high molecular weight polyethylene production

Country Status (1)

Country Link
JP (1) JP2772978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013793A1 (en) * 1995-10-11 1997-04-17 Mitsui Chemicals, Inc. Process for the preparation of solid titanium catalyst component for the polymerization of olefins and process for the production of polyolefins
US5863995A (en) * 1991-08-30 1999-01-26 Bp Chemicals Limited Ethylene polymerisation process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044507A (en) * 1983-08-23 1985-03-09 Toho Titanium Co Ltd Catalytic components and catalyst thereof for olefin polymerization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044507A (en) * 1983-08-23 1985-03-09 Toho Titanium Co Ltd Catalytic components and catalyst thereof for olefin polymerization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863995A (en) * 1991-08-30 1999-01-26 Bp Chemicals Limited Ethylene polymerisation process
WO1997013793A1 (en) * 1995-10-11 1997-04-17 Mitsui Chemicals, Inc. Process for the preparation of solid titanium catalyst component for the polymerization of olefins and process for the production of polyolefins

Also Published As

Publication number Publication date
JP2772978B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
RU2064836C1 (en) Method to produce applied catalyst for ethylene polymerization and copolymerization of ethylene with alfa-olefins
JPS6029722B2 (en) Method for producing catalyst component for polymerization of ole fillet
JPS5827705A (en) Polymerization catalyst and method
EA011040B1 (en) Method for preparing a catalyst and process for polymerising ethylene and copolymerising ethylene with alpha-olefins
JP2004527621A (en) Supported catalyst composition for olefin polymerization, method for preparing the same, and polymerization method using the same
JPH01315406A (en) Solid catalytic component for olefin polymerization and catalyst therefrom
JP3167418B2 (en) Solid catalyst component for ultra high molecular weight polyethylene production
JPH0324103A (en) Solid catalyst component for production of ultrahigh molecular weight polyethylene
JP3130171B2 (en) Solid catalyst component for polymerization of olefins and polymerization method
JP3355230B2 (en) Solid catalyst component for ultra high molecular weight polyethylene production
JPH06179720A (en) Solid catalyst component for producing ultrahigh-molecular weight polyethylene
JPH0410486B2 (en)
JP3307513B2 (en) Solid catalyst component for olefin polymerization, method for producing the same, and method for producing olefin polymer
JP3251646B2 (en) Solid catalyst component for ultra high molecular weight polyethylene production
JP2769711B2 (en) Method for producing catalyst component for olefin polymerization and method for polymerizing olefin
JPH0425283B2 (en)
JP2881341B2 (en) Solid catalyst component for olefin polymerization and olefin polymerization method
JP3301806B2 (en) Solid catalyst component for ultra high molecular weight polyethylene production
JPS63301A (en) Catalyst for polymerization of olefin
JPH04178406A (en) Production of catalyst for polymerizing olefin and method for polymerizing olefin
JPS58109506A (en) Polymerization of olefin
JPH0446283B2 (en)
JPS5912904A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPS5919568B2 (en) Olefin polymerization catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees