JPH03240998A - Method for continuously coloring titanium coil - Google Patents

Method for continuously coloring titanium coil

Info

Publication number
JPH03240998A
JPH03240998A JP3579390A JP3579390A JPH03240998A JP H03240998 A JPH03240998 A JP H03240998A JP 3579390 A JP3579390 A JP 3579390A JP 3579390 A JP3579390 A JP 3579390A JP H03240998 A JPH03240998 A JP H03240998A
Authority
JP
Japan
Prior art keywords
titanium
coil
roll
continuously
electrolytic bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3579390A
Other languages
Japanese (ja)
Inventor
Shigeru Kitani
滋 木谷
Kenichi Goshokubo
賢一 御所窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP3579390A priority Critical patent/JPH03240998A/en
Publication of JPH03240998A publication Critical patent/JPH03240998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To effectively inhibit the occurrence of ununiformity in color due to gas generated by a reaction by uncoiling and travelling a Ti coil, which is then introduced into an electrolytic bath and brought into contact with an immersed roll after the lapse of a specified time. CONSTITUTION:When a Ti coil is continuously colored by anodic oxidation, it is uncoiled, travelled, introduced into an electrolytic bath and brought into contact with an immersed roll after the lapse of >=3sec. At least the surface of the roll is made of an electrically nonconductive material as required. The Ti coil can uniformly and continuously be colored by stable work.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、色ムラを生じることなくチタンコイルを連
続的に均一着色する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for continuously and uniformly coloring a titanium coil without causing color unevenness.

〈従来技術とその課題〉 近年、各種分野での高級化指向を背景に、建築物の内装
材や装飾品等にも着色チタン板を適用する傾向が目立つ
ようになってきた。
<Prior art and its problems> In recent years, with the trend toward luxury in various fields, there has been a noticeable trend of applying colored titanium plates to interior materials and decorative items of buildings.

ところで、このような用途等に供されるチタン(純チタ
ン又はチタン合金)材を着色する方法の1つとしてF“
光の干渉によって色感を与える酸化皮膜“を表面に形成
させる手法」が知られており、一般には、該酸化皮膜を
りん酸やりん酸塩等の水溶液中での陽極電解にて形成さ
せる手段(陽極酸化法)が採用されている。しかし、こ
れまでの陽極酸化法では発色チタン材に色ムラが生じが
ちであり、特に建築用板材等の如き広い表面を有するも
のでは色ムラを目立たない程度に抑えるのは極めて困難
であるとの指摘がなされていた。
By the way, one of the methods for coloring titanium (pure titanium or titanium alloy) material used for such purposes is F"
A method of forming an oxide film on a surface that gives a color appearance through light interference is known, and generally, the method involves forming the oxide film by anodic electrolysis in an aqueous solution of phosphoric acid or phosphate. (anodic oxidation method) is used. However, conventional anodic oxidation methods tend to cause color unevenness in colored titanium materials, and it is extremely difficult to suppress color unevenness to an inconspicuous level, especially for materials with large surfaces such as architectural boards. A point had been made.

そこで、本発明者等は、従来の“陽極酸化による発色チ
タン材の製造法”に指摘されていた上記問題を解決すべ
く、先に、「硝酸塩や重クロム酸塩の溶融物中で陽極電
解を行ってチタンを酸化発色させる方法」を特願昭63
−325249号として提案した。この方法は、得られ
る製品の色ムラが極めて少ない上、着色可能な色の種類
も非常に多いことから、建築物の内装材等のような表面
積の広い着色チタン材を製造するのに好適な手段として
大きな期待が持てるものであった。
Therefore, in order to solve the above-mentioned problems that were pointed out in the conventional "method for producing colored titanium materials by anodizing", the present inventors first conducted "anodic electrolysis in a molten nitrate or dichromate". A patent application was filed in 1983 for the method of oxidizing titanium to produce color.
It was proposed as No.-325249. This method is suitable for producing colored titanium materials with a large surface area, such as interior materials for buildings, because the resulting product has very little color unevenness and can be colored in a wide variety of colors. It was a tool that held great promise.

また、本発明者等は、これとは別に「特にコイル状のチ
タン材を溶融塩中で連続的に陽極電解し連続発色させよ
うとすると、時として表面に異常酸化が生じたり板材に
変形を生したりして操業の安定性が損なわれる場合があ
る」との事実をも見出し、「チタンコイルへの通電をコ
ンダクターロルにて実施すると共に、コンダクタ−ロー
ルからチタンコイルが溶融塩に浸入する地点までの距離
を特定の規則に則った値に設定する」ことで上記問題を
回避しようとの提案も行った(特願平1253472号
)。
Separately, the inventors have also stated that ``In particular, when a coiled titanium material is continuously anodic electrolyzed in molten salt to produce continuous color, abnormal oxidation may occur on the surface or deformation of the plate material. The company also found out that ``the titanium coil is energized by the conductor roll, and the titanium coil penetrates into the molten salt from the conductor roll.'' They also proposed to avoid the above problem by setting the distance to a point to a value that conforms to specific rules (Japanese Patent Application No. 1253472).

このように、本発明者等の幾つかの提案等によって外観
や形状に優れた着色チタン板の安定した量産態勢が確立
されつつあったが、実際操業を通してその後も様々な観
点から検討を続けていた本発明者等は、「これまでに確
認された最良と思われる条件下で陽極酸化法によるチタ
ンコイルの連続着色操業を実施した場合でも、より厳し
い基準で製品品質を評価した場合にはやはり均一着色の
点で更なる改善の余地がある」との結論を出すに至った
のである。
As described above, a stable mass production system for colored titanium plates with excellent appearance and shape was being established through several proposals made by the present inventors, but studies have continued from various viewpoints through actual operation. The inventors concluded that, ``Even if we carry out continuous coloring operations for titanium coils by anodizing under conditions that are thought to be the best that have been confirmed so far, when product quality is evaluated using stricter standards, They concluded that there is room for further improvement in terms of uniform coloring.

このようなことから、本発明者等は、再度原点ニ立チ返
って、“陽極酸化によるチタンコイルの連続着色操業”
での均一着色阻害因子の洗い直しを行ったところ、次の
ような新たな事実が判明した。
For these reasons, the inventors of the present invention went back to the basics and decided to develop a "continuous coloring operation for titanium coils by anodic oxidation."
When we re-washed the uniform coloration inhibiting factor, the following new facts were discovered.

即ち、チタンコイルを連続的に陽極酸化するには、第1
図で示すように電解処理槽の中に′浸漬ロール”を用い
てチタンコイルを浸漬する必要があるが、通常、このよ
うな設備ではコイルが電解浴の中に浸入するのと殆んど
同時に片面が浸漬ロルに接するように設定されている。
That is, in order to continuously anodize the titanium coil, the first
As shown in the figure, it is necessary to immerse the titanium coil into the electrolytic treatment bath using a ``dipping roll,'' but normally in such equipment, the coil is immersed into the electrolytic bath almost at the same time. One side is set in contact with the dipping roll.

ところで、例えば電解浴として“硝酸塩の溶融物”を用
いた場合を例にとると、該電解浴中でチタンを陽極とし
て電解する際にはチタン表面からのガスの発生が認めら
れる。これは、式%式%(11 に従いチタンが酸化されて二酸化チタンを生じると同時
に、硝酸イオンが分解されて二酸化窒素ガスを生しるた
めであると推測される。ところが、前記第1図で示した
ような様式で連続陽極酸化処理を行うと、チタンコイル
のうち(11式の反応が最も激しく起きる部分の片面が
浸漬ロールに接することとなるので、発生したガスが気
泡の形態でチタンコイルと浸漬ロールとの間に介在する
状態となり、そのため反応がスムーズに進行せずに色ム
ラを生じる原因となる。
By the way, for example, if we use a "melt nitrate" as an electrolytic bath, when electrolysis is carried out using titanium as an anode in the electrolytic bath, gas is observed to be generated from the surface of the titanium. This is presumed to be because titanium is oxidized to produce titanium dioxide according to the formula % formula % (11), and at the same time, nitrate ions are decomposed to produce nitrogen dioxide gas. However, in Fig. When continuous anodic oxidation treatment is performed in the manner shown, one side of the titanium coil (where the reaction of formula 11 occurs most intensely) will be in contact with the dipping roll, so the generated gas will form bubbles and form a bond with the titanium coil. and the immersion roll, which prevents the reaction from proceeding smoothly and causes uneven color.

更に、この場合、チタンコイルと浸漬ロールの間で発生
し蓄積されたガスが大きな気泡となってチタンコイルの
端面部から排出されるため、これによって浸漬ロールに
接していない面にも色ムラを生じ易い。
Furthermore, in this case, the gas generated and accumulated between the titanium coil and the dipping roll becomes large bubbles and is discharged from the end face of the titanium coil, which causes color unevenness on the surface that is not in contact with the dipping roll. Easy to occur.

そして、この現象は“硝酸塩の溶融物”から成る電解浴
中で行う陽極酸化だけでなく、従来−船釣に行われてい
た水溶液中での陽極酸化においても同様に生しる。即ち
、水溶液中でのチタンの陽極酸化においてもチタン表面
でガスの発生が認められるが、これは次式の反応による
ものと推測される。
This phenomenon occurs not only in anodization carried out in an electrolytic bath consisting of a ``nitrate melt,'' but also in anodization carried out in an aqueous solution, which has conventionally been carried out in boat fishing. That is, gas generation is observed on the titanium surface even during anodic oxidation of titanium in an aqueous solution, and this is presumed to be due to the following reaction.

Ti+60H =TiO2+ 3 HzO+’AOt+ 6 e−・・
・(2J〈課題を解決するための手段〉 上記新しい知見を得た本発明者等は、該色ムラ発生要因
を解消して更に品質の高い着色チタンコイル製品を安定
製造し得る手段を求めて研究を重ねた結果、 (al  前記(1)式の反応はチタンの表面で起きる
ためチタンの表面がTi0zで覆われるとそれ以上は反
応が進行し難くなる。実際には反応は3秒が経過するま
でに急激に進行し、5秒以内に殆んど終了してしまって
、それ以上のTi0z膜の成長は見られない。そして、
(2)式の反応もほぼ同様の経過をたどる。従って、チ
タンコイルを連続的に陽極酸化によって連続着色する場
合には、チタンコイルが電解浴に浸入してから浸漬ロー
ルに接するまでに少なくとも3秒以上(望ましくは5秒
以上)の時間がかかるようにすると、反応によって発生
するガスによる色ムラを効果的に仰えることができる。
Ti+60H =TiO2+ 3 HzO+'AOt+ 6 e-...
・(2J〈Means for solving the problem〉) Having obtained the above-mentioned new knowledge, the inventors of the present invention sought a means to eliminate the causes of color unevenness and stably manufacture colored titanium coil products of higher quality. As a result of repeated research, (al) The reaction in equation (1) above occurs on the surface of titanium, so once the surface of titanium is covered with Ti0z, the reaction becomes difficult to proceed any further.In reality, the reaction takes 3 seconds. The process progresses rapidly and almost ends within 5 seconds, and no further growth of the Ti0z film is observed.
The reaction of formula (2) follows almost the same process. Therefore, when continuously coloring a titanium coil by anodic oxidation, it is necessary to take at least 3 seconds (preferably 5 seconds or more) from the time the titanium coil enters the electrolytic bath until it contacts the dipping roll. By doing so, it is possible to effectively determine the color unevenness caused by the gas generated by the reaction.

(bl  また、浸漬ロールの材質が例えばTi等の如
き導電性のものでは、該浸漬ロールの表面でも電解が起
きて製品に色ムラを生しる虞れがある上、大きな電解電
流が流れて経済的に不利であるが、上記浸漬ロールを非
導電性とすればこのような弊害も完全に払拭することが
でき、高品質製品の製造がより一層安定化する との知見を得ることができた。
(bl) Furthermore, if the material of the dipping roll is conductive, such as Ti, there is a risk that electrolysis will occur on the surface of the dipping roll, causing color unevenness in the product, and a large electrolytic current will flow. Although it is economically disadvantageous, we were able to obtain the knowledge that if the above-mentioned immersion roll were made non-conductive, such adverse effects could be completely eliminated, and the production of high-quality products would be further stabilized. .

本発明は、上記知見事項等に基づいて成されたものであ
り、 「陽極電解によってチタンコイルを連続的に陽極酸化し
て着色するに当り、走行するチタンコイルの各部位が電
解浴中に浸入してから浸漬ロールに接するまでに3秒以
上の時間的余裕を維持しながら陽極酸化処理を行うか、
或いは、これに加えて少なくとも表面が非導電性物質で
構成された浸漬ロールを適用して陽極酸化処理を行うこ
とにより、色ムラが極力抑えられた高品質の着色チタン
コイル製品を連続的に安定製造し得るようにした点」 に特徴を有している。
The present invention was made based on the above-mentioned findings, etc. ``When titanium coils are continuously anodized and colored by anodic electrolysis, each part of the traveling titanium coil penetrates into the electrolytic bath. Either perform the anodizing treatment while maintaining a time margin of 3 seconds or more between the time of contact with the dipping roll, or
Alternatively, by applying a dipping roll whose surface is at least made of a non-conductive material and performing anodizing treatment, it is possible to continuously and stably produce high-quality colored titanium coil products with minimal color unevenness. It is characterized by the fact that it has been made easy to manufacture.

ここで、「チタンコイル」とは純チタンコイルは勿論、
チタン合金コイルをも含めた総称であり、また「電解浴
」は溶融塩であれ水溶液であれその種類を問わないこと
も言うまでもない。
Here, "titanium coil" refers to pure titanium coil as well as
It is a general term that includes titanium alloy coils, and it goes without saying that the type of "electrolytic bath" does not matter whether it is a molten salt or an aqueous solution.

必要により通用される「非導電性浸漬ロール」は、その
表面部或いは全部を非導電性物質で構成することによっ
て実現できるが、非導電性物貫き種類についても格別な
制限はない。ただ、電解浴が溶融塩である場合には例え
ばセラミックス(アルミナ等)で非導電性浸漬ロールを
製作するのが良い。
A commonly used "non-conductive immersion roll" can be realized by composing the surface or the entire surface of the roll with a non-conductive material, but there are no particular restrictions on the type of non-conductive pierce. However, if the electrolytic bath is a molten salt, it is better to make the non-conductive immersion roll, for example, from ceramics (alumina, etc.).

なお、“走行するチタンコイルの各部位が電解浴中に浸
入してから浸漬ロールに接するまでの時間的余裕”を特
に「3秒以上」と数値限定した理由は、先にも説明した
ように、チタン表面で起きる“前記(1)式又は(2)
式の反応”の大部分は3秒が経過するまでに急激に進行
するが、これによりチタン表面の殆んどがTiO2で覆
われると(即ち3秒が経過すると)、反応が極端に鈍く
なってガスの発生が激減し色ムラが発生し難くなるため
である。
As explained earlier, the reason why we specifically limited the time allowance from when each part of the traveling titanium coil enters the electrolytic bath to when it comes into contact with the dipping roll to 3 seconds or more is as explained above. , the above formula (1) or (2) that occurs on the titanium surface.
Most of the reaction in the equation proceeds rapidly by the time 3 seconds have passed, but when most of the titanium surface is covered with TiO2 (i.e., after 3 seconds have passed), the reaction becomes extremely slow. This is because gas generation is drastically reduced and color unevenness is less likely to occur.

もっとも、この(11式又は(2)式の反応は5秒以上
になると殆んど終了してしまうことから、前記“時間的
余裕”はできれば5秒以上取るのが好ましい。
However, since the reaction of formula (11) or formula (2) is almost completed in 5 seconds or more, it is preferable to allow the above-mentioned "time margin" to be 5 seconds or more if possible.

そして、上記“時間的余裕”は、例えば第2図で示すよ
うな手段によって取るのが適当である。
It is appropriate to take the above-mentioned "time margin" by means as shown in FIG. 2, for example.

即ち、第2図fa)はチタンコイルを電解浴に浸漬する
従来の手法であるが、これを第2図(b)又は第2図(
C)の如くに改善するだけで所要の時間的余裕を簡単に
取ることができる。つまり、第2図(b)で示すものは
チタンコイルの電解浴への浸入角度を小さくする手法で
あり、第2図(C)で示すものは浸漬ロールを電解浴面
から深い位置に配置する手法であって、何れもチタンコ
イルが電解浴に入ってから浸漬ロールに接するまでの時
間を容易に長することができる。
That is, Fig. 2 fa) shows the conventional method of immersing a titanium coil in an electrolytic bath, but this method can be changed to Fig. 2 (b) or Fig. 2 (
By simply making improvements like C), you can easily get the necessary time margin. In other words, the method shown in Fig. 2 (b) is a method that reduces the angle of entry of the titanium coil into the electrolytic bath, and the method shown in Fig. 2 (C) is a method in which the immersion roll is placed deep from the surface of the electrolytic bath. Both methods can easily lengthen the time from when the titanium coil enters the electrolytic bath until it comes into contact with the dipping roll.

続いて、本発明の効果を実施例によってより具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 板厚0.2m、幅300mの純チタンコイル(JIS 
1種、2B仕様)を50℃の10%HtJ水溶液中で予
備酸洗した後、連続陽極酸化による着色試験に供した。
<Example> Pure titanium coil (JIS
Type 1, 2B specification) was pre-pickled in a 10% HtJ aqueous solution at 50°C, and then subjected to a coloring test by continuous anodic oxidation.

チタンコイルの電解浴への浸漬には前記第2図に示す3
種の手法を適用した。このうち、第2図(alは従来の
方法、第2図(b)及び第2図(C)は、チタンコイル
が電解浴に浸入してから浸漬ロールに接するまでの時間
が長くなるように改善された方法であることは前述した
通りである。
Step 3 shown in Figure 2 above is used to immerse the titanium coil in the electrolytic bath.
A seed method was applied. Of these, Figure 2 (al is the conventional method, Figure 2 (b) and Figure 2 (C) are the methods in which the titanium coil is immersed in the electrolytic bath to the time it comes into contact with the dipping roll is lengthened. As mentioned above, this is an improved method.

なお、使用した電解浴は次の2種類とした。The following two types of electrolytic baths were used.

(A)接垂1影B彰■二) KNO,とNaN0zとを重量割合にて1=1で混合し
て成る溶融塩。
(A) A molten salt made by mixing KNO and NaN0z in a weight ratio of 1=1.

(B)本通101L(更二) 5%Na5POa水溶液。(B) Hondori 101L (Saraji) 5% Na5POa aqueous solution.

また、処理時間は合計で15秒間になるようにライン速
度を調節した。
In addition, the line speed was adjusted so that the total processing time was 15 seconds.

ここで、陽極酸化により得られる表面の色調は電解電圧
によって異なるが、本実施例では青色又は桃色に着色す
ることを0指した。
Here, although the color tone of the surface obtained by anodic oxidation varies depending on the electrolytic voltage, in this example, 0 indicates that the surface is colored blue or pink.

これら試験によって得られた結果を第1表に示す。The results obtained from these tests are shown in Table 1.

第1表に示される結果からも明らかなように、本発明で
規定する条件通りに着色処理したチタンコイルは両面共
に色ムラが少ないのに対して、従来(改善前〉の方法で
は特に浸漬ロールに接した面に色ムラの発生が大きいこ
とが分かる。
As is clear from the results shown in Table 1, titanium coils colored according to the conditions specified in the present invention have little color unevenness on both sides, whereas the conventional method (before improvement) It can be seen that color unevenness occurs more frequently on the surface that is in contact with the surface.

なお、これとは別に金色や緑色等の色調への着色試験も
実施したが、何れも同様の結果が得られた。
In addition, apart from this, coloring tests to gold, green, and other tones were also conducted, and similar results were obtained in both cases.

く効果の総括〉 以上に説明した如く、この発明によれば、安定した作業
の下でチタンコイルを色ムラ無く均一に連続着色するこ
とが可能となるなど、産業上有用な効果がもたらされる
Summary of Effects> As explained above, the present invention brings about industrially useful effects such as being able to uniformly and continuously color titanium coils without color unevenness under stable operation.

第1図は、陽極酸化によるチタンコイルの連続着色法を
説明した概念図である。
FIG. 1 is a conceptual diagram illustrating a continuous coloring method for titanium coils by anodic oxidation.

第2図は、陽極酸化によりチタンコイルを連続着色処理
する際のチタンコイル浸漬手法を示したもので、第2図
(a)は従来法を、そして第2図(b)及び第2図(C
)は改善法をそれぞれ示している。
Figure 2 shows the titanium coil dipping method used when titanium coils are continuously colored by anodic oxidation. Figure 2 (a) shows the conventional method, Figure 2 (b) and Figure 2 ( C
) indicate improvement methods.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極電解によってチタンコイルを連続的に陽極酸
化して着色するに当り、走行するチタンコイルの各部位
が電解浴中に浸入してから浸漬ロールに接するまでに3
秒以上の時間的余裕を維持しながら陽極酸化処理を行う
ことを特徴とする、チタンコイルの連続着色方法。
(1) When continuously anodizing and coloring titanium coils by anodic electrolysis, each part of the traveling titanium coil is immersed in the electrolytic bath until it comes into contact with the dipping roll.
A continuous coloring method for titanium coils, which is characterized by carrying out anodizing treatment while maintaining a time margin of more than seconds.
(2)浸漬ロールとして少なくとも表面が非導電性物質
で構成されたものを適用する、請求項1に記載のチタン
コイルの連続着色方法。
(2) The method for continuously coloring a titanium coil according to claim 1, wherein at least the surface of the dipping roll is made of a non-conductive material.
JP3579390A 1990-02-16 1990-02-16 Method for continuously coloring titanium coil Pending JPH03240998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3579390A JPH03240998A (en) 1990-02-16 1990-02-16 Method for continuously coloring titanium coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3579390A JPH03240998A (en) 1990-02-16 1990-02-16 Method for continuously coloring titanium coil

Publications (1)

Publication Number Publication Date
JPH03240998A true JPH03240998A (en) 1991-10-28

Family

ID=12451801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3579390A Pending JPH03240998A (en) 1990-02-16 1990-02-16 Method for continuously coloring titanium coil

Country Status (1)

Country Link
JP (1) JPH03240998A (en)

Similar Documents

Publication Publication Date Title
CA1046975A (en) Process for electrolytic colouring of the anodic oxide film on aluminum or aluminum base alloys
CA1059059A (en) Producing a coloured oxide on an article of aluminium or aluminium alloy
US3878056A (en) Process for electrolytic coloring of the anodic oxide film on a aluminum or aluminum base alloys
US4420378A (en) Method for forming decorative colored streak patterns on the surface of an aluminum shaped article
US4043880A (en) Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles
JPH03240998A (en) Method for continuously coloring titanium coil
US4059494A (en) Process for continuous electrolytic coloring of aluminum or aluminum base alloy strip and wire
JPS5938399A (en) Electrolytic pigmentation bath for aluminum or its alloy
JPS6259192B2 (en)
JPS60128288A (en) Formation of black film on aluminum and aluminum alloy
JPS5827997A (en) Pretreatment of stainless steel for color formation
JPH10265996A (en) Anodic oxidation treatment of aluminum or its alloy with good alkaline corrosion resistance
US5217601A (en) Method for impartation of blue color to aluminum or aluminum alloy
JPS596397A (en) Multi-color electrolytic coloration of aluminum or aluminum alloy
JPS596396A (en) Multi-color electrolytic coloration of aluminum or aluminum alloy
JP2561397B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JPH02298293A (en) Method for coloring titanium or titanium alloy
JPH11269696A (en) Production of electrode deposition coated aluminum material
JPS5816098A (en) Coloring method for aluminum or aluminum alloy
KR850001214B1 (en) Method for producing colored aluminum articles
JPH01127696A (en) Anodic oxidation method for colored titanium material
JPH06240494A (en) Method for coloring anodically oxidized film of aluminum
JP2000144493A (en) Method for preventing fading in aluminum electrolytically pigmented material
RU2046155C1 (en) Method for applying coatings from iron and iron alloys
JPH03104899A (en) Method for electrolytically coloring anodic oxide film on aluminum or aluminum alloy