JPH0324057A - Polyhydroxypiperidines and production thereof - Google Patents

Polyhydroxypiperidines and production thereof

Info

Publication number
JPH0324057A
JPH0324057A JP1158162A JP15816289A JPH0324057A JP H0324057 A JPH0324057 A JP H0324057A JP 1158162 A JP1158162 A JP 1158162A JP 15816289 A JP15816289 A JP 15816289A JP H0324057 A JPH0324057 A JP H0324057A
Authority
JP
Japan
Prior art keywords
formula
group
formulas
derivative
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158162A
Other languages
Japanese (ja)
Inventor
Koichi Nakano
中野 功一
Hironobu Hashimoto
橋本 弘信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1158162A priority Critical patent/JPH0324057A/en
Publication of JPH0324057A publication Critical patent/JPH0324057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

NEW MATERIAL:Compounds of formula I (R1 is H or methyl; One of R2 and R3 is H and the other is OH). EXAMPLE:2-O-Benzyl-3,4,6-tri-O-acetyl-5-O-trimethylsilyl-D-allononitrile. USE:A glycosidase inhibitor. PREPARATION:A ribofuranoside derivative of formula II [One of R4 and R5 is H and the other is alkoxy or formula III (X is R, CH3, OCH3 or Cl); One of R6 and R7 is H and the other is acyloxy, etc.; R8 is acyloxy, etc.; R9 is acyloxy, azide, etc.] and an arabinofuranoside derivative ire reacted with cyanotrimethylsilane in the presence of a Lewis acid and the resultant compound is then subjected to ring opening and carbon increase to obtain a compound of formula IV. The trimethylsilyl group of the resultant compound is substituted for a suitable elimination group and the cyano group thereof is subjected to ring closure by reduction to obtain a compound of formula V. Protective groups of the obtained compound of formula V are removed by a catalytic reduction, thus obtaining the objective compound of formula I.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリヒドロキシビベリジン類およびその製造
法に関するものであり、更に詳しくは、グリコシダーゼ
阻害作用を有するポリヒドロキシビベリジン類およびそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polyhydroxybiveridines and a method for producing the same, and more specifically to polyhydroxybiveridines having glycosidase inhibitory activity and their production method. It concerns the manufacturing method.

[従来の技術] 現在、糖の環内に窒素原子(N)を有する疑似糖類タイ
ブの酵素阻害剤(ポリヒドロキシビペリジン類)として
は、デオキシノジリマイシン,デオキシマンノノジリマ
イシン,カスタノスベルミン.スエインソニン等が知ら
れている。特に、カスタノスベルミンは培養細胞におい
て、エイズ・ウイルスの複製を阻害することが報告され
、スエインソニンはメラノーマ・ガン細胞が肺組織に侵
入する能力を低下させることが報告されている[フェロ
ーズ(L,E.Fe 1 1ows),ケミストリー 
イン プリテン (9).842(1987)]。
[Prior Art] Currently, enzyme inhibitors of the pseudosaccharide type (polyhydroxybiperidines) having a nitrogen atom (N) in the sugar ring include deoxynojirimycin, deoxymannonojirimycin, and castanosuber. Min. Swainsonine etc. are known. In particular, castanosvermine has been reported to inhibit the replication of the AIDS virus in cultured cells, and sweinsonine has been reported to reduce the ability of melanoma cancer cells to invade lung tissue [Fellers (L , E. Fe 1 1ows), Chemistry
In Preten (9). 842 (1987)].

これらの生理活性は、その構造が本来の基質の構造に類
似している為に、酵素作用が阻害され、必要な糖鎖が合
成されないことによ7るものである。
These physiological activities are due to the fact that their structure is similar to that of the original substrate, so the enzymatic action is inhibited and the necessary sugar chains are not synthesized7.

この様に、その環内に窒素原子を含む疑似糖類には新し
い生理活性が期待されており、具体的には糖尿病.ガン
の転移,エイズなどの治療が検討されている。
In this way, pseudosaccharides containing a nitrogen atom in their rings are expected to have new physiological activities, specifically for diabetes. It is being considered as a treatment for cancer metastasis, AIDS, etc.

ポリヒドロキシビペリジン類を糖類から合成する際の最
大の問題点は、ビペリジン環の形或にあるが、従来の方
法は次の三種に大別される。
The biggest problem when synthesizing polyhydroxybiperidines from saccharides lies in the shape of the biperidine ring, and conventional methods can be broadly classified into the following three types.

I)アミノ基による分子内置換反応又はオキシランのr
5A′R反応を利用する方法 ともに、グルコースから誘導される1−アミノー5−0
−メシルーD−アルトリトール誘導体及び2−アミノー
6−0− トシルーD−マンノフラノシド誘導体の閉環
反応で、それぞれ、デオキシーL−フコノジリマイシン
、デオキシマンノノジリマイシンが合成されている[フ
リh (G.W.J.F lee t),ケミカルコミ
ュニケーション,841.(1985);ケミストリー
レター,1051  (1986)]。
I) Intramolecular substitution reaction with amino group or r of oxirane
Both methods using 5A'R reaction and 1-amino-5-0 derived from glucose
Deoxy-L-fuconojirimycin and deoxymannonojirimycin have been synthesized by ring-closing reactions of -mesyl-D-altritol derivatives and 2-amino-6-0-tosyl-D-mannofuranoside derivatives [Furih (G. W.J.Fleet), Chemical Communication, 841. (1985); Chemistry Letters, 1051 (1986)].

2)分子内の還元的アミノ化による方法1−アミノー5
−ケトース又は5−アミノーアルドース誘導体の還元的
閉環がある。前者の方法でD−グルコースからデオキシ
ノジリマイシンが合成されている[キナースト(G.K
inast),アンゲバンテ ヘミーl 93,799
 (1981)]。
2) Method 1-Amino-5 by intramolecular reductive amination
- reductive ring closure of ketose or 5-aminoaldose derivatives. Deoxynojirimycin has been synthesized from D-glucose by the former method [Kinast (G.K.
inast), Angewante Hemyl 93,799
(1981)].

3)分子内アミノマーキュレーションを利用する方6−
プロモヘキソビラノシドから1−ペンジルアミノ−5−
ヘキセニトール誘導体とし、それをアミノマーキュレー
シジンにより閉環する。
3) Those who use intramolecular amino merculation 6-
Promohexobiranoside to 1-pendylamino-5-
A hexenitol derivative is prepared, which is ring-closed with aminomercuricidin.

ガラクトースからデオキシガラクトノジリマイシンが合
威されている[ベルノータス(R.C.Bernota
s),  カーボハイドレート●リサーチ,167,3
05 (1987)]。
Deoxygalactonojirimycin has been synthesized from galactose [R.C.
s), Carbohydrate Research, 167, 3
05 (1987)].

[発明が解決しようとする課8] 本発明の目的は、酵素阻害活性を有する新規ポリヒドロ
キシピベリジン類、及び従来法よりも簡便なその製造法
を提供することにある。
[Problem to be Solved by the Invention 8] An object of the present invention is to provide novel polyhydroxypiveridines having enzyme inhibitory activity and a method for producing the same that is simpler than conventional methods.

[課題を解決するための手段] 本発明者らは上記課題に関し鋭意検討した結果、本発明
に到達した。
[Means for Solving the Problems] The present inventors have made extensive studies regarding the above problems, and as a result, have arrived at the present invention.

即ち本発明は、 下記一般式(1) 聞  H2 (式中、R は水素又はメチル基、RR  は1   
        2I  3 いずれか一方が水素で他方は水酸基を示す)で表される
ポリヒドロキシピペリジン類 及び 下記一般式(n) トリメチルシラン(以下、TMSCNとする)と反応さ
せ、開環、増炭させて、下記一般式(m)(式中、R 
ないしR9は上記と同じ)で表され4 る鎖状措造物とした後、トリメチルシリル(以下、TM
Sとする)基を適当な脱離基に変換し、更に、シアノ基
を還元して閉環させて、下記一般式(IV)XはH.C
H   OCH   又はClを示す)を、3′   
 3′ −X(式中、Xは上記と同じ)又はアジド基を示す)で
表されるリボフラノシド誘導体又はアラビノフラノシド
誘導体をルイス酸の存在下にシアノ(R4ないしR9は
上記と同じ)で表される1,5−ジデオキシ−1,5−
イミノーL一タリトール誘導体又は1.5−ジデオキシ
ー1,5−イミノーL−イジトール誘導体とし、ひき続
いて接触還元で脱保護することを特徴とする請求項(1
)記載のポリヒドロキシピペリジン類の製造法である。
That is, the present invention has the following general formula (1): H2 (wherein, R is hydrogen or a methyl group, and RR is 1
2I 3 One of which is hydrogen and the other is a hydroxyl group) is reacted with polyhydroxypiperidines represented by the following general formula (n) trimethylsilane (hereinafter referred to as TMSCN) to open the ring and increase carbon, The following general formula (m) (wherein, R
4 to R9 are the same as above), and then trimethylsilyl (hereinafter, TM
The following general formula (IV) C
H OCH or Cl), 3'
A ribofuranoside derivative or an arabinofuranoside derivative represented by 3' -X (wherein X is the same as above) or an azide group is treated with cyano (R4 to R9 are the same as above) in the presence of a Lewis acid. 1,5-dideoxy-1,5-
Claim 1 characterized in that it is an imino-L monotalitol derivative or a 1,5-dideoxy-1,5-imino-L-iditol derivative, and is subsequently deprotected by catalytic reduction.
) is a method for producing polyhydroxypiperidines described in .

本発明を以下詳細に説明する。The present invention will be explained in detail below.

本発明による一般式(1)の新規化合物ポリヒドロキシ
ビペリジン類は、その式に示すように、糖の環内に窒素
原子を有する疑似糖類タイプの構造を持つ化合物である
。このように各種グリコシダーゼの基質となるグリコシ
ドの構造に類似しているため、それら酵素の阻害作用を
有している。
The novel compound polyhydroxybiperidine of the general formula (1) according to the present invention is a compound having a pseudosaccharide type structure having a nitrogen atom in the sugar ring, as shown in the formula. Because it has a similar structure to glycosides that are substrates for various glycosidases, it has an inhibitory effect on these enzymes.

このポリヒドロキシビペリジン類(1)は、本発明方法
で製造することができる。
This polyhydroxybiperidine (1) can be produced by the method of the present invention.

製造にあたっては、まず、一般式(n)で表されるリボ
フラノシド誘導体又はアラビノフラノシド誘導体をルイ
ス酸の存在下、TMSCNと反応させ、シアノ基とTM
S基とを同時に導入し、単一の立体配置を持つ鎖状グリ
コニトリル誘導体(I[[)とする。
For production, first, a ribofuranoside derivative or an arabinofuranoside derivative represented by general formula (n) is reacted with TMSCN in the presence of a Lewis acid to form a cyano group and TM
A chain glyconitrile derivative (I[[) is obtained by simultaneously introducing an S group and a single steric configuration.

このときTMSCNの使用量は特に限定されないが、好
ましくは一般式(■)1当量に対し、TMSCNを過剰
に、さらに好ましくは約5当量を使用する。
At this time, the amount of TMSCN used is not particularly limited, but TMSCN is preferably used in excess, more preferably about 5 equivalents, relative to 1 equivalent of general formula (■).

ルイス酸としては、ボロントリフルオリドエーテラート
,塩化第二錫などを例示することができる。その使用量
は特に限定されないが、触媒量あればよく、好ましくは
一般式(■)1当量に対して0.1当量が使用される。
Examples of Lewis acids include boron trifluoride etherate and stannic chloride. The amount used is not particularly limited, but a catalytic amount is sufficient, and preferably 0.1 equivalent is used per equivalent of general formula (■).

反応は無溶媒、室温で行うのが好ましい。反応温度は、
特に限定されないが、一般には0℃ないし30℃程度で
行われる。
The reaction is preferably carried out without a solvent at room temperature. The reaction temperature is
Although not particularly limited, it is generally carried out at about 0°C to 30°C.

反応時間は、反応条件により変り得るが、0℃程度で反
応を行った場合は、0.5〜2時間程度である。
The reaction time may vary depending on the reaction conditions, but when the reaction is carried out at about 0°C, it is about 0.5 to 2 hours.

以上のようにして得られた一般式(III)で表される
TMS基をもつ鎖状構造物は、その反応途中で自然にT
MS基が脱離し、遊離のOH基を持つものが得られる。
The chain structure having a TMS group represented by the general formula (III) obtained as described above spontaneously undergoes TMS during the reaction.
The MS group is eliminated and a product with a free OH group is obtained.

しかし、TMS基が導入されたままの形のものも残存す
るため、まずTMS基を除去する処理を行うのが好まし
い。例えば塩化メチレン中、塩化第一鉄を作用させれば
よい。こうして、すべてのTMS基を除去した後、次段
階の反応に進むのが好ましい。
However, since some products remain with the TMS group introduced, it is preferable to first perform a treatment to remove the TMS group. For example, ferrous chloride may be used in methylene chloride. It is preferable to proceed to the next step of the reaction after all TMS groups have been removed in this way.

次いで、塩基の存在下、有機溶媒中ないしは無溶媒下に
適当な酸無水物又は酸クロリドを作用させて脱離基を導
入する。脱離基としてはメタンスルホニル基(図中Ms
と略す),ベンゼンスルホニル基,トルエンスルホニル
基,トリフルオロメタンスルホニル基などが例示され、
それらを含む酸無水物又は酸クロリドを使用すればよい
。使用する酸無水物又は酸クロリドの量は、特に限定は
ないが、鎖状構造物に対して好ましくは等量以上、さら
に好ましくは約10当量である。塩基としては、トリエ
チルアミン,ビリジンなどが例示される。
Next, a leaving group is introduced by reacting with a suitable acid anhydride or acid chloride in the presence of a base in an organic solvent or in the absence of a solvent. The leaving group is a methanesulfonyl group (Ms in the figure).
), benzenesulfonyl group, toluenesulfonyl group, trifluoromethanesulfonyl group, etc.
An acid anhydride or acid chloride containing them may be used. The amount of acid anhydride or acid chloride to be used is not particularly limited, but is preferably at least equivalent to the chain structure, more preferably about 10 equivalents. Examples of the base include triethylamine and pyridine.

溶媒量は特に限定されないが、一般には1ミリモル当た
り1〜10mlで行われる。反応温度は特に限定されな
いが、一般には室温付近で行われる。反応時間は、数時
間以上であれば特に限定されないが、通常20時間前後
である。
The amount of solvent is not particularly limited, but is generally 1 to 10 ml per mmol. Although the reaction temperature is not particularly limited, it is generally carried out around room temperature. The reaction time is not particularly limited as long as it is several hours or more, but is usually around 20 hours.

次いで、脱離基を導入した鎖状構造物のシアノ基を還元
剤を用いて還元し、アミノ体に導く。還元剤としては、
水素化リチウムアルミニウム,ラネーニッケルなどが例
示されるが好ましくは水素化リチウムアルミニウムが使
用される。溶媒はテトラヒドロフランなどエーテル系の
溶媒が使用されるが通常はジエチルエーテルが使用され
る。反応時間には特に限定はないが、一夜行えば十分で
ある。反応温度は室温以下であれば特に限定されないが
、好ましくは−30℃である。
Next, the cyano group of the chain structure into which the leaving group has been introduced is reduced using a reducing agent to lead to an amino form. As a reducing agent,
Examples include lithium aluminum hydride and Raney nickel, but lithium aluminum hydride is preferably used. Ether solvents such as tetrahydrofuran are used as the solvent, but diethyl ether is usually used. There is no particular limitation on the reaction time, but one night is sufficient. The reaction temperature is not particularly limited as long as it is below room temperature, but is preferably -30°C.

生成したアミノ体は、単離・精製することなく次段階の
反応に進み、脱離基の脱離と同時に閉環させることがで
きる;この脱離・閉環は、例えば飽和酢酸ナトリウム/
エタノール溶媒中で加熱還流することにより得られる。
The generated amino compound can proceed to the next step of the reaction without isolation or purification, and can be ring-closed at the same time as the leaving group is removed;
Obtained by heating under reflux in an ethanol solvent.

最後に、保護基を脱保護し、目的とする一般式(1)の
ポリヒドロキシピペラジン類が得られる。
Finally, the protecting group is deprotected to obtain the desired polyhydroxypiperazines of general formula (1).

脱保護の方法としては、例えば塩酸塩の形にした後、接
触還元を実施すればよい。還元剤としては、パラジウム
炭素.水酸化パラジウムなどが例示されるが、好ましく
はパラジウム炭素が使用される。
As a method for deprotection, for example, after converting into a hydrochloride form, catalytic reduction may be performed. Palladium on carbon is used as a reducing agent. Examples include palladium hydroxide, but palladium on carbon is preferably used.

反応溶媒としては、酢酸,酢酸添加メタノール,メタノ
ール.エタノールなどが例示されるが、好ましくはエタ
ノールが使用される。反応時間は条件により異なるが通
常5〜10時間である。
As a reaction solvent, acetic acid, methanol with acetic acid added, methanol. Examples include ethanol, but ethanol is preferably used. The reaction time varies depending on the conditions, but is usually 5 to 10 hours.

[実施例] 以下、本発明を実施例で更に詳しく説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

しかし、本発明はこれら実施例のみに限定されるもので
はない。
However, the present invention is not limited to these examples.

(大施例1) 2−0−ベンジル−3.4.6−1りーO−アセチルー
5−0− トリメチルシリルーD−アロノニトリルの合
成 ベンジル−2.3.5−トリ一〇−アセチルーβ−D−
リボフラノシド500mg (1.3mmol)にTM
SCN13.5当量とB F 3 ’OEt   O.
1当量を加え、室温で2時間反応2 させた。反応液を飽和重留水溶液中にあけ、二一テル抽
出した。有機層を飽和食塩水で洗った後、硫酸ナトリウ
ムで乾燥した後、減圧濃縮した。シリカゲル力ラムクロ
マトグラフィー(ヘキサン:酢酸エチル−4:1)で分
離・精製し、目的物を78,2%の収率で得た。
(Major Example 1) Synthesis of 2-0-benzyl-3.4.6-1-O-acetyl-5-0-trimethylsilyl-D-alononitrile Benzyl-2.3.5-tri-10-acetyl-β-D −
TM to ribofuranoside 500mg (1.3mmol)
13.5 equivalents of SCN and BF3'OEtO.
1 equivalent was added and the reaction was allowed to proceed at room temperature for 2 hours. The reaction solution was poured into a saturated heavy distilled aqueous solution and extracted with 21 terres. The organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. The product was separated and purified by silica gel column chromatography (hexane:ethyl acetate-4:1) to obtain the desired product in a yield of 78.2%.

[α]D−+60.2” 1H−NMR (C6D6) 67.  04  (s,  Ph),5.63 (t
,H−3.J3. 4”3.6).5.54 (t,H
−4.J,  5=3.6).4.62 (d,H−2
.J2, 3−3.6).4 .  2 9 ,  4
 .  5 8 ( A B q ,C H 2 ) 
,4.  10〜3.  90  (m,H−5,H−
6a,H−6b). 1.84,  1.  69.  1.  67  (
s,OAc),元素分折:計算値C−56.75,H−
6.71,N−3.  01 実測値C−56.53,H−6.71.N−3.01 これを用いて、対応するポリヒドロキシピベリジン類を
製造できる。また本実施例における反応物及び生成物の
構造を第1図に示す。
[α]D-+60.2" 1H-NMR (C6D6) 67.04 (s, Ph), 5.63 (t
, H-3. J3. 4”3.6).5.54 (t,H
-4. J, 5=3.6). 4.62 (d, H-2
.. J2, 3-3.6). 4. 2 9 , 4
.. 5 8 (ABq, CH2)
,4. 10-3. 90 (m, H-5, H-
6a, H-6b). 1.84, 1. 69. 1. 67 (
s, OAc), elemental analysis: calculated value C-56.75, H-
6.71, N-3. 01 Actual measurement value C-56.53, H-6.71. N-3.01 This can be used to produce the corresponding polyhydroxypiveridines. Furthermore, the structures of the reactants and products in this example are shown in FIG.

(実施例2) 2,3,4.6−テトラー0−ペンジルーD−アロノニ
トリルの合或 ベンジル−2.3.5−}り一〇一ベンジルーβ−D−
リボフラノシド3g (6mmo 1),TMSCN3
.8ml  (30mmo l),ボロントリフルオリ
ドエーテラート70μl  (0.  6mmo 1)
を混合し、室温で30分間反応させた。
(Example 2) Combination of 2,3,4,6-tetra0-penzyl-D-alononitrile or benzyl-2.3.5-}-101benzyl-β-D-
Ribofuranoside 3g (6mmo 1), TMSCN3
.. 8ml (30mmol), boron trifluoride etherate 70μl (0.6mmol 1)
were mixed and allowed to react at room temperature for 30 minutes.

生成物をシリカゲルクロマトグラフィーで分離・精製し
、三つの成分を得た。即ち、2.3.4.6−テトラー
0−ベンジルー5−0−トリメチルシリルーD−アロノ
ニトリルを0.93g (25%) 、2,3,4.6
−テトラー0−ベンジルーD−アロノニトリルを1.6
8g (52%)、そして2.3.5−トリ一〇−ベン
ジルーβ−D一リボフラノシルシアニドを0.4g (
19%)の収量で得た。
The product was separated and purified by silica gel chromatography to obtain three components. That is, 0.93 g (25%) of 2,3,4,6-tetra-0-benzyl-5-0-trimethylsilyl-D-alononitrile, 2,3,4.6
-Tetler 0-benzyl-D-alononitrile 1.6
8 g (52%), and 0.4 g (
19%) yield.

2.3,4.6〜テトラー0−ベンジルー5一〇−トリ
メチルシリルーD−アロノニトリル’H−NMR (C
DC1 3) 63.36 (dd,H−6a). 3.  46  (dd,  H−6b),3.  7
0  (t,  H−4).4.  04  (m, 
 H−3,  H−5).4.  56,  4.  
80  (ABq,  Bn).4.  60.  4
.  84  (ABq,  Bn),4.  40 
 (s,  Bn).  4. 60  (s,  B
n),7.  26−7.  30  (Ph).”C
−NMR (CDCl 3) 6 138.212,    137.728,135
.87,     116.89,79.649.  
   78.673,78.  43,       
77.  013,?5.599.     73,9
4,73,792.     73.257.72. 
 62,       71.  839.70.  
716. 元素分析二計算値C−72.92,H−7.06,N−
2.30 測定値C−73.08.H−7.01,N−2.  4
6. 2.3,4.6−テトラー0−ベンジルーD−アロノニ
トリル゜ [α]  −+59.6°(8−1.71  CHCI
3)D 1H−NMR (CDCI3) 62.45 (d,H−2). 3.48 (d,2H,H−6a,6b),3.70 
(dd,H−3). 4.10 (dd,H−4). 〜3.94 (m,H−5). 4.41 (s,2H,Bn). 4.46,   4.64 (ABq,Bn).4.5
8,   4.82 (ABq,Bn).4.64, 
  4.86 (ABq,Bn),7.26 (s,P
h) ”C−NMR (CDC1 3) 6137.77,    137.53,137.38
,    135.681,117.135,    
78.77,78.62,     78.43, 77.02,     75.60, 74.  19,      73.  79.73.
307,     72.573,70.866,  
   70.132,69.  793. 元素分析:計算値C−75.95,H−6.56,N−
2.61 測定値C−75.76,H−6.39.N−2.  4
0. 2,3.5−1り−0−ベンジルーβ一D−リボフラノ
シルシアニド [α] D− +1 7.1@(c−1.3  CHC
 l 3)IH−NMR(CDCl 3) 64.  44−4.  60 (3XCH   Bn及びH−1), 2 4.0 (dd,H−2.J1, 2−4.2,J2,
3−5), 4.28 (t,H−3,J3, 4−5).4.  
24  (m,  H−4).3.  50  (dd
d,H−5a,  5b)13C−NMR (CDC1
3) 6 137.  77,        137.  
33,136.75 (芳香族 CH), 127.  72−128.  60 ( m +芳香族 CM), 117.67(CN).    83.16,81. 
 07,         77.  70,73. 
 65,          73.  11,72.
  67,          69.  45,68
.  96. (実施例3) 2,3,4.6−テトラーO−ベンジルーD−アロノニ
トリルの合成 実施例2で合成した2,3.4.6−テトラーO−ベン
ジルー5−0− }リメチルシリルーD−アロノニトリ
ル0.9g (1.5mmo l)を塩化メチレン5m
lに溶解し、0.1gの塩化第一鉄を加えて室温で30
分間攪拌した。得られた反応混合物を、シリカゲルカラ
ムクロマトグラフイ(ヘキサン:酢酸エチル−2:1)
で分離・精製して目的物を0.71g (1.3mmo
 l)得た。
2.3,4.6~Tetler 0-benzyl-510-trimethylsilyl-D-alononitrile'H-NMR (C
DC1 3) 63.36 (dd, H-6a). 3. 46 (dd, H-6b), 3. 7
0 (t, H-4). 4. 04 (m,
H-3, H-5). 4. 56, 4.
80 (ABq, Bn). 4. 60. 4
.. 84 (ABq, Bn), 4. 40
(s, Bn). 4. 60 (s, B
n), 7. 26-7. 30 (Ph). "C.
-NMR (CDCl3) 6 138.212, 137.728,135
.. 87, 116.89, 79.649.
78.673,78. 43,
77. 013,? 5.599. 73,9
4,73,792. 73.257.72.
62, 71. 839.70.
716. Elemental analysis two calculated values C-72.92, H-7.06, N-
2.30 Measured value C-73.08. H-7.01, N-2. 4
6. 2.3,4.6-tetra 0-benzyl-D-alononitrile゜[α] −+59.6°(8-1.71 CHCI
3) D 1H-NMR (CDCI3) 62.45 (d,H-2). 3.48 (d, 2H, H-6a, 6b), 3.70
(dd, H-3). 4.10 (dd, H-4). ~3.94 (m, H-5). 4.41 (s, 2H, Bn). 4.46, 4.64 (ABq, Bn). 4.5
8, 4.82 (ABq, Bn). 4.64,
4.86 (ABq, Bn), 7.26 (s, P
h) "C-NMR (CDC1 3) 6137.77, 137.53, 137.38
, 135.681, 117.135,
78.77, 78.62, 78.43, 77.02, 75.60, 74. 19, 73. 79.73.
307, 72.573, 70.866,
70.132,69. 793. Elemental analysis: Calculated values C-75.95, H-6.56, N-
2.61 Measured values C-75.76, H-6.39. N-2. 4
0. 2,3.5-1-0-benzyl-β-D-ribofuranosyl cyanide [α] D- +1 7.1@(c-1.3 CHC
l3) IH-NMR (CDCl3) 64. 44-4. 60 (3XCH Bn and H-1), 2 4.0 (dd, H-2.J1, 2-4.2, J2,
3-5), 4.28 (t, H-3, J3, 4-5). 4.
24 (m, H-4). 3. 50 (dd
d, H-5a, 5b) 13C-NMR (CDC1
3) 6 137. 77, 137.
33,136.75 (aromatic CH), 127. 72-128. 60 (m + aromatic CM), 117.67 (CN). 83.16,81.
07, 77. 70, 73.
65, 73. 11,72.
67, 69. 45,68
.. 96. (Example 3) Synthesis of 2,3,4.6-tetra-O-benzyl-D-alononitrile 2,3,4.6-tetra-O-benzyl-5-0-}limethylsilyl-D-alononitrile synthesized in Example 2 .9g (1.5mmol) in 5m methylene chloride
Add 0.1 g of ferrous chloride and stir at room temperature for 30 min.
Stir for a minute. The resulting reaction mixture was subjected to silica gel column chromatography (hexane:ethyl acetate-2:1).
Separate and refine the target product to 0.71g (1.3mmo
l) Obtained.

(実施例4) 2,3.4.6−テトラーO−ベンジルー5−0一メタ
ンスルホニルーD−アロノニトリルの合成実施例2及び
3で得られた2,3,4.6−テトラーO−ベンジルー
D−アロノニトリル3.35g (6.2mmo 1)
を20mlのピリジンに溶かし、メタンスルホニルクロ
リド5ml(62mmo l)を加え室温で一昼夜攪拌
した。
(Example 4) Synthesis of 2,3.4.6-tetra O-benzyl-5-0-methanesulfonyl-D-alononitrile 2,3,4.6-tetra O-benzyl obtained in Examples 2 and 3 D-Arononitrile 3.35g (6.2mmo 1)
was dissolved in 20 ml of pyridine, 5 ml (62 mmol) of methanesulfonyl chloride was added, and the mixture was stirred at room temperature overnight.

反応液を、氷冷した飽和重曹水に入れ、30分間攪拌し
た。沈殿物をセライト濾過し、濾液をクロロホルムで3
回抽出した。硫酸マグネシウムで乾燥した後、減圧濃縮
し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エ
チル−4:1)により分離・精製し、目的物を黄色いシ
ラップとして3.6g (96.8%)得た。
The reaction solution was poured into ice-cooled saturated sodium bicarbonate solution and stirred for 30 minutes. The precipitate was filtered through Celite, and the filtrate was diluted with chloroform for 3
Extracted twice. After drying over magnesium sulfate, the residue was concentrated under reduced pressure, and separated and purified by silica gel chromatography (hexane:ethyl acetate-4:1) to obtain 3.6 g (96.8%) of the desired product as a yellow syrup.

1H−NMR (CDC1 3) 64.55 (d,H−2,J 1.  2−3.82
).3.97 (dd,H−3.J2,3−6.72)
3.  89  (dd.  H−4.  J    
  簡3.  05)3. 4 5. 07  (ddd,  H−5,J,  5−7
.33,3.36). 3、 6 7  (d d,  H−6 a,J,  
5−11.2), 3.  58  (dd,  H−6b),2.  9
3  (s,  Ms), 4.71,     4.68,     4.63,
4.  39  (CH     Bn)2 13C−NMR(CDCl3) δ  80.665,     78.03,77. 
 72,       70.  87,74.  1
0,       74.  25,73.  77,
       73.  73,69.  73,  
     42.  489,112.34,    
 131.41,130.96,     130.7
4,129.  69 元素分析:計算値C−68.30,H−6.01N−2
.  28 測定値C−68.99,H−6.29,N−2.  2
3 (実施例5) 2,3,4.6−テトラ,一〇−ベンジルー1.5一ジ
デオキシー1,5−イミノーL一タリトールの合成 実施例4で得られた2,3.4.6−テトラー0−ベン
ジルー5−0−メタンスルホニル−D−アロノニトリル
280mg (0.45mmo !)を8mlのエーテ
ルに溶かし、これを水素化リチウムアルミニウム28m
g (0.74mmo l)の5mlエーテルの懸濁液
に−78℃で滴下した。
1H-NMR (CDC1 3) 64.55 (d, H-2, J 1. 2-3.82
). 3.97 (dd, H-3.J2, 3-6.72)
3. 89 (dd. H-4. J
Simple 3. 05)3. 4 5. 07 (ddd, H-5, J, 5-7
.. 33, 3.36). 3, 6 7 (dd, H-6 a, J,
5-11.2), 3. 58 (dd, H-6b), 2. 9
3 (s, Ms), 4.71, 4.68, 4.63,
4. 39 (CH Bn)2 13C-NMR (CDCl3) δ 80.665, 78.03, 77.
72, 70. 87,74. 1
0, 74. 25,73. 77,
73. 73,69. 73,
42. 489,112.34,
131.41, 130.96, 130.7
4,129. 69 Elemental analysis: Calculated value C-68.30, H-6.01N-2
.. 28 Measured values C-68.99, H-6.29, N-2. 2
3 (Example 5) Synthesis of 2,3,4.6-tetra,10-benzyl-1,5-dideoxy-1,5-imino-L-talitol 2,3.4.6-obtained in Example 4 280 mg (0.45 mmo!) of Tetra 0-benzy-5-0-methanesulfonyl-D-alononitrile was dissolved in 8 ml of ether, and this was dissolved in 28 m of lithium aluminum hydride.
g (0.74 mmol) in 5 ml ether at -78°C.

徐々に−30℃まで温度を上げ、そのまま20時間攪拌
した。反応終了後、0.1mlの水を加え、セライトで
濾過し、硫酸マグネシウムで乾燥し、飽和酢酸ナトリウ
ムエタノール溶液に溶かし、6時間加熱還流した。減圧
濃縮し、クロロホルムに溶かして水で3回洗った。硫酸
マグネシウムで乾燥し、減圧濃縮の後、シリカゲルカラ
ムクロマトグラフィー(クロロホルム:アセトン−8=
1)で精製し110mgの目的物を得た(46%)。
The temperature was gradually raised to -30°C, and the mixture was stirred for 20 hours. After the reaction was completed, 0.1 ml of water was added, filtered through Celite, dried over magnesium sulfate, dissolved in saturated sodium acetate ethanol solution, and heated under reflux for 6 hours. It was concentrated under reduced pressure, dissolved in chloroform, and washed three times with water. After drying with magnesium sulfate and concentration under reduced pressure, silica gel column chromatography (chloroform:acetone-8=
Purification was performed in step 1) to obtain 110 mg of the target product (46%).

この化合物はアセチル化して構造確認を行った。This compound was acetylated to confirm its structure.

[α]  =  1 3.  5@(c −1.5  
CHC 1 3)D IH−NMR (CDCl3) 6 2.  88  (dd,  H−1、J1,  
1b−12.0. J1,  2−12.0), 3.  25  (ddd,  H−1b,Jエb, 
 2−5.0.J1,  3−2.1).4.  72
  (dd,  H−2).4.09 (dd,H  
3=  J 3,4−2.2) ,3.  38  (
dd,  H−4.  J       −6.  0
).4.  5 4.  19  (ddd,  H−5.J5,  6
a−11.0.J5,  6,−2.1)3。 89 
 (dd.  H−6a,J6a,6,−11.0). 4.  00  (H−6b). 2.1 0 (S,CH3CO) , 4.35−4.85 (q.CH2) 13C−NMR(CDCl3) δ  34.701,    75.161.76.8
68,    56,908,67.158.    
 71,011.71.159.     73.20
9.74.283,     21.91B,138.
96,     138.19.137.598,  
  170.767元素分折:計算値C−76.43,
H−6.95,N−2.  48 測定値C−76.21,H−6.99,N−2.41 (実施fIJ6) 1.5−イミノーL一タリトール塩酸塩の合成実施例5
で得られた2.3.4.6−テトラーO−ベンジル−1
.5−ジデオキシー1.5−イミノーL一タリトール3
60mg (6.69mmol)を6mlのエタノール
に溶かし、4M塩化水素のメタノール溶液3mlを加え
減圧濃縮した。15mlのエタノールに溶かし、10%
パラジウム活性炭150mgを加え、約8時間攪拌しな
がら水素ガスを通じた。反応終了後、セライトで濾過し
、減圧濃縮した。残渣をクロロホルム:エタノール:水
−1:4:2でショート力ラムクロマトグラフィーを行
った後、濃縮し、20m】の水に溶かして活性炭300
mgを加えた。活性炭を濾別して、エタノールで数回共
沸させながら濃縮を行い目的物を塩酸塩として得た(収
量=97mg,70%)。
[α] = 1 3. 5@(c -1.5
CHC 1 3) D IH-NMR (CDCl3) 6 2. 88 (dd, H-1, J1,
1b-12.0. J1, 2-12.0), 3. 25 (ddd, H-1b, Jeb,
2-5.0. J1, 3-2.1). 4. 72
(dd, H-2). 4.09 (dd, H
3=J3,4-2.2),3. 38 (
dd, H-4. J-6. 0
). 4. 5 4. 19 (ddd, H-5.J5, 6
a-11.0. J5, 6, -2.1)3. 89
(dd. H-6a, J6a, 6, -11.0). 4. 00 (H-6b). 2.1 0 (S, CH3CO), 4.35-4.85 (q.CH2) 13C-NMR (CDCl3) δ 34.701, 75.161.76.8
68, 56,908, 67.158.
71,011.71.159. 73.20
9.74.283, 21.91B, 138.
96, 138.19.137.598,
170.767 elemental analysis: calculated value C-76.43,
H-6.95, N-2. 48 Measured values C-76.21, H-6.99, N-2.41 (Implementation fIJ6) Synthesis Example 5 of 1.5-Iminol-L monotalitol hydrochloride
2.3.4.6-tetra O-benzyl-1 obtained in
.. 5-dideoxy-1,5-imino L-talitol 3
60 mg (6.69 mmol) was dissolved in 6 ml of ethanol, 3 ml of a 4M methanol solution of hydrogen chloride was added, and the mixture was concentrated under reduced pressure. Dissolve in 15ml ethanol, 10%
150 mg of palladium activated carbon was added, and hydrogen gas was passed through the mixture while stirring for about 8 hours. After the reaction was completed, it was filtered through Celite and concentrated under reduced pressure. The residue was subjected to short force chromatography using chloroform:ethanol:water (1:4:2), concentrated, dissolved in 20 m of water and purified with activated carbon 300 m
mg was added. Activated carbon was filtered off, and the mixture was concentrated while azeotropically distilled with ethanol several times to obtain the desired product as a hydrochloride (yield: 97 mg, 70%).

3.  21  (t,  IH,  H−2,J, 
 3−3.4), 3. 6 Cb d,  I H. H−3,J 3.
 4−0) ,3.52 (s,IH,H−4,J,,
 5=O).2.  77  (t,  IH,  H
−5,J5,6a−7.02), 3.  24  (d,2H,H−6a,6b)13C
−NMR(CDCl 3) δ49.  585,      6,1..628,
67.  821,      68.406.68.
  844.       60.  361以上実施
例2〜6の各反応における反応物及び生成物の構造を第
2図に示す。
3. 21 (t, IH, H-2, J,
3-3.4), 3. 6 Cb d, I H. H-3, J 3.
4-0) ,3.52 (s,IH,H-4,J,,
5=O). 2. 77 (t, IH, H
-5, J5, 6a-7.02), 3. 24 (d, 2H, H-6a, 6b) 13C
-NMR (CDCl3) δ49. 585, 6, 1. .. 628,
67. 821, 68.406.68.
844. 60. 361 The structures of the reactants and products in each reaction of Examples 2 to 6 are shown in FIG.

’H−NMR (D20) 6 2.  63  (d.  IH,  H−1,J
1,  15−14). 2.  89  (dd,  IH,  H−1b,’
 1 b,2=3− 4), (実施例7) 3,4.6−トリ一〇−ベンジル−5−0− トリメチ
ルシリルー2−0−メチルーD−グルコノニトリルの合
成 メチル−2.3.5−トリ一〇−ベンジルーβ一〇一ア
ラビノフラノシド630mg (1.4mmol).T
MSCN  O.96ml  (7.2mmo 1),
 ボロントリフルオリドエーテラート1 7.8u 1
 (0.14mmo 1)を混合し、室温で2時間反応
させた。生或物をシリカゲルカラムクロマトグラフィー
で分離●精製し、次の三或分をそれぞれシラップとして
得た。即ち、3.4.6−トリ一〇−ベンジル−5−0
−トリメチルシリルー2−0−メチルーD−グルコノニ
トリルを110mg(15%) 、3,4.6−トリ一
〇一ベンジルー2−0−メチルーD−グルコノニトリル
を90mg (14%’) 、2,3.5−トリ一〇−
ベンジルーβ(α)−D−アラビノフラノシルシアニド
を100mg (23%)を得た。
'H-NMR (D20) 6 2. 63 (d. IH, H-1, J
1, 15-14). 2. 89 (dd, IH, H-1b,'
1b,2=3-4), (Example 7) Synthesis of 3,4.6-tri10-benzyl-5-0-trimethylsilyl-2-0-methyl-D-glucononitrile Methyl-2.3 .5-tri-10-benzyl-β-101 arabinofuranoside 630 mg (1.4 mmol). T
MSCN O. 96ml (7.2mmo 1),
Boron trifluoride etherate 1 7.8u 1
(0.14 mmol 1) and reacted at room temperature for 2 hours. The raw material was separated and purified by silica gel column chromatography, and the next three portions were obtained as syrup. That is, 3.4.6-tri-10-benzyl-5-0
110 mg (15%) of -trimethylsilyl-2-0-methyl-D-glucononitrile, 90 mg (14%') of 3,4.6-tri101benzyl-2-0-methyl-D-glucononitrile, 2 ,3.5-tri-10-
100 mg (23%) of benzyl-β(α)-D-arabinofuranosyl cyanide was obtained.

3,4.6−}りーO−ベンジル−5−0−トリメチル
シリルー2−0−メチル一〇一グルコノニトリル IH−NMR (CDC1 3) 60.12 (s,TMS). 3.  43  (s,  −OMe),3.  69
  (dd,  H−6a,J−4.  5,  9.
  9), 3.  47  (dd,  H−6b,J−4.  
8.  9.  9), 3.  84−4.  05 ( m +  II−3 +  K−4 +  H−5
 )  +4.  26  (d,  H−2.  J
−4.  5).4.  45  (s,  CH  
   Bn).2 4.  63  (s,  CH     Bn).2 4.  70  (s,  CH     Bn),2 7.  25  (s,  Ph) 3,4.6−}りーO−ベンジル−2−0−メチル一〇
一グルコノニトリル [α] o − + 3 0 ’  ( c − 0 
.  8 8 ,  C H C l 3 )IH−N
MR (CDC1 3) 6 7.  3  (15H), 4. 7. 4.  56  (CH     Bn).2 4.  5  (CH     Bn).2 4.3 (d,IH,H−2,72.  3−6).4
.04 (dd.IH,H−3,J3. 4−3)3.
84 (dd.IH,H  4,J4.5■8)3. 
 9−4.  0  (IH),3.  6  (d,
  2H,  H−6a,  6b),3.  5  
(s,  3H,  Me)13C−NMR(CDCl
 3) δ  79.  06,        72.  2
3,70.  72,        69.  94
  (CH).78.  04,        75
.  26,74.28,      73.50 (
CH2),58.  52,       116. 
 79  (CN).140,  31, 137.68 (芳香族) 元素分析二計算値C−72.89,H−6.72,N−
3.  04 測定値C−72.29,H−6.59.N−2.  9
4. 2,3.5−トリ一〇一ベンジルーβ(α)D−アラビ
ノフラノシルシアニド ’H−NMR (CDCl3) 64.68 (d,H−1,J t,  2−2.1)
.4.03 (dd,H−2,J    −4.5),
2,3 4.20−4.40 (m,H−3,H−4),3.5
2 (d,H−5a,5b, ”H−NMR (CDC1 3) δ  86.629,     83.73.353,
     72. 72.038,     70. 69.109,    116, 1 37。 727,    137,136.  4
07 5 5 6, 3 77, 3 78, 589  (CN), 1 89. (実施例8) 3,4.6−トリ一〇−ベンジル−2−0−メチル一〇
一グルコノニトリルの合成 実施例7で得られた3,4.6−}りーO−べンジルー
2−0−メチル−5−0−トリメチルシリルーD−グル
コノニトリル0.7g (1.2mmol)を塩化メチ
レン5mlに溶解し、0.1gの塩化第一鉄を加えて室
温で30分間攪拌した。得られた反応混合物を、シリカ
ゲル力ラムクロマトグラフィー(ヘキサン:酢酸エチル
−2=1)で分離・精製して目的物を0.59g(1.
0mmo I)得た。
3,4.6-}-O-benzyl-5-0-trimethylsilyl-2-0-methyl-101 glucononitrile IH-NMR (CDC1 3) 60.12 (s, TMS). 3. 43 (s, -OMe), 3. 69
(dd, H-6a, J-4. 5, 9.
9), 3. 47 (dd, H-6b, J-4.
8. 9. 9), 3. 84-4. 05 (m + II-3 + K-4 + H-5
) +4. 26 (d, H-2. J
-4. 5). 4. 45 (s, CH
Bn). 2 4. 63 (s, CH Bn). 2 4. 70 (s, CH Bn), 2 7. 25 (s, Ph) 3,4.6-}-O-benzyl-2-0-methyl 101 glucononitrile [α] o − + 3 0′ (c − 0
.. 8 8 , C H C l 3 ) IH-N
MR (CDC1 3) 6 7. 3 (15H), 4. 7. 4. 56 (CH Bn). 2 4. 5 (CH Bn). 2 4.3 (d, IH, H-2, 72. 3-6). 4
.. 04 (dd. IH, H-3, J3. 4-3) 3.
84 (dd.IH,H 4,J4.5■8)3.
9-4. 0 (IH), 3. 6 (d,
2H, H-6a, 6b), 3. 5
(s, 3H, Me) 13C-NMR (CDCl
3) δ 79. 06, 72. 2
3,70. 72, 69. 94
(CH). 78. 04, 75
.. 26, 74.28, 73.50 (
CH2), 58. 52, 116.
79 (CN). 140, 31, 137.68 (Aromatic) Elemental analysis two calculated values C-72.89, H-6.72, N-
3. 04 Measured value C-72.29, H-6.59. N-2. 9
4. 2,3.5-tri-101benzyl-β(α)D-arabinofuranosylcyanide'H-NMR (CDCl3) 64.68 (d,H-1,J t, 2-2.1)
.. 4.03 (dd, H-2, J-4.5),
2,3 4.20-4.40 (m, H-3, H-4), 3.5
2 (d, H-5a, 5b, “H-NMR (CDC1 3) δ 86.629, 83.73.353,
72. 72.038, 70. 69.109, 116, 1 37. 727, 137, 136. 4
07 5 5 6, 3 77, 3 78, 589 (CN), 1 89. (Example 8) Synthesis of 3,4.6-tri10-benzyl-2-0-methyl101 glucononitrile 3,4.6-}-O-benzyl-2 obtained in Example 7 0.7 g (1.2 mmol) of -0-methyl-5-0-trimethylsilyl-D-glucononitrile was dissolved in 5 ml of methylene chloride, 0.1 g of ferrous chloride was added, and the mixture was stirred at room temperature for 30 minutes. The resulting reaction mixture was separated and purified by silica gel column chromatography (hexane:ethyl acetate-2=1) to obtain 0.59 g (1.
0 mmol I) was obtained.

(実施例9) 3,4.6−1り−O−ベンジル−5−0−メタンスル
ホニル−2一〇−メチルーD−グルコノニトリルの合成 実施例7及び8で得られた3,4.6−トリ一〇−ベン
ジル−2−0−メチルーD−グルコノニトリル180m
g (0.39mmo l)を3mlのビリジンに溶か
し、水冷下にメタンスルホニルクロリドlml  (1
3mmol)を加えた。一夜攪拌後、反応液を氷冷した
飽和重曹水に注ぎ、7時間攪拌後、クロロホルムで3回
抽出した。硫酸マグネシウムで乾燥後、減圧濃縮し、シ
リカゲルショート力ラム(ヘキサン:酢酸エチル−4:
1)で精製し、目的物をシラップとして1 60mg(
74%)得た。
(Example 9) Synthesis of 3,4.6-1-O-benzyl-5-0-methanesulfonyl-210-methyl-D-glucononitrile 3,4.6-1 obtained in Examples 7 and 8. 6-Tri10-benzyl-2-0-methyl-D-glucononitrile 180m
Dissolve g (0.39 mmol) in 3 ml of pyridine, and add 1 ml of methanesulfonyl chloride (1 ml) under water cooling.
3 mmol) was added. After stirring overnight, the reaction solution was poured into ice-cooled saturated sodium bicarbonate solution, stirred for 7 hours, and extracted three times with chloroform. After drying with magnesium sulfate, it was concentrated under reduced pressure, and filtrated with silica gel short column (hexane:ethyl acetate-4:
Purify in step 1) and use the target product as syrup to produce 160 mg (
74%).

1H−NMR(CDC1 3) 6 7.  3  (15H), 4.  9  (m,  IH,  H−5).4,7
,    4.68,    4.24(each  
s,2H,CH2). 3.  7−4.  24  (m.  5H,H−2
+  3+  4+  6a,  6b),3.  4
4  (s,  3H.  Me).2.  96  
(s,  3H,  Me)(実施例10) 3.4.6−トリ一〇−ベンジル−2−0−メチル−1
.5−ジデオキシー1.5−イミノーL一イジトールの
合戊 実施例9で得られた3.4.6−トリーO−ベンジルー
5一〇−メタンスルホニル−2−0−メチルーD−グル
コノニトリル160mg (0.3mmo 1)を7.
5mlのエーテルに溶かし、水素化リチウムアルミニウ
ム17mg (0.45mmo1)の3mlエーテル懸
濁液に水冷下に滴下した。40分後、0.  1 m 
lの水を加え、セライトで濾過した。硫酸マグネシウム
で乾燥し、減圧濃縮の後、酢酸ナトリウムの飽和エタノ
ール溶液に溶かし、一夜加熱還流し減圧濃縮した。クロ
ロホルムに溶かし、水で洗った。硫酸マグネシウムで乾
燥し、減圧濃縮を行い、シリカゲルカラムクロマトグラ
フィ−(クロロホルム:アセトン繻8:1)で精製し、
目的物を26mg (20%)得た。
1H-NMR (CDC1 3) 6 7. 3 (15H), 4. 9 (m, IH, H-5). 4,7
, 4.68, 4.24(each
s, 2H, CH2). 3. 7-4. 24 (m. 5H, H-2
+ 3+ 4+ 6a, 6b), 3. 4
4 (s, 3H. Me). 2. 96
(s, 3H, Me) (Example 10) 3.4.6-tri10-benzyl-2-0-methyl-1
.. Synthesis of 5-dideoxy-1,5-imino-L-iditol 160 mg of 3.4.6-tri-O-benzy-510-methanesulfonyl-2-0-methyl-D-glucononitrile obtained in Example 9 ( 0.3 mmo 1) to 7.
The mixture was dissolved in 5 ml of ether and added dropwise to a suspension of 17 mg (0.45 mmol) of lithium aluminum hydride in 3 ml of ether while cooling with water. After 40 minutes, 0. 1 m
1 of water was added and filtered through Celite. After drying over magnesium sulfate and concentration under reduced pressure, the mixture was dissolved in a saturated ethanol solution of sodium acetate, heated under reflux overnight, and concentrated under reduced pressure. Dissolved in chloroform and washed with water. Dry with magnesium sulfate, concentrate under reduced pressure, and purify with silica gel column chromatography (chloroform:acetone 8:1).
26 mg (20%) of the desired product was obtained.

1H−NMR (CDCl 3) 62.  83  (dd.  H−1g,J1,  
、5−13.J1,  2−6.4),3.  00 
 (dd,  H−1b,Jエb,  2−3.83) 3.21 (dt,H−2,J,  3−6.20)3
.57 (t,H−3,J, 4−6.20),3.3
9 (dd,H−4,J,  5−3.40)3.34
 (ddd,H−5,J,6a−8.85,J,  6
,−5.45)3.  64  (t,  H−6a,
  J        −9.  2)5, 6 b 3.  51  (dd,  H−6b),4.64.
   4.56.   4.52 (CH2)13C−
NMR(CDC13) δ79.066,     77.047,76.67
2,     73.794,73.353,    
 72.57,67.594,     57.737
,54.663,     43.827これを実施例
6と同様にして脱保護し、2−0−メチル−1,5−イ
ミノーL−イジトール塩酸塩が得られた。
1H-NMR (CDCl3) 62. 83 (dd. H-1g, J1,
, 5-13. J1, 2-6.4), 3. 00
(dd, H-1b, Jeb, 2-3.83) 3.21 (dt, H-2, J, 3-6.20) 3
.. 57 (t, H-3, J, 4-6.20), 3.3
9 (dd, H-4, J, 5-3.40) 3.34
(ddd, H-5, J, 6a-8.85, J, 6
, -5.45)3. 64 (t, H-6a,
J-9. 2) 5, 6 b 3. 51 (dd, H-6b), 4.64.
4.56. 4.52 (CH2)13C-
NMR (CDC13) δ79.066, 77.047, 76.67
2, 73.794, 73.353,
72.57, 67.594, 57.737
, 54.663, 43.827 This was deprotected in the same manner as in Example 6 to obtain 2-0-methyl-1,5-imino-L-iditol hydrochloride.

以上実施例7〜10の各反応における反応物及び生成物
の構造を第3図に示す。
The structures of the reactants and products in each reaction of Examples 7 to 10 are shown in FIG. 3.

(実施例11) 酵素阻害活性 この様にして合戊した1,5−イミノーL一タリトール
に対して酵素阻害活性実験を実施した。
(Example 11) Enzyme inhibitory activity An enzyme inhibitory activity experiment was conducted on the 1,5-imino-L monotalitol thus synthesized.

基質は、各酵素に対応するp(0)一ニトロフエニルグ
リコシドを用い、基質溶液(2〜4mM)200μ1、
阻害剤(l,5−イミノーL一タリー2−6 トール)溶液(1.6X10   〜10  M)20
0μ1を加え、これに各酵素溶液(1μg/m 1 〜
7ug/m l)2001t Iを加えて反応を開始し
た。25℃でインキコベートし、一定時間後にlmlの
0.05Mグリシンー水酸化ナトリウム緩衝液(PH1
0.1)を加え、加水分解により生じたp(0)一二ト
ロフェノールのアルカリ性における発色を、4 0 0
 n mにおける吸光度で7lνj定することにより反
応速度を求めた。Dixon−plotにより、阻害定
数Kiを決定した。
As a substrate, p(0)-nitrophenyl glycoside corresponding to each enzyme was used, and 200 μl of a substrate solution (2-4 mM) was used.
Inhibitor (l,5-imino-L-tally 2-6 toll) solution (1.6X10~10 M) 20
Add 0 μl of each enzyme solution (1 μg/m 1 to
7ug/ml)2001tI was added to start the reaction. Incubate at 25°C, and after a certain period of time add 1ml of 0.05M glycine-sodium hydroxide buffer (PH1
0.1), and the color development of p(0) ditrophenol produced by hydrolysis in alkalinity was
The reaction rate was determined by determining the absorbance at nm as 7lνj. Inhibition constant Ki was determined by Dixon-plot.

使用した酵素(由来)は次のものである。即ち、■α−
グルコシダーゼ(ビール酵母) ■β−グルコシダーゼ(アーモンド) ■α−ガラクトシダーゼ(コーヒーマメ)■β−ガラク
トシダーゼ(クロカビ) ■α−マンノシダーゼ(タチナタマメ)■α−フコシダ
ーゼ(牛の副精巣) ■α−フコシダーゼ(牛の腎臓) などである。
The enzymes (origins) used are as follows. That is, ■α−
Glucosidase (brewer's yeast) ■β-glucosidase (almond) ■α-galactosidase (coffee bean) ■β-galactosidase (black mold) ■α-mannosidase (jack bean) ■α-fucosidase (cow accessory testis) ■α-fucosidase (cow kidneys), etc.

この様にして求めた阻害活性を以下の表に示す。The inhibitory activities determined in this way are shown in the table below.

酵素      50%阻害(M)[K.]1 ■α−グルコシダーゼ  3X10−3■β−グルコシ
ダーゼ     Nl ■α−ガラクトシダーゼ    Nl ■β−ガラクトシダーゼ   Nl ■α−マンノシダーゼ     Nl ■α−フコシダーゼ   2.7X10−5−5 [1.IXIO   ] ■α−フコシダーゼ   8.OX10  ’−6 [7X10   ] − 3 NI:阻害活性無し(>5xlO   )[発明の効果
] 以上の説明から明らかなように、本発明のポリヒド口キ
シビペリジン類はα−グルコシダーゼ,α−フコシダー
ゼなどに対するグリコシダーゼ阻害活性が認められた。
Enzyme 50% inhibition (M) [K. [1. IXIO] ■α-fucosidase 8. OX10'-6 [7X10]-3 NI: No inhibitory activity (>5xlO) [Effects of the invention] As is clear from the above explanation, the polyhydro-oxybiperidines of the present invention are effective against glycosidases such as α-glucosidase and α-fucosidase. Inhibitory activity was observed.

本発明のポリヒド口キシビペリジン類はりボフラノシド
誘導体またはアラビノシド誘導体をTMSCNで開環後
、シアノ基を還元してアミノ基とし、閉環させるという
本発明方法により簡単に製造することができた。
The polyhydroxybiperidines of the present invention could be easily produced by the method of the present invention, in which a bofuranoside derivative or an arabinoside derivative is ring-opened with TMSCN, the cyano group is reduced to an amino group, and the ring is closed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の、第2図は実施例2〜6の、第3図
は実施例7〜10の各反応における反応物及び生成物の
構造を示す図である。
FIG. 1 is a diagram showing the structures of reactants and products in each reaction of Example 1, FIG. 2 is of Examples 2 to 6, and FIG. 3 is of Examples 7 to 10.

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1は水素又はメチル基、R_2、R_3は
いずれか一方が水素で他方は水酸基を示す)で表される
ポリヒドロキシピペリジン類。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) Polyhydroxypiperidines represented.
(2)下記一般式(II) ▲数式、化学式、表等があります▼(II) (式中R_4、R_5はいずれか一方が水素で他方がア
ルコキシ基又は▲数式、化学式、表等があります▼(式
中 XはH、CH_3、OCH_3、又はClを示す)を、
R_6、R_7はいずれか一方が水素で他方がアシルオ
キシ基又は▲数式、化学式、表等があります▼(式中、
X は上記と同じ)を、R_8はアシルオキシ基又は▲数式
、化学式、表等があります▼(式中、Xは上記と同じ) を、R_9はアシルオキシ基、▲数式、化学式、表等が
あります▼ −X(式中、Xは上記と同じ)又はアジド基を示す)で
表されるリボフラノシド誘導体又はアラビノフラノシド
誘導体をルイス酸の存在下にシアノトリメチルシランと
反応させ、開環、増炭させて、下記一般式(III) ▲数式、化学式、表等があります▼(III) (式中、R_4ないしR_9は上記と同じ)で表される
鎖状構造物とした後、トリメチルシリル基を適当な脱離
基に変換し、更に、シアノ基を還元して閉環させて、下
記一般式(IV) ▲数式、化学式、表等があります▼(IV) (R_4ないしR_9は上記と同じ)で表される1,5
−ジデオキシ−1,5−イミノ−L−タリトール誘導体
又は1,5−ジデオキシ−1,5−イミノ−L−イジト
ール誘導体とし、ひき続いて接触還元で脱保護すること
を特徴とする請求項(1)記載のポリヒドロキシピペリ
ジン類の製造法。
(2) General formula (II) below ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, one of R_4 and R_5 is hydrogen and the other is an alkoxy group, or ▲There are mathematical formulas, chemical formulas, tables, etc.) (in the formula, X represents H, CH_3, OCH_3, or Cl),
Either one of R_6 and R_7 is hydrogen and the other is an acyloxy group, or there are numerical formulas, chemical formulas, tables, etc.▼ (in the formula,
X is the same as above), R_8 is an acyloxy group or ▲ there is a mathematical formula, chemical formula, table, etc. ▼ (in the formula, X is the same as above), R_9 is an acyloxy group, ▲ there is a mathematical formula, chemical formula, table, etc. ▼ A ribofuranoside derivative or arabinofuranoside derivative represented by -X (wherein X is the same as above) or an azide group is reacted with cyanotrimethylsilane in the presence of a Lewis acid to open the ring and increase the carbon content. After forming a chain structure represented by the following general formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (III) (in the formula, R_4 to R_9 are the same as above), a trimethylsilyl group is added to an appropriate It is converted into a leaving group, and then the cyano group is reduced and ring-closed, resulting in the following general formula (IV) ▲ Numerical formula, chemical formula, table, etc. ▼ (IV) (R_4 to R_9 are the same as above) 1,5
-dideoxy-1,5-imino-L-talitol derivative or 1,5-dideoxy-1,5-imino-L-iditol derivative, followed by deprotection by catalytic reduction (claim 1) ) The method for producing polyhydroxypiperidines described in .
JP1158162A 1989-06-22 1989-06-22 Polyhydroxypiperidines and production thereof Pending JPH0324057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158162A JPH0324057A (en) 1989-06-22 1989-06-22 Polyhydroxypiperidines and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158162A JPH0324057A (en) 1989-06-22 1989-06-22 Polyhydroxypiperidines and production thereof

Publications (1)

Publication Number Publication Date
JPH0324057A true JPH0324057A (en) 1991-02-01

Family

ID=15665624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158162A Pending JPH0324057A (en) 1989-06-22 1989-06-22 Polyhydroxypiperidines and production thereof

Country Status (1)

Country Link
JP (1) JPH0324057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985760B2 (en) 2002-07-17 2011-07-26 Actelion Pharmaceuticals Ltd. Piperidinetriol derivatives as inhibitors of glycosyceramid synthase
US8022219B2 (en) 2003-06-13 2011-09-20 Actelion Pharmaceuticals Ltd. 2-hydroxymethy1-3,4,5-trihydroxy-1-(4-pentyloxybenzyl) piperidine as glucosylceramide synthase (Gcs) inhibitor
US8071780B2 (en) 2003-06-13 2011-12-06 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide
US8729099B2 (en) 2001-01-12 2014-05-20 Actelion Pharmaceuticals Ltd. Pharmaceutically active piperidine derivatives

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729099B2 (en) 2001-01-12 2014-05-20 Actelion Pharmaceuticals Ltd. Pharmaceutically active piperidine derivatives
US9199935B2 (en) 2001-01-12 2015-12-01 Acetelion Pharmaceuticals Ltd. Pharmaceutically active piperidine derivatives
US7985760B2 (en) 2002-07-17 2011-07-26 Actelion Pharmaceuticals Ltd. Piperidinetriol derivatives as inhibitors of glycosyceramid synthase
US8022219B2 (en) 2003-06-13 2011-09-20 Actelion Pharmaceuticals Ltd. 2-hydroxymethy1-3,4,5-trihydroxy-1-(4-pentyloxybenzyl) piperidine as glucosylceramide synthase (Gcs) inhibitor
US8071780B2 (en) 2003-06-13 2011-12-06 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide

Similar Documents

Publication Publication Date Title
JP3520269B2 (en) Compounds suitable for the synthesis of 2- and 3-amino and azide derivatives of 1,5-iminosugars
Li et al. L-DMDP, L-homoDMDP and their C-3 fluorinated derivatives: synthesis and glycosidase-inhibition
US5844102A (en) Glycohydrolase inhibitors, their preparation and use thereof
KR100286874B1 (en) Method for preparing protected 4-aminomethyl-pyrrolidone-3-on
Filichev et al. Synthesis of an aza analogue of 2-deoxy-d-ribofuranose and its homologues
JPS6345293A (en) Sialosylceramide compound and production thereof
JPH0324057A (en) Polyhydroxypiperidines and production thereof
Furneaux et al. 2-Acetamido-1, 2-dideoxynojirimycin: an improved synthesis
Oña et al. Stereoselective syntheses of polyhydroxylated azepane derivatives from sugar-based epoxyamides. Part 1: synthesis from d-mannose
HAMMANN et al. SECONDARY METABOLITES BY CHEMICAL SCREENING. 7 I. ELAIOPHYLIN DERIVATIVES AND THEIR BIOLOGICAL ACTIVITIES
US5026713A (en) 1,3-dideoxy-3-fluoronojirimycin which inhibits glycosidase activity
Aoyagi et al. First total synthesis of (±)-oxerine
EP0304086B1 (en) 4'-deshydroxyepipodophyllotoxin glucosides and their use
JP2942606B2 (en) Method for synthesizing mannojirimycin derivatives
Kondo et al. Syntheses of hypermodified nucleoside q, and its biosynthetic precursors preq0 and preq1
Zhi-cai et al. INES: SYNTHESIS OF 1, 4-DIDEOXY-1, 4-IMINO-D-LYXITOL
Terayama et al. Synthesis of a New Allosamidin Analog, N, N′-Diacetyl-β-Chitobiosyl Allosamizoline, and Its Inhibitory Activity against Some Chitinases
Buchanan et al. A new synthesis of (–)-anisomycin and its demethoxy analogue from D-ribose
Igarashi et al. Formamicin, a Novel Antifimgal Antibiotic Produced by a Strain of Saccharothrix sp. II. Structure Elucidation of Formamicin
EP0305972A2 (en) 3'- Demethoxyepipodophyllotoxin Glucoside Derivatives
US5374711A (en) Chemical modification of 2"-amino group in elsamicin a
US5250703A (en) Pyrrolidin-3,4-diol derivatives of heptitols and preparation thereof
US4103006A (en) Glycosides of 2,6-bis(hydroxy-phenyl)-3,7-dioxabicyclo [3,3,0] octane
US4207415A (en) Method of producing 2-deoxyfortimicin A
US5237055A (en) Chemical modification of 2"-amino group in elsamicin A