JPH032398B2 - - Google Patents

Info

Publication number
JPH032398B2
JPH032398B2 JP12776884A JP12776884A JPH032398B2 JP H032398 B2 JPH032398 B2 JP H032398B2 JP 12776884 A JP12776884 A JP 12776884A JP 12776884 A JP12776884 A JP 12776884A JP H032398 B2 JPH032398 B2 JP H032398B2
Authority
JP
Japan
Prior art keywords
reaction
adduct
cyclopentadiene
ethylidenenorbornene
methylcyclopentadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12776884A
Other languages
Japanese (ja)
Other versions
JPS617391A (en
Inventor
Hitoshi Yuasa
Mitsuo Matsuno
Hirosuke Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP12776884A priority Critical patent/JPS617391A/en
Priority to US06/746,279 priority patent/US4604490A/en
Priority to EP85107651A priority patent/EP0166382B1/en
Priority to DE8585107651T priority patent/DE3580944D1/en
Publication of JPS617391A publication Critical patent/JPS617391A/en
Publication of JPH032398B2 publication Critical patent/JPH032398B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高エネルギー燃料に関するもので、さ
らに詳しくはロケツトまたはジエツトエンジンの
ジエツト推進用に使用する高密度かつ高熱発量の
液体燃料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to high energy fuels, and more particularly to high density and high calorific value liquid fuels used for jet propulsion in rocket or jet engines. It is.

(発明の技術的背景および問題点) ロケツトおよびターボジエツト、ラムジエツ
ト、パルスジエツトなどのジエツトエンジンには
高エネルギー液体燃料が用いられる。これらのジ
エツトエンジンの推力を増加させるためには単位
重量当りの燃焼エネルギーのより大きい燃料、す
なわち高密度でかつ高燃焼熱の液体燃料が要求さ
れる。これらのジエツトエンジン用の液体燃料は
燃焼室にパイプを経由して供給されるが、ジエツ
トエンジンを塔載する飛行物体が高高度域を飛行
するため、おび液体酸素と併用されるため液体燃
料は極めて低温に曝される。したがつてジエツト
エンジン用の液体燃料のもう一つの要求性能は折
出点、流動点が低く、かつ低温においても適度の
粘度を有することがあげられる。さらにジエツト
エンジン用液体燃料としては不飽和結合を有さ
ず、長期の貯蔵に対して安定であることも要求さ
れる。
(Technical Background and Problems of the Invention) High-energy liquid fuels are used in rockets and jet engines such as turbojet, ramjet, and pulse jet. In order to increase the thrust of these jet engines, fuel with greater combustion energy per unit weight, that is, liquid fuel with high density and high combustion heat is required. Liquid fuel for these jet engines is supplied to the combustion chamber via a pipe, but since the flying object carrying the jet engine flies at a high altitude and is used in conjunction with liquid oxygen, liquid fuel is supplied to the combustion chamber via a pipe. The fuel is exposed to extremely low temperatures. Therefore, another required performance of liquid fuel for jet engines is that it has a low pour point and a low pour point, and has an appropriate viscosity even at low temperatures. Furthermore, liquid fuel for jet engines is required to have no unsaturated bonds and to be stable for long-term storage.

このようなジエツトエンジン用液体燃料として
は従来ジシクロペンタジエンの水素添加物を酸触
媒で異性化して得られるエキソテトラヒドロジシ
クロペンタジエン(JP−10、特公昭45−20977号
公報)およびノルボナジエンを2量化して水素化
したもの(RJ−5、米国特許第3377398号公報)
などが知られている。JP−10は低温流動性は良
好であるが密度が低く、容積当りの燃焼熱が小さ
いという欠点を有する。一方RJ−5は容積当り
の発熱量は大きいが、低温流動性が不良で、また
RJ−5の合成が困難で高価格であるという欠点
を有している。
Conventionally, liquid fuels for jet engines include exotetrahydrodicyclopentadiene (JP-10, Japanese Patent Publication No. 45-20977) obtained by isomerizing dicyclopentadiene hydrogenated product with an acid catalyst, and norbonadiene. Quantified and hydrogenated product (RJ-5, US Patent No. 3377398)
etc. are known. Although JP-10 has good low-temperature fluidity, it has the disadvantages of low density and low combustion heat per volume. On the other hand, RJ-5 has a large calorific value per volume, but has poor low-temperature fluidity and
The drawback is that RJ-5 is difficult to synthesize and expensive.

(発明の目的) 本発明はジエツトエンジン用液体燃料として要
求される上記の条件を満足し、安価でかつ工業的
に容易に製造できる高密度の、高発熱量の液体燃
料を提供することを目的とするものである。
(Objective of the Invention) The present invention aims to provide a high-density, high-calorific-value liquid fuel that satisfies the above-mentioned conditions required for a liquid fuel for a jet engine and can be manufactured at low cost and easily industrially. This is the purpose.

すなわち本発明は工業的な入手容易な5−エチ
リデンノルボルネン−2とシクロペンタジエンま
たは/およびメチルシクロペンタジエンとをデイ
ールス・アルダー反応させ5−エチリデンノルボ
ルネン−2とシクロペンタジエンまたは/および
メチルシクロペンタジエンの1:1付加物を合成
し、これを分離したのち炭素・炭素二重結合を水
素化して不飽和結合を有さない炭化水素化合物と
し、それを高密度、高発熱量のジエツトエンジン
用液体燃料とするものである。
That is, the present invention involves the Diels-Alder reaction of 5-ethylidenenorbornene-2 and cyclopentadiene or/and methylcyclopentadiene, which are easily available on an industrial scale, to produce 1: After synthesizing an adduct and separating it, the carbon-carbon double bond is hydrogenated to produce a hydrocarbon compound with no unsaturated bonds, which is used as a high-density, high-calorific liquid fuel for jet engines. It is something to do.

(発明の概要) 本発明で用いる5−エチリデンノルボルネン−
2とシクロペンタジエンまたはメチルシクロペン
タジエンのデイールス・アルダー反応は主として
次の様式で進行し、1:1付加物()が得られ
る。
(Summary of the invention) 5-ethylidenenorbornene used in the present invention
The Diels-Alder reaction of 2 with cyclopentadiene or methylcyclopentadiene proceeds primarily in the following manner to yield a 1:1 adduct ().

反応条件によつては一部に次のような反応で
1:1付加物()が少量たとえば5モル%以下
生成する。
Depending on the reaction conditions, a small amount of 1:1 adduct (), for example, 5 mol % or less, may be formed in some reactions as follows.

通常のデイールス・アルダー反応条件では式(2)
による反応は式(1)に比べて非常に遅く、したがつ
て5−エチリデンノルボルネン−2とシクロペン
タジエンまたはメチルシクロペンタジエンの1:
1付加物は()の構造の化合物が主成分であ
る。
Under normal Diels-Alder reaction conditions, Equation (2)
The reaction of 5-ethylidenenorbornene-2 and cyclopentadiene or methylcyclopentadiene is very slow compared to formula (1).
The main component of the 1 adduct is a compound having the structure ().

5−エチリデンノルボルネン−2とシクロペン
タジエンまたはメチルシクロペンタジエンのデイ
ールス・アルダー反応は熱反応であり、触媒を必
要としない反応である。反応原料であるシクロペ
ンタジエンまたは/およびメチルシクロペンタジ
エンはモノマーとして反応系に加えてもよいがま
た反応条件下で熱分解してシクロペンタジエンあ
るいはメチルシクロペンタジエンを生成するジシ
クロペンタジエン、メチルジシクロペンタジエ
ン、ジメチルジシクロペンタジエンを原料として
用いてもよい。5−エチリデンノルボルネン−2
とシクロペンタジエンまたは/およびメチルシク
ロペンタジエンのモル比は1:0.001〜1:10、
好ましくは1:0.01〜2の割合で用いることが好
ましい。反応温度はシクロペンタジエンまたはメ
チルシクロペンタジエンを原料として用いる場合
は50〜250℃、好ましくは80〜200℃、ジシクロペ
ンタジエン、メチルジシクロペンタジエンまたは
ジメチルジシクロペンタジエンを原料成分として
用いる場合は100〜250℃、好ましくは120〜200℃
である。反応時間は反応温度によつて変るが10分
〜20時間、好ましくは30分〜5時間である。この
デイールス・アルダー反応に際してはハイドロキ
ノン、tert−ブチルカテコール、p−フエニレン
ジアミンなどの重合禁止剤を添加して重合体の生
成を抑制することが好ましい。またこの反応をメ
タノールまたはエタノールのような低級アルコー
ル、トルエン、シクロヘキサンなどの炭化水素な
ど反応を阻害しない溶媒中で行なつてもよい。こ
のデイールス・アルダー反応を実施するに当つて
は回分式、半回分式あるいは連続式の反応様式の
いずれも採用できる。
The Diels-Alder reaction between 5-ethylidenenorbornene-2 and cyclopentadiene or methylcyclopentadiene is a thermal reaction that does not require a catalyst. Cyclopentadiene and/or methylcyclopentadiene, which are reaction raw materials, may be added to the reaction system as monomers, but dicyclopentadiene, methyldicyclopentadiene, and methylcyclopentadiene, which are thermally decomposed under the reaction conditions to produce cyclopentadiene or methylcyclopentadiene, Dimethyldicyclopentadiene may also be used as a raw material. 5-ethylidenenorbornene-2
The molar ratio of and cyclopentadiene or/and methylcyclopentadiene is 1:0.001 to 1:10,
Preferably, it is used in a ratio of 1:0.01 to 2. The reaction temperature is 50 to 250°C, preferably 80 to 200°C when cyclopentadiene or methylcyclopentadiene is used as a raw material, and 100 to 250°C when dicyclopentadiene, methyldicyclopentadiene or dimethyldicyclopentadiene is used as a raw material component. ℃, preferably 120-200℃
It is. The reaction time varies depending on the reaction temperature, but is 10 minutes to 20 hours, preferably 30 minutes to 5 hours. During this Diels-Alder reaction, it is preferable to add a polymerization inhibitor such as hydroquinone, tert-butylcatechol, p-phenylenediamine, etc. to suppress the formation of a polymer. This reaction may also be carried out in a solvent that does not inhibit the reaction, such as a lower alcohol such as methanol or ethanol, or a hydrocarbon such as toluene or cyclohexane. In carrying out this Diels-Alder reaction, any of a batch, semi-batch or continuous reaction mode can be employed.

5−エチリデンノルボルネン−2とシクロペン
タジエンまたはメチルシクロペンタジエンのデイ
ールス・アルダー反応では上述した1:1付加物
〔主として()〕が生成するが、副反応物として
シクロペンタジエンまたはメチルシクロペンタジ
エンの3量体、4量体または5量体のようなオリ
ゴマーを生成する、さらに1:1付加物(主とし
て())にさらにシクロペンタジエンまたはメ
チルシクロペンタジエンが付加した多量体も副生
する。
In the Diels-Alder reaction of 5-ethylidenenorbornene-2 and cyclopentadiene or methylcyclopentadiene, the above-mentioned 1:1 adduct [mainly ()] is produced, but a trimer of cyclopentadiene or methylcyclopentadiene is produced as a side reaction product. , a tetramer or a pentamer, and a multimer, in which cyclopentadiene or methylcyclopentadiene is further added to a 1:1 adduct (mainly ()), is also produced as a by-product.

これらの副反応物の水素化物は融点が高く、低
温流動性が悪いためジエツトエンジン用液体燃料
油に混入した場合性能の低下をひき起こし、場合
によつては燃料油が使用不能となる。したがつて
本発明における高密度、高発熱量でかつ低温流動
性の良好な液体燃料を合成るためには上述の反応
条件で得たデイールス・アルダー反応生成物から
1:1付加物を蒸留などの手段で分離、精製する
必要がある。
These hydrides, which are by-products, have high melting points and poor low-temperature fluidity, so if they are mixed into liquid fuel oil for jet engines, they cause a decrease in performance, and in some cases, the fuel oil becomes unusable. Therefore, in order to synthesize a liquid fuel with high density, high calorific value, and good low-temperature fluidity in the present invention, a 1:1 adduct is distilled from the Diels-Alder reaction product obtained under the above reaction conditions. It is necessary to separate and purify it by means of

上述の操作により合成、分離精製した5−エチ
リデンノルボルネン−2とシクロペンタジエンま
たはメチルシクロペンタジエンの1:1付加物は
炭素・炭素2重結合を2個有するため化学的安定
性に欠け、長期間の安定な貯蔵ができないため、
ジエツトエンジン用液体燃料とするために水素化
反応により飽和炭化水素にする必要がある。この
1:1付加物の水素化反応は通常の不飽和炭化水
素化合物に対する水素化反応と同様の条件で実施
できる。すなわち水素化反応は白金、パラジウ
ム、ロジウム、ルテニウム、などの貴金属触媒や
ラネーニツケルなどの水素化反応触媒を用いて、
20〜225℃の温度で、水素の圧力1〜〜200Kg/cm2
の圧力で容易に実施できる。またこの水素化反応
は無溶媒下で実施することができるが、炭化水
素、アルコール、エステル、エーテルのような溶
媒中で実施することもできる。1:1付加物の水
素化反応が終了したら、溶媒、未反応物、場合に
よつては微量で生成する分解生成物および触媒残
渣の混合物より蒸留、過などの操作により1:
1付加物の水素化物(テトラヒドロ化物)を分離
する。
The 1:1 adduct of 5-ethylidenenorbornene-2 and cyclopentadiene or methylcyclopentadiene synthesized, separated and purified by the above procedure lacks chemical stability because it has two carbon-carbon double bonds, and cannot be used for a long period of time. Because stable storage is not possible,
In order to use it as a liquid fuel for jet engines, it is necessary to convert it into saturated hydrocarbons through a hydrogenation reaction. The hydrogenation reaction of this 1:1 adduct can be carried out under the same conditions as the hydrogenation reaction of ordinary unsaturated hydrocarbon compounds. In other words, the hydrogenation reaction uses noble metal catalysts such as platinum, palladium, rhodium, and ruthenium, and hydrogenation reaction catalysts such as Raney nickel.
At a temperature of 20~225℃, hydrogen pressure 1~~200Kg/ cm2
It can be easily carried out at a pressure of Further, although this hydrogenation reaction can be carried out without a solvent, it can also be carried out in a solvent such as a hydrocarbon, alcohol, ester, or ether. After the hydrogenation reaction of the 1:1 adduct is completed, the mixture of the solvent, unreacted materials, decomposition products produced in trace amounts in some cases, and catalyst residue is distilled, filtered, etc. to 1:1.
1 The hydride (tetrahydride) of the adduct is separated.

(発明の効果) このようにして合成される5−エチリデンノル
ボルネン−2とシクロペンタジエンまたは/およ
びメチルシクロペンタジエンの1:1付加物の水
素化物は比重が0.984(15℃/4℃)という高密度
で、真発熱量が10000cal/g以上という高発熱量
のジエツトエンジン用液体燃料であり、その融点
は−50℃以下であり、低温における流動特性にお
いて優れている。しかも本発明の燃料は工業的に
入手容易な5−エチリデンノルボルネン−2とシ
クロペンタジエンまたは/およびメチルシクロペ
ンタジエンを原料として、触媒を必要としないデ
イールス・アルダー反応を利用して合成されるた
めに従来のジエツトエンジン用液体燃料に比べて
安価に合成できるという利点も有している。なお
本発明の液体燃料は化学的に安定であり長期貯蔵
安定性がよく、金属に対しては腐食性がないとい
う利点を有する。
(Effect of the invention) The hydride of the 1:1 adduct of 5-ethylidenenorbornene-2 and cyclopentadiene or/and methylcyclopentadiene synthesized in this way has a high density with a specific gravity of 0.984 (15°C/4°C). It is a high calorific value liquid fuel for jet engines with a net calorific value of 10,000 cal/g or more, its melting point is -50°C or less, and it has excellent flow characteristics at low temperatures. Moreover, the fuel of the present invention is synthesized using industrially easily available 5-ethylidenenorbornene-2 and cyclopentadiene or/and methylcyclopentadiene as raw materials using the Diels-Alder reaction that does not require a catalyst. It also has the advantage that it can be synthesized at a lower cost than other liquid fuels for jet engines. The liquid fuel of the present invention has the advantage that it is chemically stable, has good long-term storage stability, and is not corrosive to metals.

本発明による5−エチリデンノルボルネン−2
とシクロペンタジエンまたは/およびメチルシク
ロペンタジエンの1:1付加物の水素化物は単独
でジエツトエンジン用燃料として使用できるが、
また公知の液体燃料と混合して使用することもで
きる。本発明の液体燃料に混合できる公知の燃料
としてはエキソテトラヒドロジシクロペンタジエ
ン、RJ−5として公知のノルボルナジエンの2
量体の水素化物、シクロペンタジエンおよびメチ
ルシクロペンタジエンの3量体の水素化物(特開
昭57−59820)、ジまたはトリシクロヘキシルアル
カン(英国特許第977322号公報)、モノまたはジ
シクロヘキシル−ジサイクリツクアルカン(英国
特許第977323号公報)、ナフテン系炭化水素およ
びイソパラフイン系炭化水素(特開昭57−139186
号公報)などがあげられる。
5-ethylidenenorbornene-2 according to the invention
The hydride of the 1:1 adduct of cyclopentadiene and/or methylcyclopentadiene can be used alone as a fuel for jet engines, but
It can also be used in combination with known liquid fuels. Known fuels that can be mixed with the liquid fuel of the present invention include exotetrahydrodicyclopentadiene and norbornadiene, known as RJ-5.
trimeric hydrides of cyclopentadiene and methylcyclopentadiene (JP-A-57-59820), di- or tricyclohexyl alkanes (British Patent No. 977322), mono- or dicyclohexyl-dicyclic alkanes ( British Patent No. 977323), naphthenic hydrocarbons and isoparaffinic hydrocarbons (JP 57-139186)
Publication No.) etc.

(実施例) 以下に実施例により本発明を詳述するが、本発
明の要旨を逸脱しない限り、これらの実施例に限
定されるものではない。
(Examples) The present invention will be explained below in detail with reference to Examples, but the present invention is not limited to these Examples unless it departs from the gist of the present invention.

実施例 1 窒素置換した容量2のステンレス製オートク
レーブに5−エチリデンノルボルネン−2の362
gとジシクロペンタジエン225gを入れ、157℃で
31時間撹拌した。反応終了後反応液の減圧蒸留を
行なつたところ未反応の5−エチリデンノルボル
ネン−2が88g回収されるとともに沸点86℃/1
mmHgの留分が407g得られた。この留分をガスク
ロマトグラフイーを用いて分析したところ純度が
99.4%であり、また質量分析計で分子量を測定し
たところ186であつた。またこの留分のIR分析で
は3020cm-1、1670cm-1にオレフインの特性吸収が
みられた。 1H−NMR分析では炭素−炭素二重
結合に結合した水素に帰属される吸収がδ5〜
6.5ppmに、炭素−炭素二重結合に結合していな
い水素に帰属される吸収がδ1〜3.5ppmにみられ
たが、これらのピーク面積比は3:15であつた。
これらのことよりこの生成物は5−エチリデンノ
ルボルネン−2とシクロペンタジエンの1:1付
加物であることが明らかになつた。したがつてこ
のデイールス・アルダー反応における5−エチリ
デンノルボルネン−2の反応率は76%であり、5
−エチリデンノルボルネンとシクロペンタジエン
の1:1付加物の収率は73%であつた。
Example 1 362 of 5-ethylidenenorbornene-2 was placed in a stainless steel autoclave with a capacity of 2 and purged with nitrogen.
Add g and 225 g of dicyclopentadiene and heat at 157℃.
Stirred for 31 hours. After the reaction was completed, the reaction solution was distilled under reduced pressure, and 88g of unreacted 5-ethylidenenorbornene-2 was recovered, with a boiling point of 86℃/1.
407 g of mmHg fraction was obtained. When this fraction was analyzed using gas chromatography, the purity was found to be
It was 99.4%, and the molecular weight was 186 when measured using a mass spectrometer. Further, in IR analysis of this fraction, characteristic absorptions of olefin were observed at 3020 cm -1 and 1670 cm -1 . In 1 H-NMR analysis, the absorption attributed to hydrogen bonded to a carbon-carbon double bond is δ5~
At 6.5 ppm, an absorption attributed to hydrogen not bonded to a carbon-carbon double bond was observed at δ1 to 3.5 ppm, and the area ratio of these peaks was 3:15.
These results revealed that this product was a 1:1 adduct of 5-ethylidenenorbornene-2 and cyclopentadiene. Therefore, the reaction rate of 5-ethylidenenorbornene-2 in this Diels-Alder reaction was 76%, and 5
The yield of the 1:1 adduct of -ethylidene norbornene and cyclopentadiene was 73%.

この1:1付加物の水添は次のように行つた。
容量2のステンレス製オートクレーブに上記の
方法で合成した1:1付加物398gとパラジウム
5%担持のパラジウム−炭素3.5gを入れたのち、
水素圧を8Kg/cm2に保ちながら30℃で撹拌した。
反応時間が20時間経過したところで水素の追加を
停止したところ水素の吸収がないことがわかつた
ので、反応を終了した。オートクレーブより反応
を取り出し、触媒を別したのち減圧蒸留を行な
つたところ5−エチリデンノルボルネン−2とシ
クロペンタジエンの1:1付加物の水添物(66
℃/0.3mmHg)が405g得られた。
Hydrogenation of this 1:1 adduct was carried out as follows.
After putting 398 g of the 1:1 adduct synthesized by the above method and 3.5 g of palladium-carbon carrying 5% palladium into a stainless steel autoclave with a capacity of 2,
The mixture was stirred at 30° C. while maintaining the hydrogen pressure at 8 Kg/cm 2 .
When the addition of hydrogen was stopped after 20 hours of reaction time, it was found that no hydrogen was absorbed, so the reaction was terminated. After removing the reaction from the autoclave and removing the catalyst, vacuum distillation was performed to obtain a hydrogenated product (66
℃/0.3mmHg) was obtained.

この水添物は析出点−50℃以下、比重(15℃/
4℃)0.984、真発熱量10050cal/gであつた。
This hydrogenated product has a precipitation point of -50℃ or lower and a specific gravity (15℃/
4°C) 0.984, and the net calorific value was 10,050 cal/g.

実施例 2 内容積2のステンレス製オートクレーブを窒
素置換したのち5−エチリデンノルボルネン−
2600gおよびシクロペンタジエン330gを仕込み、
撹拌しながら徐々に加熱し、2時間かけて内部温
度が25℃から120℃になるように上昇させた。そ
の後120℃で5時間反応させた。反応終了後、反
応液をまず常圧蒸留して未反応シクロペンタジエ
ンを除去し、次に減圧蒸留したところ沸点86℃/
1mmHgの留分が119g得られた。この留分をガス
クロ分析したところ5−エチリデンノルボルネン
−2とシクロペンタジエンの1:1付加物が99.1
%含まれていた。
Example 2 After purging a stainless steel autoclave with an internal volume of 2 with nitrogen, 5-ethylidenenorbornene-
Prepare 2600g and 330g of cyclopentadiene,
The mixture was heated gradually with stirring, and the internal temperature was increased from 25°C to 120°C over 2 hours. Thereafter, the mixture was reacted at 120°C for 5 hours. After the reaction was completed, the reaction solution was first distilled at normal pressure to remove unreacted cyclopentadiene, and then distilled under reduced pressure, resulting in a boiling point of 86℃/
119 g of 1 mmHg fraction was obtained. Gas chromatography analysis of this fraction revealed a 1:1 adduct of 5-ethylidenenorbornene-2 and cyclopentadiene at 99.1%.
% was included.

次に1のステンレス製オートクレーブを窒素
置換したのち、上記の1:1付加物100g、ラネ
ーニツケル0.5gを入れ撹拌し、反応温度を40℃
に制御しながら水素を連続的に10Kg/cm2になるよ
うに加えた。反応時間が10時間経過したところで
水素を追加を停止し、圧力の低下を観察したとこ
ろまつたく水素の消費がないことが判明したの
で、反応液を取り出し、窒素気流下で触媒を別
し、反応液の減圧蒸留を行つたところ1:1付加
物の完全水素化物(沸点66℃/0.3mmHg)が95g
得られた。この1:1付加物の水素化物は析出点
が−50℃以下であり、比重が0.984(15℃/4℃)、
真発熱量が10040cal/gであつた。
Next, after purging the stainless steel autoclave in step 1 with nitrogen, 100 g of the above 1:1 adduct and 0.5 g of Raney nickel were added and stirred, and the reaction temperature was increased to 40°C.
Hydrogen was continuously added to the solution at a concentration of 10 Kg/cm 2 while controlling the amount. After 10 hours of reaction time, we stopped adding hydrogen and observed the drop in pressure, and found that there was no consumption of hydrogen, so we took out the reaction solution, separated the catalyst under a nitrogen stream, and started the reaction. When the liquid was distilled under reduced pressure, 95 g of a complete hydride of the 1:1 adduct (boiling point 66℃/0.3mmHg) was obtained.
Obtained. The hydride of this 1:1 adduct has a precipitation point below -50℃, a specific gravity of 0.984 (15℃/4℃),
The net calorific value was 10,040 cal/g.

実施例 3 容積2のステンレス製オートクレーブを窒素
置換したのち5−エチリデンノルボルネン−2の
600g、ジメチルジシクロペンタジエン480gを入
れ、170℃で10時間反応させた。反応終了後反応
液の減圧蒸留を行つたところ5−エチリデンノル
ボルネン−2とメチルシクロペンタジエンの1:
1付加物(沸点87℃/0.7mmHg、純度95.4%)が
365g得られた。
Example 3 After purging a stainless steel autoclave with a capacity of 2 with nitrogen, 5-ethylidenenorbornene-2 was
600g of dimethyldicyclopentadiene and 480g of dimethyldicyclopentadiene were added, and the mixture was reacted at 170°C for 10 hours. After the reaction was completed, the reaction solution was distilled under reduced pressure to yield 5-ethylidenenorbornene-2 and methylcyclopentadiene 1:
1 adduct (boiling point 87℃/0.7mmHg, purity 95.4%)
365g was obtained.

次に容量1のステンレス製オートクレーブに
5−エチリデンノルボルネン−2とメチルシクロ
ペンタジエンの1:1付加物300gとパラジウム
5%担持のパラジウム−炭素3.5gを入れ、水素
圧を10Kg/cm2に保ちながら50℃で15時間反応させ
た。反応終了後、触媒を別し、反応液を減圧蒸
留し、5−エチリデンノルボルネン−2とメチル
シクロペンタジエンの1:1付加物の水素化物
(沸点78℃/0.3mmHg、純度95.6%)を279g得た。
Next, 300 g of a 1:1 adduct of 5-ethylidenenorbornene-2 and methylcyclopentadiene and 3.5 g of palladium-carbon carrying 5% palladium were placed in a stainless steel autoclave with a capacity of 1, and while maintaining the hydrogen pressure at 10 Kg/cm 2 . The reaction was carried out at 50°C for 15 hours. After the reaction was completed, the catalyst was separated and the reaction solution was distilled under reduced pressure to obtain 279 g of a hydride of a 1:1 adduct of 5-ethylidenenorbornene-2 and methylcyclopentadiene (boiling point 78°C/0.3mmHg, purity 95.6%). Ta.

この水素化物は析出点が−50℃以下であり、比
重は0.975(15℃/4℃)、真発熱量は10030cal/
gであつた。
The precipitation point of this hydride is below -50℃, the specific gravity is 0.975 (15℃/4℃), and the net calorific value is 10030cal/
It was hot at g.

Claims (1)

【特許請求の範囲】[Claims] 1 5−エチリデンノルボルネン−2とシクロペ
ンタジエンまたは/およびメチルシクロペンタジ
エンをデイールス・アルダー反応させ、生成する
5−エチリデンノルボルネン−2とシクロペンタ
ジエンまたはメチルシクロペンタジエンの1:1
付加物の炭素・炭素二重結合を水素化して得られ
る水素化二量体を主成分とする高密度燃料。
1 5-ethylidenenorbornene-2 and cyclopentadiene or/and methylcyclopentadiene are subjected to a Diels-Alder reaction, resulting in a 1:1 ratio of 5-ethylidenenorbornene-2 and cyclopentadiene or methylcyclopentadiene.
A high-density fuel whose main component is a hydrogenated dimer obtained by hydrogenating the carbon-carbon double bond of an adduct.
JP12776884A 1984-06-21 1984-06-21 High-density liquid fuel Granted JPS617391A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12776884A JPS617391A (en) 1984-06-21 1984-06-21 High-density liquid fuel
US06/746,279 US4604490A (en) 1984-06-21 1985-06-19 High-density liquid fuel
EP85107651A EP0166382B1 (en) 1984-06-21 1985-06-20 High-density liquid fuel
DE8585107651T DE3580944D1 (en) 1984-06-21 1985-06-20 LIQUID FUEL WITH HIGH DENSITY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12776884A JPS617391A (en) 1984-06-21 1984-06-21 High-density liquid fuel

Publications (2)

Publication Number Publication Date
JPS617391A JPS617391A (en) 1986-01-14
JPH032398B2 true JPH032398B2 (en) 1991-01-14

Family

ID=14968211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12776884A Granted JPS617391A (en) 1984-06-21 1984-06-21 High-density liquid fuel

Country Status (1)

Country Link
JP (1) JPS617391A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545303B2 (en) * 2000-10-23 2010-09-15 Jx日鉱日石エネルギー株式会社 Process for producing ethylidenetetracyclododecene

Also Published As

Publication number Publication date
JPS617391A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
EP0135436B1 (en) Process for the preparation of linear olefins from fatty acids or esters of saturated fatty acids
US7683232B2 (en) Production of olefins having a functional group
US4059644A (en) High density fuels
US4762092A (en) High-density liquid fuel
US4604490A (en) High-density liquid fuel
Wang et al. High energy density renewable fuels based on multicyclic sesquiterpene: Synthesis and performance
US4207080A (en) Dimerization of norbornadiene to exo-exo hexacyclic dimer
JPH032398B2 (en)
JPS59170192A (en) Fuel composition
US9650314B1 (en) High density fuels from isoprene
US4804795A (en) High-density fuel oil
GB2099450A (en) High density fuel compositions
US3657368A (en) Catalysis by dispersions of metal halides in molten trihalostannate(ii) and trihalogermanate(ii) salts
CA1125314A (en) Isomerization of endo-endo hexacyclic olefinic dimer of norbornadiene
JPH032399B2 (en)
GB2081738A (en) Process for preparing high density fuels
JPS60118686A (en) High density liquid fuel
US4278823A (en) Hydrogenolysis of 2,5-norbornadiene saturated endo-endo hexacyclic dimer
CN111662150B (en) Method for preparing bridge type dihydrodicyclopentadiene
CN113651667B (en) Cyclopropyl alkyl compound, preparation method and application thereof
US10604711B1 (en) Alkyl cyclobutane fuels
JPS5885829A (en) Preparation of 2-trifluoromethylpropanol
US4087467A (en) 8-Exo-hydroxymethyl-endo-tricyclo [5.2.1.02,6 ]decane
JP2001271075A (en) Method for producing oxygen-containing fuel
KR20230174879A (en) Manufacturing method of alkylbicyclo[2.2.2]octanes and hydrocarbon fuel composition including the same