JPH0323853B2 - - Google Patents

Info

Publication number
JPH0323853B2
JPH0323853B2 JP56028200A JP2820081A JPH0323853B2 JP H0323853 B2 JPH0323853 B2 JP H0323853B2 JP 56028200 A JP56028200 A JP 56028200A JP 2820081 A JP2820081 A JP 2820081A JP H0323853 B2 JPH0323853 B2 JP H0323853B2
Authority
JP
Japan
Prior art keywords
heater
output
surface temperature
distribution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56028200A
Other languages
Japanese (ja)
Other versions
JPS57142525A (en
Inventor
Shuichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56028200A priority Critical patent/JPS57142525A/en
Publication of JPS57142525A publication Critical patent/JPS57142525A/en
Publication of JPH0323853B2 publication Critical patent/JPH0323853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は出力分布が一様でないシーズヒータな
どのヒータの出力分布を測定する方法に関する。 例えば原子炉の核燃料模擬発熱体として、軸方
向に対し正弦波状の出力分布特性(発熱分布特
性)を有するシーズヒータが用いられている。 従来、この種シーズヒータの製造工程において
出力分布特性の測定検査を行なう場合には、シー
ズヒータとしての製品を完成する前段階にて、外
管内に設けられる発熱体の抵抗を部分的に測定
し、この発熱体の抵抗値から出力特性(発熱特
性)をチエツクする方法が採用されている。この
ように、発熱体の検査が製造工程途中で行なわれ
るものであるから、検査後の製造工程にてスウエ
ージングなどにより外管を絞搾したり、あるいは
通電などによる温度上昇で発熱体の抵抗値が変化
したりすると、検査値とシーズヒータ製品におけ
る実際の出力分布特性との間に差を生じることが
あつた。 しかして、近時原子炉の安全性、伝熱特性等を
解析する場合に、模擬発熱体として用いるシーズ
ヒータを実際の燃料棒の特性に出来るだけ近い出
力特性分布のものとすることが解析精度向上のた
めに要求されてきている。このためにはシーズヒ
ータの出力特性分布を正確に測定することが重要
である。 本発明は前記事情に鑑みてなされたもので、出
力分布が一様でないヒータの製品における出力分
布特性を正確に測定できるヒータの出力分布測定
方法を提供するものである。 本発明のヒータの出力分布測定方法は、出力分
布が一様でないヒータの出力分布を測定する方法
であつて、測定対象のヒータと同一仕様で出力分
布が一様な基準用のヒータにおける表面温度と出
力との関係を求め、次に測定対象のヒータに通電
してその各個所の表面温度を測定し、この測定さ
れた表面温度を前記表面温度と出力との関係から
出力に換算して、測定対象のヒータの各個所の出
力を求めることを特徴とするものである。 以下本発明について説明する。 本発明のヒータの出力分布測定方法の基本につ
いて述べる。 本発明の測定方法においては、出力分布特性
(発熱分布)が一様でないヒータ、例えば軸方向
に対し正弦波状の出力分布特性を有するシーズヒ
ータを測定対象とし、この測定対象のヒータと同
一仕様で出力分布が一様な基準用のヒータ例えば
シーズヒータを使用し、この基準用のヒータに対
してヒータ出力が夫々異なるような条件で通電
し、各出力の時におけるヒータの表面温度を測定
して、各出力と表面温度との関係を求める。基準
用のヒータは測定対象のヒータに対して外管の材
質および外径、内径寸法の仕様を同等にし、外管
および発熱体の長さは必ずしも同等でなくとも良
い。但し、発熱体は軸方向に対して一様な出力分
布で発熱できるように材質、各部の寸法を設定す
る。基準用のヒータに対する測定を行なう場合に
は、発熱体に対し例えば電圧を種々異ならせて通
電し、それに応じて外管の表面温度を測定する。
ヒータの出力は発熱体への通電条件における電圧
×電流すなわち電力値で求め、さらにこの電力値
を外管の発熱長さで除することによりヒータの単
位長さ当りの出力とする。外管の表面温度は例え
ば輻射温度計あるいは輝度温度計を用いて測定す
る。このようにして基準用のヒータの種々の単位
長さ当りの出力とこれに対応する表面温度との関
係を求め、その結果を第2図で示すように出力と
表面温度を結ぶ特性線を描く線図を作成する。こ
の出力と表面温度との関係が、測定対象のヒータ
における出力と表面温度との関係のモデルとな
る。 次に製品として製作されたすなわち完成品であ
る測定対象のヒータ、例えば軸方向に対し正弦波
状の出力分布特性を有するシーズヒータに対し、
ヒータの軸方向の各部分の表面温度を測定する。
なお、このシーズヒータにおける発熱体は軸方向
に正弦波状の発熱分布を有するように、各部分の
電気抵抗値を異ならせるために材質や形状寸法を
異ならせたもので、例えば電気抵抗値が異なる複
数の材料を接続したコイル状をなしている。第1
図で示すようにシーズヒータ1における外管2の
両端部の端子3,3を電源に接続し、外管2内部
の発熱体に通電すると、発熱体が発熱して外管2
の表面温度が上昇する。輻射温度計や輝度温度計
などの放射型温度計4を用いて、シーズヒータ1
すなわち外管2における軸方向の中央点およびこ
の中央点を中心として左右両方の端部に到る軸方
向の複数個所の表面温度を測定する。この場合、
放射型温度計4は非接触式で、瞬時に温度を測定
できるために、外管2の各個所の表面温度を迅速
かつ正確に測定できる。外管2の表面温度は中央
点が最も高く、両端側に向かうに従い順次低くな
る軸方向に対して正弦波状の温度分布を有するも
ので、第3図の特性線図で示すようにシーズヒー
タの軸方向距離と発熱温度を結ぶD線のように正
弦波をなす表面温度分布特性線が描かれる。この
ように測定した外管2における軸方向の各個所の
表面温度を、先に基準用のヒータを用いて求めた
出力と表面温度との関係に基ずいて単位長さ当り
の出力に換算する。すなわち、第2図の特性線図
における出力と表面温度の特性線により表面温度
から単位長さ当りの出力を求める。このため、外
管2における軸方向の中央点および両端部側の各
個所の単位長さ当りの出力を表面温度により夫々
求めることができる。従つて、シーズヒータ製品
における出力分布を求めることができる。第3図
の特性線図で示すようにシーズヒータの軸方向距
離と各出力とを結ぶと、表面温度分布特性に対応
してE線のように正弦波をなす出力分布特性線を
得られる。 そして、測定対象のシーズヒータを設計する段
階において、シーズヒータにおける設計上の表面
温度分布と出力分布を夫々設定しておき、これら
設計上の表面温度分布と出力分布に対して先に求
めたシーズヒータ製品の実測上の表面温度分布と
出力分布を対比させ、実測上の表面温度分布と出
力分布の値と設計上の値とのずれを見る。この結
果シーズヒータ製品の表面温度分布と出力分布が
設計上の値に対して所定の範囲内にある場合に製
品として合格とする。 このようにして測定対象のヒータの製品におけ
る出力分布を測定する。 実施例 測定対象のヒータは軸方向に対し正弦波状の出
力分布を有するシーズヒータとし、このシーズヒ
ータはステンレス鋼(SUS316)で形成され外径
6.5mmをなす外管を備えたものを使用する。この
シーズヒータにおいて各測定個所の発熱中心位置
からの軸方向の距離を下記の表におけるA欄にて
示し、これら各個所での設計上の単位長さ当りの
出力(W/cm)をB欄にて示す。 基準用のヒータとして測定対象のシーズヒータ
の外管と同一材質および同一外径の外管を備え、
発熱分布が一様なシーズヒータを製作し、このシ
ーズヒータに通電して各出力毎に表面温度を測定
し、この両者の関係に基ずいて第2図で示す単位
長さ当りの出力と表面温度との関係を表わす特性
線図を作成した。また、この線図により測定対象
のシーズヒータにおける各個所の設計上の出力に
対する設計上の表面温度を求めた。これを表のC
欄にて示す。 次いで、測定対象のシーズヒータに対して電圧
10V、電流8.3Aの条件で通電して各個所の表面温
度を夫々測定した。この結果を表のD欄にて示
す。なお、表面温度の測定は基準用のヒータおよ
び測定対象のヒータのいずれもヒータを空気中に
て水平に支持し、赤外線輻射温度計にて測定し
た。さらに、シーズヒータの各個所の表面温度を
第2図の特性線図に基ずいて対応する単位長さ当
りの出力に夫々換算した。この結果を表のE欄に
て示す。
The present invention relates to a method for measuring the output distribution of a heater, such as a sheathed heater, whose output distribution is not uniform. For example, a sheathed heater having a sinusoidal power distribution characteristic (heat generation distribution characteristic) in the axial direction is used as a nuclear fuel simulating heating element in a nuclear reactor. Conventionally, when measuring and inspecting the output distribution characteristics in the manufacturing process of this type of sheathed heater, the resistance of the heating element installed inside the outer tube was partially measured before completing the product as a sheathed heater. A method is adopted in which the output characteristics (heat generation characteristics) are checked from the resistance value of this heating element. In this way, since the heating element is inspected during the manufacturing process, the resistance of the heating element may be increased by squeezing the outer tube by swaging or by increasing the temperature due to energization in the manufacturing process after the inspection. If the value changes, a difference may occur between the test value and the actual output distribution characteristic of the sheathed heater product. Therefore, when analyzing the safety, heat transfer characteristics, etc. of modern nuclear reactors, it is important to ensure that the sheathed heater used as a simulated heating element has an output characteristic distribution as close as possible to the characteristics of the actual fuel rod. It is required for improvement. For this purpose, it is important to accurately measure the output characteristic distribution of the sheathed heater. The present invention has been made in view of the above-mentioned circumstances, and provides a heater output distribution measuring method that can accurately measure the output distribution characteristics of a heater product whose output distribution is not uniform. The heater output distribution measuring method of the present invention is a method for measuring the output distribution of a heater whose output distribution is not uniform, and is a method for measuring the output distribution of a heater whose output distribution is not uniform. Find the relationship between and output, then energize the heater to be measured and measure the surface temperature at each location, convert this measured surface temperature into output from the relationship between surface temperature and output, This method is characterized by determining the output at each location of the heater to be measured. The present invention will be explained below. The basics of the heater output distribution measuring method of the present invention will be described. In the measurement method of the present invention, the measurement target is a heater with uneven output distribution characteristics (heat generation distribution), for example, a sheathed heater with a sinusoidal output distribution characteristic in the axial direction. Use a reference heater with a uniform output distribution, such as a sheathed heater, and energize the reference heater under conditions such that each heater output is different, and measure the surface temperature of the heater at each output. , find the relationship between each output and surface temperature. The reference heater has an outer tube made of the same material and specifications of the outer diameter and inner diameter as the heater to be measured, and the lengths of the outer tube and the heating element do not necessarily have to be the same. However, the material and dimensions of each part of the heating element are set so that it can generate heat with a uniform output distribution in the axial direction. When measuring the reference heater, the heating element is energized at various voltages, and the surface temperature of the outer bulb is measured accordingly.
The output of the heater is determined by the voltage multiplied by the current under the energization conditions to the heating element, that is, the power value, and this power value is further divided by the heat generating length of the outer tube to obtain the output per unit length of the heater. The surface temperature of the outer bulb is measured using, for example, a radiation thermometer or a brightness thermometer. In this way, the relationship between the various outputs per unit length of the reference heater and the corresponding surface temperature is determined, and the results are used to draw a characteristic line connecting the output and surface temperature as shown in Figure 2. Create a line diagram. This relationship between the output and the surface temperature becomes a model for the relationship between the output and the surface temperature of the heater to be measured. Next, for a heater to be measured that is a finished product, such as a sheathed heater that has a sinusoidal output distribution characteristic in the axial direction,
Measure the surface temperature of each part of the heater in the axial direction.
The heating element in this sheathed heater has a sinusoidal heat generation distribution in the axial direction, and is made of different materials and shapes to have different electrical resistance values at each part.For example, the heating element has different electrical resistance values. It has a coil shape made by connecting multiple materials. 1st
As shown in the figure, when the terminals 3 and 3 at both ends of the outer tube 2 in the sheathed heater 1 are connected to a power source and the heating element inside the outer tube 2 is energized, the heating element generates heat and the outer tube 2
surface temperature increases. Using a radiation thermometer 4 such as a radiation thermometer or a brightness thermometer, measure the sheathed heater 1.
That is, the surface temperature is measured at a central point in the axial direction of the outer tube 2 and at a plurality of locations in the axial direction extending from the central point to both the left and right ends. in this case,
Since the radiation thermometer 4 is a non-contact type and can measure temperature instantly, the surface temperature at each location of the outer tube 2 can be measured quickly and accurately. The surface temperature of the outer tube 2 has a sinusoidal temperature distribution in the axial direction, with the highest temperature at the center point and decreasing toward both ends. A sinusoidal surface temperature distribution characteristic line is drawn, such as line D, which connects the axial distance and the heat generation temperature. The thus measured surface temperature at each location in the axial direction of the outer tube 2 is converted into an output per unit length based on the relationship between the output and the surface temperature previously determined using the reference heater. . That is, the output per unit length is determined from the surface temperature using the characteristic line of the output and surface temperature in the characteristic diagram of FIG. Therefore, the output per unit length of the outer tube 2 at the axial center point and at both ends can be determined from the surface temperature. Therefore, the output distribution in the sheathed heater product can be determined. As shown in the characteristic diagram of FIG. 3, by connecting the axial distance of the sheathed heater and each output, an output distribution characteristic line forming a sine wave like line E can be obtained corresponding to the surface temperature distribution characteristic. Then, at the stage of designing the sheathed heater to be measured, the designed surface temperature distribution and output distribution of the sheathed heater are set respectively, and the previously determined sheathed heater is Compare the measured surface temperature distribution and output distribution of the heater product and check the deviation between the measured surface temperature distribution and output distribution values and the designed values. As a result, if the surface temperature distribution and output distribution of the sheathed heater product are within a predetermined range with respect to the design values, the product is passed. In this way, the output distribution of the heater product to be measured is measured. Example The heater to be measured is a sheathed heater with a sinusoidal output distribution in the axial direction.This sheathed heater is made of stainless steel (SUS316) and has an outer diameter of
Use one with a 6.5mm outer tube. In this sheathed heater, the distance in the axial direction from the heat generation center position of each measurement point is shown in column A of the table below, and the designed output per unit length (W/cm) at each of these points is shown in column B. Shown in As a reference heater, it is equipped with an outer tube made of the same material and the same outer diameter as the outer tube of the sheathed heater to be measured.
A sheathed heater with a uniform heat distribution is manufactured, the sheathed heater is energized, the surface temperature is measured for each output, and based on the relationship between the two, the output per unit length and the surface as shown in Figure 2 are calculated. A characteristic diagram showing the relationship with temperature was created. Further, from this diagram, the designed surface temperature with respect to the designed output at each location in the sheathed heater to be measured was determined. This is C in the table.
Shown in the column. Next, apply voltage to the sheathed heater to be measured.
Electricity was applied under the conditions of 10V and current of 8.3A, and the surface temperature of each location was measured. The results are shown in column D of the table. Note that the surface temperatures of both the reference heater and the measurement target heater were supported horizontally in the air, and were measured using an infrared radiation thermometer. Furthermore, the surface temperature at each location of the sheathed heater was converted into the corresponding output per unit length based on the characteristic diagram shown in FIG. The results are shown in column E of the table.

【表】 そして、第3図で示すようにシーズヒータの各
測定個所の軸方向距離と、出力および表面温度と
の関係を表わす特性線図において、シーズヒータ
の設計上の出力分布をB線、表面温度分布をC
線、測定された表面温度分布をD線、出力分布を
E線として形成した。この特性線図に基ずいてシ
ーズヒータの設計上の出力分布および表面温度分
布と、測定した結果の出力分布と表面温度分布と
を対比すると次のことが伝える。すなわち、設計
値(規格値)に対し、実際値は、ほぼ±5%以内
のバラツキであり良品である。(一般には±7%
位が規格公差とされている。) なお、本発明の測定方法は、原子炉の核燃料模
擬発熱体に使用されるシーズヒータの出力分布測
定に実施すると、このシーズヒータが用途上所定
の出力分布を正確に有することが要求されるため
に大変効果的であるが、一様でない出力分布を有
する他のシーズヒータにも適用できる。 本発明のヒータの出力分布測定方法は以上説明
したように、一様でない出力分布を有するヒータ
における出力分布を測定する場合に、実際上必要
とされるヒータ製品における出力分布を、表面温
度を測定して出力に換算する方法により正確に測
定することができる。
[Table] In the characteristic diagram showing the relationship between the axial distance of each measurement point of the sheathed heater and the output and surface temperature as shown in Figure 3, the designed output distribution of the sheathed heater is shown by line B, The surface temperature distribution is C
The measured surface temperature distribution was formed as a line D, and the output distribution was formed as a line E. Comparing the designed output distribution and surface temperature distribution of the sheathed heater with the measured output distribution and surface temperature distribution based on this characteristic diagram reveals the following. That is, the actual value varies within approximately ±5% with respect to the design value (standard value), and is a good product. (Generally ±7%
The position is considered to be the standard tolerance. ) Note that when the measurement method of the present invention is implemented to measure the output distribution of a sheathed heater used as a nuclear fuel simulating heating element in a nuclear reactor, it is required that this sheathed heater accurately have a predetermined output distribution for its purpose. However, it can also be applied to other sheathed heaters with non-uniform power distribution. As explained above, the method for measuring the output distribution of a heater according to the present invention measures the output distribution of a heater product, which is actually required when measuring the output distribution of a heater having an uneven output distribution, by measuring the surface temperature. It can be measured accurately by converting the output into output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法においてシーズヒータの表
面温度を測定する一実施例を示す説明図、第2図
は基準用シーズヒータにおける出力と表面温度と
の関係を示す特性線図、第3図は測定対象のシー
ズヒータにおける設計上および測定上の出力分布
と表面温度分布を示す特性線図である。 1……シーズヒータ。2……外管、4……温度
計。
FIG. 1 is an explanatory diagram showing an example of measuring the surface temperature of a sheathed heater using the method of the present invention, FIG. 2 is a characteristic diagram showing the relationship between the output and surface temperature of a reference sheathed heater, and FIG. FIG. 3 is a characteristic diagram showing the designed and measured output distribution and surface temperature distribution of the sheathed heater to be measured. 1... Sheathed heater. 2... Outer tube, 4... Thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1 出力分布が一様でないヒータの出力分布を測
定する方法であつて、測定対象のヒータと同一仕
様で出力分布が一様な基準用のヒータにおける表
面温度と出力との関係を求め、次に前記測定対象
のヒータに通電してその各個所の表面温度を測定
し、これら測定された表面温度を前記表面温度と
出力との関係から出力に換算して、前記測定対象
のヒータの各個所の出力を求めることを特徴とす
るヒータの出力分布測定方法。
1. A method for measuring the output distribution of a heater whose output distribution is not uniform, in which the relationship between the surface temperature and output of a reference heater with the same specifications as the heater to be measured and whose output distribution is uniform is determined, and then The heater to be measured is energized to measure the surface temperature at each location, and the measured surface temperatures are converted into output from the relationship between the surface temperature and the output, and the temperature at each location of the heater to be measured is calculated. A heater output distribution measuring method characterized by determining the output.
JP56028200A 1981-02-27 1981-02-27 Measuring method for output distribution of heater Granted JPS57142525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56028200A JPS57142525A (en) 1981-02-27 1981-02-27 Measuring method for output distribution of heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56028200A JPS57142525A (en) 1981-02-27 1981-02-27 Measuring method for output distribution of heater

Publications (2)

Publication Number Publication Date
JPS57142525A JPS57142525A (en) 1982-09-03
JPH0323853B2 true JPH0323853B2 (en) 1991-03-29

Family

ID=12242022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56028200A Granted JPS57142525A (en) 1981-02-27 1981-02-27 Measuring method for output distribution of heater

Country Status (1)

Country Link
JP (1) JPS57142525A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814414B1 (en) * 2003-09-01 2008-03-18 학교법인 포항공과대학교 Apparatus and method for measuring heat dissipation
FR2988974B1 (en) * 2012-04-02 2017-09-01 Commissariat Energie Atomique DEVICE FOR GENERATING A HIGH GRADIENT OF TEMPERATURE IN A NUCLEAR FUEL TYPE SAMPLE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112696A (en) * 1973-02-24 1974-10-26
JPS5115485A (en) * 1974-07-30 1976-02-06 Nippon Steel Corp Ondobunpusokuteisochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112696A (en) * 1973-02-24 1974-10-26
JPS5115485A (en) * 1974-07-30 1976-02-06 Nippon Steel Corp Ondobunpusokuteisochi

Also Published As

Publication number Publication date
JPS57142525A (en) 1982-09-03

Similar Documents

Publication Publication Date Title
CN107655940B (en) Transformer winding material detection equipment and system
CN102183544A (en) Thermal-property transient measurement method and device
CN111947882A (en) Transient heat flow sensor and testing method thereof
JPH0323853B2 (en)
CN107655941B (en) Transformer winding material detection method
JPH08271396A (en) High-temperature damage durability evaluating method and device
TWI500903B (en) Measurement module for wall thickness of pipe and measurement method of wall thickness using the same
CN106650153A (en) Life prediction method of electric propulsion hollow cathode under heating wire failure condition
Langmuir et al. The heat conductivity of tungsten and the cooling effects of leads upon filaments at low temperatures
US4804935A (en) Sensor for measurement by electrical heating and method for manufacture of the same
Clark et al. End‐Cooling of Power Tube Filaments
US3546654A (en) Electrical resistance elements and method of making
JP3670167B2 (en) Equipment for measuring thermal conductivity of fine single wires
KR101715174B1 (en) Apparatus for measuring thermal conductivity using hot-wire
JPS5879102A (en) Method for inspecting amount of eccentricity of nichrome wire in electric heater
SU570825A1 (en) Device for investigating thermal conductivity on liquids and gases
CN108332882B (en) Verification system of furnace temperature tracker
Mageed et al. Establishment and characterization of a traceable AC voltage source at NIS, Egypt
CN117875051A (en) Composite insulator interface defect temperature characteristic calculation method based on infrared thermal inversion
RU2170960C1 (en) Method for serviceability check of fuel-element simulator
Shulzhenko et al. Calculated features for a woven heater with carbon current-conducting filaments
JPS63122972A (en) Method of heat stability test for bushing
DE19808415A1 (en) Method for infrared optical testing of district heating pipework after local thermal pulse stimulation
SU978388A1 (en) Method of quality control of tubular heater sealing
PASCAUDc et al. A benchmark-based approach for the validation of eddy current simulation codes in support of nuclear power plants inspection