JPH032383B2 - - Google Patents

Info

Publication number
JPH032383B2
JPH032383B2 JP14724683A JP14724683A JPH032383B2 JP H032383 B2 JPH032383 B2 JP H032383B2 JP 14724683 A JP14724683 A JP 14724683A JP 14724683 A JP14724683 A JP 14724683A JP H032383 B2 JPH032383 B2 JP H032383B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
average fiber
potassium titanate
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14724683A
Other languages
Japanese (ja)
Other versions
JPS6038452A (en
Inventor
Akyoshi Kawaguchi
Yosaburo Tsujikawa
Takio Tasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP14724683A priority Critical patent/JPS6038452A/en
Publication of JPS6038452A publication Critical patent/JPS6038452A/en
Publication of JPH032383B2 publication Critical patent/JPH032383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフツ化ビニリデン系樹脂にチタン酸カ
リウム繊維を添加することにより該樹脂が本来有
している特性を損うことなく新たに他の優れた性
質が賦与されたフツ化ビニリデン系樹脂組成物に
関する。 ポリフツ化ビニリデン(以下、PVDFという)
などのフツ化ビニリデン系樹脂はポリテトラフル
オロエチレンなどの他のフツ素樹脂と同様に耐薬
品性、耐候性、耐油性、耐放射線性などにおいて
非常に優れた性質を有し、さらに引張強度または
耐クリープ性などの機械的性質に関してはフツ素
樹脂のなかで最も優れているため、パイプ、ガス
ケツト、パツキングまたは塗料などの工業材料と
して使用されている。 しかしながら成形性に関してはポリテトラフル
オロエチレンなどと比較して非常に容易である反
面、一般の熱可塑性樹脂と比較したばあい成形収
縮率が大きいこと、耐熱性が必ずしも充分とはい
えないこと、さらには構造材料として使用するに
はいまだ機械的強度が満足のいくレベルにないこ
となどの理由により、実際にはその利用分野が限
られたものとなつているのが現状である。 従来よりかかる問題を解決すべく種々検討がな
されてきており、繊維長0.1〜5mmの炭素繊維ま
たは黒鉛繊維を30%(重量%、以下同様)以下の
範囲内で添加することによつてのみ、耐熱性の向
上、成形収縮率の改善および機械的性質の強化が
みられることが判明している。 しかしながら、前記炭素繊維または黒鉛繊維の
添加による機械的性質の改良効果は充分でなく、
引張強度および曲げ強度において無充填のばあい
の高々、1.5倍、炭素繊維または黒鉛繊維の添加
効果の特長である曲げ弾性率においても高々2.5
倍にとどまる。さらに炭素繊維または黒鉛繊維は
平均繊維径が7〜12μm、平均繊維長が100μm以
上と比較的長い繊維状物であるため、成形時に配
向して成形収縮率に異方性を生じやすく、したが
つて強度的にも異方性を生じ、複雑な形状の製品
ではほとんど強化されない部分が発生して所期の
製品がえられないという大きな問題を抱えてい
る。 本発明者らは叙上の実情に鑑み、鋭意検討を重
ねた結果、炭素繊維または黒鉛繊維よりもそのサ
イズにおいて1桁以上も小さなチタン酸カリウム
繊維を用いることにより、上記諸問題を全て解決
しうることを見出し、本発明に到達した。 すなわち本発明は、フツ化ビニリデン系樹脂に
チタン酸カリウム繊維を5〜40%添加したことを
特徴とするフツ化ビニリデン系樹脂組成物に関す
る。 本発明に使用しうるフツ化ビニリデン系樹脂と
は、フツ化ビニリデンモノマーを懸濁重合、乳化
重合、溶液重合またはそのほかのあらゆる方法で
製造することによつてえられたフツ化ビニリデン
ホモポリマーのみならず、本質的にはかかるホモ
ポリマーと同等の特性を有するフツ化ビニリデン
成分を90モル%以上含有するフツ化ビニリデンコ
ポリマーをもまた指すものである。かかるコポリ
マーのばあいフツ化ビニリデンモノマーと共重合
可能なモノマーとしては、たとえば4フツ化エチ
レン、6フツ化プロピレン、1塩化3フツ化エチ
レンおよびフツ化ビニルなどがある。 フツ化ビニリデン系樹脂の重合度は固有粘度
ηinhで表示して約0.5〜2.0、なかんづく0.8〜1.5
のものであることが好ましい。ここにおいて述べ
るηinhは式: ηinh=1/Cln〔η/ηo〕 (式中、cはポリマーのジメチルホルムアミド溶
液の濃度(0.4g/dl)、ηはポリマーのジメチル
ホルムアミド溶液の粘度およびηoはジメチルホ
ルムアミド単独の粘度を表わし、それぞれ30℃で
測定された値である)で示される値である。 前記ηinhが0.5未満であると、フツ化ビニリデ
ン系樹脂の機械的物性が低くなり、逆に2.0を超
えると溶融粘度が高くなりすぎて成形加工性に問
題が生じ、いずれも好ましくない。 本発明に使用しうるチタン酸カリウム繊維と
は、一般式: K2O・n(TiO2) または K2O・n(TiO2)・1/2H2O (式中、nは2〜8の整数を表わす)で示される
単結晶繊維を意味し、具体的にはたとえば4チタ
ン酸カリウム繊維、6チタン酸カリウム繊維、8
チタン酸カリウム繊維などの単独またはそれらの
混合物であつて、平均繊維径が0.1〜2μm、平均
繊維長が5〜100μmおよび平均繊維長/平均繊
維径(アスペクト比)が10〜200のものが好適に
使用される。 本明細書中でいうチタン酸カリウム繊維の平均
繊維径および平均繊維長は、それぞれ走査型電子
顕微鏡を用いて少なくとも5以上の視野数につい
て調べ、1視野あたり少なくとも10本以上の繊維
について測定された値の平均値であり、アスペク
ト比とはそのような繊維の平均繊維長を平均繊維
径で除した値を意味するものである。 チタン酸カリウム繊維の平均繊維径、平均繊維
長およびアスペクト比が前記範囲をはずれるばあ
い、たとえば平均繊維径が1μmよりも大で、平
均繊維長が5μmよりも小、すなわちアスペクト
比が5であつて10よりも小であるばあいは補強効
果が小さくなつて好ましくない。また平均繊維径
が0.1μm以下の超極細繊維または繊維長が100μm
よりも長い繊維は工業的に製造することが困難で
あり実用性に乏しい。 チタン酸カリウム繊維の配合量としては5〜40
%が適正である。5%未満では補強効果が乏しく
なり、一方40%を超えると充填量の割りに物性改
良効果が顕著でなくなるほか、溶融粘度が高くな
りすぎて成形性に問題が生じ、いずれも好ましく
ない。 本発明において使用されるチタン酸カリウム繊
維はフツ化ビニリデン系樹脂との接着性を高める
目的で、シラン系カツプリング剤、チタネート系
カツプリング剤、エポキシ樹脂、エポキシウレタ
ン樹脂などで表面処理されたものが好適に用いら
れる。またフツ化ビニリデン系樹脂と表面処理さ
れていないチタン酸カリウム繊維とを混合押出し
て樹脂組成物(ペレツト)を製造するときにシラ
ン系カツプリング剤などを添加する方法によつて
も、無処理のチタン酸カリウム繊維をそのまま使
用したばあいより物性改良効果がさらに大きくな
る傾向がみられる。 本発明の樹脂組成物の製法としては種々の方法
が適用でき、たとえば (1) フツ化ビニリデンモノマーなどを重合せしめ
る当初からチタン酸カリウム繊維を配合してお
く方法、 (2) 重合またはポリマー取出し途中においてチタ
ン酸カリウム繊維を配合する方法、 (3) 重合、取出しおよび乾燥が終了したフツ化ビ
ニリデン系樹脂をペレツト化する段階でチタン
酸カリウム繊維を押出機などを用いて該樹脂に
混練し、押出したのち、水冷およびカツテイン
グしてペレツト化する方法 などが適用可能であり、とくに(3)の方法が最も実
用的である。 また本発明における改良効果に支障を及ぼさな
い範囲内で本発明の樹脂組成物に、Ca、Ba、
Zn、Mgなどの水酸化物、炭酸塩などの熱安定
剤、テレフタル酸、カオリン、タルク、珪藻土な
どの結晶性改良剤(結晶核剤)、トリプロパルギ
ルシアヌレートなどの架橋剤などの添加剤を目的
に応じて適宜添加してもよい。 本発明の樹脂組成物は従来公知の炭素繊維強化
品のばあいと比較して繊維サイズがおよそ1/10〜
1/100のミクロな繊維材料であるチタン酸カリウ
ム繊維を強化材料として用いるのにもかかわら
ず、機械的性質の改良効果が前記炭素強化品より
も大きいことは他のプラスチツク材料には認めら
れない特異的な現象である。しかもミクロ繊維充
填における特長である成形時の配向性(成形収縮
率の異方性)が小さいこと、寸法精度が大幅に向
上すること、複雑な形状の部品または非常に小型
で薄肉な部品の成形が可能となることおよび従来
の炭素繊維強化品と比較して表面平滑性、光沢性
が良好で製品外観が非常に優れることなど、その
実用的価値は極めて大きく、従来利用できなかつ
た応用分野(ギア、軸受などの機械部品、小型歯
車などの精密部品、ロールなどの面精度を要求さ
れる摺動部品など)、さらには従来から使用され
ているライニング用シートやライニング用粉末コ
ーテイングなどの分野への適用が可能であり、上
記物性の改良効果が期待できる。 以下、本発明を実施例に基づいてさらに詳しく
説明するが、本発明はかかる実施例のみに限定さ
れるものではない。 実施例1〜5および比較例1 PVDF粉末(商品名、KFポリマー#1000、呉
羽化学工業(株)製、ηinh=1.00)にエポキシシラン
処理を施した平均繊維径0.3μm、平均繊維長15μ
mのチタン酸カリウム繊維(商品名、テイスモー
D102、大塚化学薬品(株)製)をそれぞれ第1表に
示すように5〜40%の範囲で添加したものおよび
比較のため添加しなかつたものを用いて45mm単軸
押出機にて230℃の温度で溶融混練したのち水冷
してそれぞれペレツト化した。 ついで、えられたペレツトを用いて射出温度
220℃、金型温度90℃および射出圧力800Kg/cm2
条件で射出成形を行ない、それぞれ下記の試験片
を作成したのち該試験片を用いて以下に示す物性
を測定した。結果をまとめて第1表に示す。 (1) 引張り強さ:JIS K7113 1号試験片(4mm
厚)、チヤツク間距離100mm、試験速度10mm/分 (2) 曲げ強さおよび曲げ弾性率:JIS K7203(長
さ185mm、幅10mm、高さ4mm)、支点間距離60
mm、試験速度5mm/分 (3) 成形収縮率および表面平滑性:長さ60mm、幅
50mm、高さ3mmのサイドゲート平板3枚のつい
てマイクロメーターにより成形収縮率を、肉眼
により表面平滑性をそれぞれ判定した。
The present invention is a vinylidene fluoride resin composition that is newly endowed with other excellent properties by adding potassium titanate fibers to the vinylidene fluoride resin without impairing the inherent properties of the resin. Regarding. Polyvinylidene fluoride (hereinafter referred to as PVDF)
Like other fluororesins such as polytetrafluoroethylene, vinylidene fluoride resins have excellent properties such as chemical resistance, weather resistance, oil resistance, and radiation resistance. Since it has the best mechanical properties such as creep resistance among fluororesins, it is used as an industrial material for pipes, gaskets, packing, paints, etc. However, in terms of moldability, although it is very easy compared to polytetrafluoroethylene etc., it has a high molding shrinkage rate when compared to general thermoplastic resins, and its heat resistance is not necessarily sufficient. At present, the field of use is actually limited for reasons such as the fact that the mechanical strength is still not at a satisfactory level for use as a structural material. Various studies have been carried out in the past to solve this problem, and only by adding carbon fiber or graphite fiber with a fiber length of 0.1 to 5 mm within a range of 30% (weight %, the same hereinafter) or less. It has been found that heat resistance is improved, molding shrinkage is improved, and mechanical properties are strengthened. However, the effect of improving mechanical properties by adding carbon fiber or graphite fiber is not sufficient;
The tensile strength and flexural strength are at most 1.5 times that of the unfilled case, and the flexural modulus, which is a feature of the effect of adding carbon fiber or graphite fiber, is at most 2.5.
Stay double. Furthermore, since carbon fibers or graphite fibers are relatively long fibrous materials with an average fiber diameter of 7 to 12 μm and an average fiber length of 100 μm or more, they tend to become oriented during molding and cause anisotropy in mold shrinkage. As a result, anisotropy occurs in terms of strength, and in products with complex shapes, there are parts that are hardly reinforced, resulting in a major problem in that the desired product cannot be obtained. In view of the above-mentioned circumstances, the inventors of the present invention have made extensive studies and have solved all of the above problems by using potassium titanate fibers, which are more than an order of magnitude smaller in size than carbon fibers or graphite fibers. The inventors have discovered that the present invention can be achieved. That is, the present invention relates to a vinylidene fluoride resin composition characterized in that 5 to 40% of potassium titanate fibers are added to the vinylidene fluoride resin. Vinylidene fluoride resins that can be used in the present invention include only vinylidene fluoride homopolymers obtained by producing vinylidene fluoride monomers by suspension polymerization, emulsion polymerization, solution polymerization, or any other method. First, it also refers to a vinylidene fluoride copolymer containing 90 mol% or more of a vinylidene fluoride component that has essentially the same properties as such a homopolymer. In the case of such a copolymer, monomers copolymerizable with the vinylidene fluoride monomer include, for example, ethylene tetrafluoride, propylene hexafluoride, ethylene monochloride trifluoride, and vinyl fluoride. The degree of polymerization of vinylidene fluoride resin is expressed as intrinsic viscosity ηinh, which is approximately 0.5 to 2.0, especially 0.8 to 1.5.
Preferably. ηinh described here is expressed by the formula: ηinh=1/Cln [η/ηo] (where c is the concentration of the polymer dimethylformamide solution (0.4 g/dl), η is the viscosity of the polymer dimethylformamide solution, and ηo is dimethyl These values represent the viscosity of formamide alone, and are measured at 30°C. If the ηinh is less than 0.5, the mechanical properties of the vinylidene fluoride resin will be low, while if it exceeds 2.0, the melt viscosity will be too high, causing problems in moldability, both of which are unfavorable. The potassium titanate fiber that can be used in the present invention has the general formula: K 2 O.n (TiO 2 ) or K 2 O.n (TiO 2 ).1/2H 2 O (wherein, n is 2 to 8 represents an integer of ), specifically, for example, potassium 4 titanate fiber, potassium 6 titanate fiber, 8
Potassium titanate fiber alone or a mixture thereof, with an average fiber diameter of 0.1 to 2 μm, an average fiber length of 5 to 100 μm, and an average fiber length/average fiber diameter (aspect ratio) of 10 to 200 is preferable. used for. The average fiber diameter and average fiber length of the potassium titanate fibers referred to herein were measured using a scanning electron microscope for at least 5 or more fields of view, and measured for at least 10 or more fibers per field of view. The aspect ratio is the average fiber length of such fibers divided by the average fiber diameter. If the average fiber diameter, average fiber length, and aspect ratio of the potassium titanate fibers are outside the above ranges, for example, the average fiber diameter is larger than 1 μm and the average fiber length is smaller than 5 μm, that is, the aspect ratio is 5. If it is smaller than 10, the reinforcing effect will be reduced, which is not preferable. In addition, ultra-fine fibers with an average fiber diameter of 0.1 μm or less or fiber length of 100 μm
It is difficult to industrially produce fibers longer than this, and they are impractical. The amount of potassium titanate fiber is 5 to 40.
% is appropriate. If it is less than 5%, the reinforcing effect will be poor, while if it exceeds 40%, the effect of improving physical properties will not be significant considering the amount filled, and the melt viscosity will become too high, causing problems in moldability, both of which are unfavorable. The potassium titanate fibers used in the present invention are preferably surface-treated with a silane coupling agent, a titanate coupling agent, an epoxy resin, an epoxy urethane resin, etc. in order to improve adhesion to the vinylidene fluoride resin. used for. Furthermore, untreated titanium fluoride resin and untreated potassium titanate fibers can be mixed and extruded to produce a resin composition (pellet) by adding a silane coupling agent. There is a tendency for the effect of improving physical properties to be even greater than when the potassium acid fibers are used as they are. Various methods can be applied to the production of the resin composition of the present invention, including (1) a method in which potassium titanate fibers are blended from the beginning of polymerizing vinylidene fluoride monomer, and (2) a method in which potassium titanate fibers are blended during polymerization or polymer removal. (3) At the step of pelletizing vinylidene fluoride resin after polymerization, extraction, and drying, potassium titanate fiber is kneaded with the resin using an extruder or the like, and extrusion is carried out. After that, methods such as water cooling and cutting to form pellets can be applied, and method (3) is particularly the most practical. In addition, Ca, Ba,
Additives such as hydroxides such as Zn and Mg, heat stabilizers such as carbonates, crystallinity improvers (crystal nucleating agents) such as terephthalic acid, kaolin, talc, and diatomaceous earth, and crosslinking agents such as tripropargyl cyanurate. It may be added as appropriate depending on the purpose. The resin composition of the present invention has a fiber size of approximately 1/10 to 1/10 of that of conventionally known carbon fiber reinforced products.
Despite using potassium titanate fiber, which is a 1/100 micro fiber material, as a reinforcing material, no other plastic material has been found to have a greater effect on improving mechanical properties than the carbon reinforced product. This is a unique phenomenon. Moreover, the characteristics of microfiber filling are that the orientation during molding (anisotropy of molding shrinkage rate) is small, the dimensional accuracy is greatly improved, and the molding of parts with complex shapes or extremely small and thin walls is possible. Its practical value is extremely great, as it enables the use of carbon fiber-reinforced products, has better surface smoothness and gloss, and has an extremely superior product appearance compared to conventional carbon fiber-reinforced products. Mechanical parts such as gears and bearings, precision parts such as small gears, sliding parts that require surface precision such as rolls, etc.), as well as traditionally used lining sheets and lining powder coatings. can be applied, and the effect of improving the above-mentioned physical properties can be expected. Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples. Examples 1 to 5 and Comparative Example 1 PVDF powder (trade name, KF Polymer #1000, manufactured by Kureha Chemical Industry Co., Ltd., ηinh = 1.00) was treated with epoxy silane, with an average fiber diameter of 0.3 μm and an average fiber length of 15 μm.
m potassium titanate fiber (product name, Teismo)
D102 (manufactured by Otsuka Chemical Co., Ltd.) was added in a range of 5 to 40% as shown in Table 1, and for comparison, it was not added. The mixture was melted and kneaded at a temperature of 100 ml, and then cooled with water to form pellets. Then, using the pellets obtained, the injection temperature is
Injection molding was carried out under the conditions of 220° C., mold temperature 90° C., and injection pressure 800 Kg/cm 2 to prepare the following test pieces. The test pieces were used to measure the physical properties shown below. The results are summarized in Table 1. (1) Tensile strength: JIS K7113 No. 1 test piece (4mm
Thickness), chuck distance 100mm, test speed 10mm/min (2) Bending strength and bending modulus: JIS K7203 (length 185mm, width 10mm, height 4mm), distance between fulcrums 60
mm, test speed 5 mm/min (3) Mold shrinkage rate and surface smoothness: length 60 mm, width
The molding shrinkage rate was determined using a micrometer using three side gate flat plates of 50 mm and height 3 mm, and the surface smoothness was determined by the naked eye.

【表】【table】

【表】 第1表より、チタン酸カリウム繊維の充填効果
としては5〜40%において明確に表われており、
40%ではもはやそれを超えて配合しても大幅な物
性の改良は困難であることがわかる。 比較例 2〜5 チタン酸カリウム繊維に代えて平均繊維径
12.5μm、平均繊維長3mmの炭素繊維(商品名、
クレカチヨツプC−103、呉羽化学工業(株)製)を
用い、該炭素繊維を第2表に示すように5〜30%
の範囲でそれぞれ添加したほかは実施例1〜5と
同様にして樹脂組成物、ついで試験片を作製し各
種物性を測定した。結果を第2表に示す。
[Table] From Table 1, the filling effect of potassium titanate fibers is clearly visible at 5 to 40%.
It can be seen that at 40%, it is difficult to significantly improve the physical properties even if the content exceeds this amount. Comparative Examples 2 to 5 Average fiber diameter instead of potassium titanate fiber
Carbon fiber (product name,
5 to 30% of the carbon fiber as shown in Table 2.
Resin compositions and test pieces were prepared in the same manner as in Examples 1 to 5, except that each of these resins was added in the following ranges, and various physical properties were measured. The results are shown in Table 2.

【表】 第1表および第2表の測定結果を比較すると、
従来物性改良効果が大きいとされていた炭素繊維
充填品よりも本発明の樹脂組成物の方が物性改良
効果が大きく、しかも成形収縮率の異方性が顕著
に低下しているのがわかり、金型設計が容易であ
ること、かつえられる成形品の内部歪みの小さい
ことなどの有用な効果が現われる。
[Table] Comparing the measurement results in Tables 1 and 2,
It was found that the resin composition of the present invention has a greater effect on improving physical properties than the carbon fiber filled product, which was conventionally thought to have a large effect on improving physical properties, and the anisotropy of molding shrinkage rate is significantly reduced. Useful effects such as ease of mold design and small internal distortion of the molded product are obtained.

Claims (1)

【特許請求の範囲】 1 フツ化ビニリデン系樹脂にチタン酸カリウム
繊維を5〜40重量%添加したことを特徴とするフ
ツ化ビニリデン系樹脂組成物。 2 フツ化ビニリデン系樹脂が、フツ化ビニリデ
ン成分を90モル%以上含有し、固有粘度ηinhが
0.5〜2.0のフツ化ビニリデンホモポリマーまたは
コポリマーである特許請求の範囲第1項記載のフ
ツ化ビニリデン系樹脂組成物。 3 チタン酸カリウム繊維の平均繊維径が0.1〜
2μm、平均繊維長が5〜100μmおよび平均繊維
長/平均繊維径(アスペクト比)が10〜200であ
る特許請求の範囲第1項記載のフツ化ビニリデン
系樹脂組成物。
[Scope of Claims] 1. A vinylidene fluoride resin composition comprising 5 to 40% by weight of potassium titanate fibers added to a vinylidene fluoride resin. 2. The vinylidene fluoride resin contains 90 mol% or more of vinylidene fluoride component and has an intrinsic viscosity ηinh.
2. The vinylidene fluoride resin composition according to claim 1, which is a vinylidene fluoride homopolymer or copolymer of 0.5 to 2.0. 3. Average fiber diameter of potassium titanate fiber is 0.1~
2 μm, an average fiber length of 5 to 100 μm, and an average fiber length/average fiber diameter (aspect ratio) of 10 to 200.
JP14724683A 1983-08-10 1983-08-10 Vinylidene fluoride resin composition Granted JPS6038452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14724683A JPS6038452A (en) 1983-08-10 1983-08-10 Vinylidene fluoride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14724683A JPS6038452A (en) 1983-08-10 1983-08-10 Vinylidene fluoride resin composition

Publications (2)

Publication Number Publication Date
JPS6038452A JPS6038452A (en) 1985-02-28
JPH032383B2 true JPH032383B2 (en) 1991-01-14

Family

ID=15425882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14724683A Granted JPS6038452A (en) 1983-08-10 1983-08-10 Vinylidene fluoride resin composition

Country Status (1)

Country Link
JP (1) JPS6038452A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047048A (en) * 1983-08-23 1985-03-14 Toray Ind Inc Fluororesin composition and paper separating pawl composed of the same for use in duplicator
JPH0662888B2 (en) * 1987-05-15 1994-08-17 住友金属工業株式会社 High temperature antioxidant paint for steel
JP2867262B2 (en) * 1989-02-03 1999-03-08 エヌオーケー株式会社 Fluoro rubber composition
DE3941849A1 (en) * 1989-12-19 1991-06-20 Hoechst Ag METHOD FOR POWDER COATING WITH FLUORT THERMOPLASTICS
US6020417A (en) * 1997-01-24 2000-02-01 Ntn Corporation Sheet feed members for image forming devices

Also Published As

Publication number Publication date
JPS6038452A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
US4590234A (en) Melt-moldable fluorine-containing resin composition
JPS5846212B2 (en) polyethylene composition
JPH0548786B2 (en)
US6642317B1 (en) Composition based on propylene polymers and process for obtaining same
EP0122686A2 (en) Thermoplastic resin sheet-like material and its production
JPH032383B2 (en)
CN109438799B (en) Blended polyethylene resin suitable for hollow blow molding barrel with volume of more than 200L, and preparation method and application thereof
US3105827A (en) Extrudable blend of fluorinated polymer compositions and wire coated therewith
CN101759933A (en) Glassfiber reinforced polypropylene material without fiber exposion and manufacturing process thereof
JPH069824B2 (en) Process for making improved pellets from polymer with anisotropic melt phase forming and melt processability
JP3027386B2 (en) Polyarylene thioether resin composition and extruded product
CH523928A (en) Rigid vinyl chloride-ethylene copolymer
US5882787A (en) Semirigid poly-epsilon-caprolactone film and process for producing it
JPH05271352A (en) Preparation of melt-processable acrylonitrile/ methacrylonitrile copolymer
US5089209A (en) Method of extrusion blow-molding polyphenylene sulfide articles
KR100341868B1 (en) Unplasticised Polyvinyl- chloride with Impact modifier
KR102427613B1 (en) Polypropylene resin composition for 3D printer having isotropic shrinkage and high impact properties, manufacturing method of the same, and molded articles manufactured thereby
JPS6392660A (en) Ultra-high-molecular-weight polyethylene resin composition
JP3652399B2 (en) Extruded thick molded product and method for producing the same
US3644592A (en) Propylene polymer composition containing small amounts of urea phthalic anhydride and pvc
JP3120811B2 (en) Polyacetal resin composition
KR20240075273A (en) Polypropylene resin composition, manufacturing method for same and article comprising same
US3346548A (en) Extrusion of polyolefins
Titow PVC Polymers
KR20000055222A (en) styrene thermoplastic resin compositions with good impact at low-temperature and good extrusion stability