JPH03237465A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPH03237465A
JPH03237465A JP2034359A JP3435990A JPH03237465A JP H03237465 A JPH03237465 A JP H03237465A JP 2034359 A JP2034359 A JP 2034359A JP 3435990 A JP3435990 A JP 3435990A JP H03237465 A JPH03237465 A JP H03237465A
Authority
JP
Japan
Prior art keywords
image
carrier
development
developer
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2034359A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oda
康弘 織田
Tomomi Honma
本間 知美
Yoshihide Fujimaki
藤巻 義英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2034359A priority Critical patent/JPH03237465A/en
Priority to EP19900312847 priority patent/EP0430630A3/en
Publication of JPH03237465A publication Critical patent/JPH03237465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

PURPOSE:To lessen the degradation in image quality by repetitive use while substantially eliminating the influence of external environment by using a phthalocyanine pigment contg. many water molecules as the photoconductive material of the photosensitive layer of an image carrying member and applying alternately oscillating electric fields to a developing region while maintaining the photosensitive layer in a contactless state. CONSTITUTION:The phthalocyanine pigment is different in the flocculating state of pigment crystals from heretofore and further the many water molecules are incorporated therein in the number of molecules in the analysis of the gaseous adsorption components in a vacuum so that the pigment has the flocculating state in which the visual and near IR absorption spectra exhibit the max. absorption at 780 to 860nm. This pigment can exhibit a high-sensitivity characteristic to a semiconductor laser beam, etc. Development is executed by a contactless development method. The DC bias voltage and/or AC voltage is impressed to a developing sleeve 41 by a bias power source 52 and a developer layer past a developing area E is removed from the developing sleeve 41 by a cleaning blade 45 and is returned to a developer pool 43. The influence of the external environment is substantially eliminated in this way even in the contact developing system and the degradation in the image quality by the repetitive use at and under a high temp. and high humidity is obviated.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は画像形成方法に関し、例えば、像担持体である
感光体上に順次色の異なるトナー像を形成して多色像を
得る多色画像形成装置(カラーコピー)、即ちカラープ
リンタや電子写真複写機に好適な画像形成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image forming method, for example, a multicolor image forming method in which toner images of different colors are sequentially formed on a photoreceptor as an image carrier to obtain a multicolor image. The present invention relates to an image forming method suitable for an image forming apparatus (color copy), that is, a color printer or an electrophotographic copying machine.

[従来の技術1 従来の多色画像形成方法においては、感光体上の潜像を
現像するに際して採用される現像方式として、現像剤搬
送担体上に形成した現像剤層で像担持体を順環してトナ
ー粒子を潜像に付着させる磁気ブラシ現像法と、現像剤
層を像担持体に接触させない状態に保持して現像剤層か
らトナー粒子を飛翔させて潜像に付着させる非接触現像
法とがある。
[Prior art 1] In the conventional multicolor image forming method, the development method employed to develop the latent image on the photoreceptor is to sequentially rotate the image carrier with a developer layer formed on a developer transport carrier. magnetic brush development method, in which toner particles are attached to the latent image using a magnetic brush, and non-contact development method, in which the developer layer is held in a state where it does not come into contact with the image carrier, and toner particles are caused to fly from the developer layer and adhere to the latent image. There is.

磁気ブラシ現像法においては、現像に供されない現像装
置の磁気ブラシが既に感光体上に形成されたトナー像を
掻き取ってしまうので、画像が劣化し易いとともに、現
像装置に別種のトナーが混入し易い。更にカブリも生じ
やすい。このため、磁気ブラシ現像法では、現像に供さ
れない現像装置の磁気ブラシを現像剤搬送担体から除く
か、或いは像形成体に接触しないようにする必要がある
In the magnetic brush development method, the magnetic brush of the developing device that is not used for development scrapes off the toner image already formed on the photoreceptor, which not only tends to deteriorate the image but also allows other types of toner to get mixed into the developing device. easy. Furthermore, fogging is likely to occur. Therefore, in the magnetic brush development method, it is necessary to remove the magnetic brush of the developing device that is not used for development from the developer transport carrier, or to prevent it from coming into contact with the image forming body.

非接触現像法においては、例えば特開昭55−1865
6号公報に示されているように、非接触の現像剤層から
トナー粒子を飛翔させて像担持体の潜像に十分付着させ
るために、現像剤搬送担体に交番の振動電界(交流電圧
)が印加される。このような非接触現像法は、磁気ブラ
シ現像法の場合のようにトナー像が掻き取られることは
なく、しかも非画像部にトナーが付着するいわゆるカブ
リも防止することができる(特公昭41−9475号公
報に記載のジャンピング現像法参照)。
In the non-contact development method, for example, Japanese Patent Application Laid-Open No. 55-1865
As disclosed in Publication No. 6, an alternating oscillating electric field (AC voltage) is applied to the developer transport carrier in order to cause toner particles to fly from the non-contact developer layer and adhere to the latent image on the image carrier. is applied. In such a non-contact development method, the toner image is not scraped off unlike in the case of the magnetic brush development method, and it is also possible to prevent so-called fogging, in which toner adheres to non-image areas. (See the jumping development method described in Japanese Patent No. 9475).

[弁明が解決しようとする課題1 しかじな7)鷲ら、非接触現像法、特にジトンビング現
像法(J、外部環境の影響を受(tやすく、特に高温高
湿条件下における感光体の繰り返し使用により、また繰
り返し使用による1〜ナーの飛散等に起因するコロナ電
極の帯電能力の低下により、画質の低下、特に解像力の
低下や地力ブリの弁士等が顕著となるという問題を有し
ていた。
[Issues that the defense aims to solve 1 Shikajina 7] Washi et al., non-contact development method, especially ditonbing development method (J, susceptible to the influence of external environment (t), especially under high temperature and high humidity conditions, the photoreceptor is repeatedly used) Due to use and repeated use, the charging ability of the corona electrode decreases due to scattering of particles, etc., resulting in a decrease in image quality, and in particular, a decrease in resolution and the appearance of blurred images become noticeable. .

従って、本発明の目的は非接触式現像においても外部環
境の影響を受けにくく、かつ高温高湿下における繰り返
し使用による画質の低下を改良する画像形成方で去を捉
供することにある。
Therefore, an object of the present invention is to provide an image forming method that is less susceptible to the influence of the external environment even in non-contact development and that improves the deterioration in image quality due to repeated use under high temperature and high humidity conditions.

[課題を解決するための手段] 本発明者等は前記問題点に鑑みて、i52愈研究の結果
、本発明の上記目的は、帯電及び(!J!露光によって
像担持体上に静電潜像を形成し、この静電潜像を可視像
化する画像形成方法において、前記像担持体の感光層の
光導電性物質として、真空中での吸着ガス成分分析によ
る吸着ガス成分中、分子数で水分子を最も多く含むフタ
ロシアニン顔v1を用い、かつ、前記静電潜像の可視像
化のための現像に際して、前記像担持体とこれに対する
現像剤搬送担体とを非接触状態に保持しながら現像領域
に交番の振動電界を付与することを特徴とする画像形成
方法により達成されることを見出した。
[Means for Solving the Problems] In view of the above-mentioned problems, the present inventors have found, as a result of i52 Yu research, that the above-mentioned object of the present invention is to reduce the electrostatic potential on an image bearing member by charging and (!J! exposure). In an image forming method in which an image is formed and this electrostatic latent image is visualized, the photoconductive material of the photosensitive layer of the image bearing member is a molecule in the adsorbed gas component determined by an adsorbed gas component analysis in vacuum. A phthalocyanine face v1 containing the largest number of water molecules is used, and the image carrier and the developer transporting carrier therefor are kept in a non-contact state during development for visualizing the electrostatic latent image. However, it has been found that this can be achieved by an image forming method characterized by applying an alternating oscillating electric field to the developing area.

以下に、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明に係るフタロシアニン顔料は、従来公知のフタロ
シアニン顔料とは顔料結晶の凝集状態が異なり、さらに
真空中での吸着ガス成分分析において分子数で水分子が
最も多く含まれているという特徴を有しており、可視及
び近赤外の吸収スペクトルが780nm〜860nmに
最大吸収を示す凝集状態を有し、半導体レーザー光等に
対して極めて高5i居な特性を発揮しうるちのである。
The phthalocyanine pigment according to the present invention is different from conventionally known phthalocyanine pigments in the agglomeration state of pigment crystals, and furthermore, it has the characteristic that water molecules are contained in the largest number of molecules in the adsorbed gas component analysis in vacuum. It has an agglomerated state in which the visible and near-infrared absorption spectra exhibit maximum absorption in the range of 780 nm to 860 nm, and exhibits extremely high 5i properties for semiconductor laser light and the like.

本発明において、上記フタロシアニン顔料の吸着ガス成
分分析は以下の方法で行なわれたちのく以下同様〉であ
る。
In the present invention, the adsorbed gas component analysis of the phthalocyanine pigment is carried out by the following method.

フタロシアニン顔料o、 sgを大気下湿度60%の条
件にて内容積3.0cm3のガラス管に封入したアンプ
ルを測定室に装着し、1tlll定空中の真空度を2 
X 10−8Torrとしてアンプルの破断を行ない、
四m&n堡分析管にてアンプル中より放出されるガスの
分子量を測定して成分分析を行なう。
An ampoule containing phthalocyanine pigments o and sg sealed in a glass tube with an internal volume of 3.0 cm3 under atmospheric humidity conditions of 60% was installed in the measurement chamber, and the degree of vacuum in a constant atmosphere of 1tll was set to 2.
Breaking the ampoule at X 10-8 Torr,
Component analysis is performed by measuring the molecular weight of the gas released from the ampoule using a four-m&n-bar analysis tube.

この成分分析の結果、フタロシアニン顔料からは、水、
水素、窒素、酸素、二酸化炭素等の各分子が検出される
が、本発明に係るフタロシアニン顔料は水分子が最も多
く含まれていることが特徴である。
As a result of this component analysis, the phthalocyanine pigment contains water,
Although various molecules such as hydrogen, nitrogen, oxygen, and carbon dioxide are detected, the phthalocyanine pigment according to the present invention is characterized by containing the largest amount of water molecules.

また、本発明に係るフタロシアニン顔料は示差熱分析に
おいて80℃から 120℃の間に吸熱ピークを有する
ことが感度、繰り返し特性の点から好ましい。
Further, it is preferable that the phthalocyanine pigment according to the present invention has an endothermic peak between 80° C. and 120° C. in differential thermal analysis from the viewpoint of sensitivity and repeatability.

ここで、上記示差熱分析は、フタロシアニン顔料10+
11(lを大気下湿度60%、昇温速度毎分10℃の条
件にて行ない、上記吸熱ピークは半値幅30度以上の吸
熱ピークをいう。
Here, the above differential thermal analysis shows that the phthalocyanine pigment 10+
11 (1) was carried out under the conditions of atmospheric humidity of 60% and temperature increase rate of 10° C. per minute, and the endothermic peak mentioned above refers to an endothermic peak with a half-width of 30 degrees or more.

本発明に係るフタロシアニン顔料としては具体的には無
金属フタロシアニン、チタニルフタロシアニン、バナジ
ルフタロシアニン、鉛フタロシアニン、クロルインジウ
ムフタロシアニン、錫フタロシアニン等が挙げられるが
、これらに限定されるものではない。本発明においては
チタニルフクロシアニン顔料及びバナジルフタロシアニ
ン顔料を好ましく用いることができる。特に好ましくは
、Cu−にα線に対するX線回折スペクトルが、ブラッ
グ角2θの95°± 0.2°、 27.2°±02゜
にビークを持つチクニルフタロシアニン顔料である。
Specific examples of the phthalocyanine pigment according to the present invention include, but are not limited to, metal-free phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, lead phthalocyanine, chlorindium phthalocyanine, and tin phthalocyanine. In the present invention, titanyl fucrocyanine pigments and vanadyl phthalocyanine pigments can be preferably used. Particularly preferred is a chichnylphthalocyanine pigment whose X-ray diffraction spectrum for Cu-α rays has peaks at 95°±0.2° and 27.2°±02° of the Bragg angle 2θ.

本発明に用いられるチタニルフタロシアニン顔料の基本
構造は下記−形式で表される。
The basic structure of the titanyl phthalocyanine pigment used in the present invention is expressed in the following format.

式中、x+ 、X2 、X3及び×4はそれぞれ水素原
子、ハロゲン原子、アルキル基又はアルコキシ暴を表し
、n、m、Q及びkはそれぞれO〜4の整数を表す。
In the formula, x+, X2, X3 and x4 each represent a hydrogen atom, a halogen atom, an alkyl group or an alkoxy radical, and n, m, Q and k each represent an integer of O to 4.

本発明に用いられる前記チタニルフタロシアニンの製造
方法の1例を以下に説明する。すなわち、1.3−ジイ
ミノイソインドリンとスルホランを混合し、これにチタ
ニウムテトラプロポキシドを力0え、窒素雰聞気下に反
応させる。反応温度は80℃〜300°Cで、特に 1
00℃〜260 ”Cが好ましい。反応結了後、放冷し
た後析出物を認取し、チタニルフタロシアニンを得るこ
とができる。次にこれを温合溶媒処理することによって
、目的のチタニルフタロシアニンを得ることができるが
、処理に用いられる装置としては一般的なW!拌表装置
他に、ホモミキサ、ディスパーサ、アジター、或いはボ
ールミル、サンドミル、アトライタ等を用いることがで
きる。
An example of the method for producing the titanyl phthalocyanine used in the present invention will be described below. That is, 1,3-diiminoisoindoline and sulfolane are mixed, titanium tetrapropoxide is added to the mixture, and the mixture is reacted in a nitrogen atmosphere. The reaction temperature is 80°C to 300°C, especially 1
A temperature of 00°C to 260"C is preferable. After completion of the reaction, the precipitate is observed after cooling and titanyl phthalocyanine can be obtained. Next, by treating this with a warm solvent, the desired titanyl phthalocyanine can be obtained. However, in addition to the general W! stirring table apparatus, a homomixer, a disperser, an agitator, a ball mill, a sand mill, an attritor, etc. can be used for the treatment.

本発明においては、キャリア発生物質として本発明に係
る上記フタロシアニン顔料の他に、本発明の効果を損わ
ない範囲で他のキャリア発生物質を併用してもよい。併
用可能なキャリア発生物質としては、本発明に係るフタ
ロシアニンとは結晶型において異なる、例えばα型、β
型、α、β混合型、アモルファス型等のチタニルフタロ
シアニンをはじめ、アゾ顔料、アントラキノン顔料、ペ
リレン顔料、多環キノン顔料、スクェアリウム顔料等が
挙げられる。
In the present invention, in addition to the above-mentioned phthalocyanine pigment according to the present invention, other carrier-generating substances may be used in combination as a carrier-generating substance within a range that does not impair the effects of the present invention. Carrier generating substances that can be used in combination include those that differ in crystal form from the phthalocyanine according to the present invention, such as α type and β type.
Examples include titanyl phthalocyanine of type, α, β mixed type, and amorphous type, as well as azo pigments, anthraquinone pigments, perylene pigments, polycyclic quinone pigments, and squareium pigments.

本発明において像担持体、すなわち感光体を作製するに
は、例えば、溶媒にバインダー樹脂を溶解した溶液中に
本発明に係る前記フタロシアニン顔料を混合分散し、か
つこれに後述するキャリア輸送物質を溶解してなる塗布
液を、必要に応じて予め中間層(下引層)を設けた導電
性支持体上に例えばデイツプコーティング、スプレーコ
ーティング、スパイラルコーティング等の方法により塗
布加工する。このような方法により第4図又は第5図の
!i居構成の感光体が得られる。なお、図中の71+@
導電性支持体、74″は単層構成の感光層、75は中間
層をボす。
In order to produce an image bearing member, that is, a photoreceptor in the present invention, for example, the phthalocyanine pigment according to the present invention is mixed and dispersed in a solution in which a binder resin is dissolved in a solvent, and the carrier transport substance described below is dissolved therein. The resulting coating solution is coated onto a conductive support provided with an intermediate layer (subbing layer) in advance, if necessary, by a method such as dip coating, spray coating, or spiral coating. By such a method, the figure 4 or 5! A photoconductor having an i-containing configuration is obtained. In addition, 71+@ in the diagram
The conductive support, 74'' is a single-layer photosensitive layer, and 75 is an intermediate layer.

しかしaがら、高感度特性及び高耐久性の感光体をi′
7る上から、機能分離型の第6図乃至第9図の績層構成
の感光体とするのが好ましい。この場合、バインダー樹
脂を溶解した溶液中に前記顔料8混合分散してなる♂重
液を、必要に応じて前記中間層75を有する導電性支持
体71上に塗布してキ)・リア発生層72を形成した後
、該キャリア発生層72上にキャリア輸送物質を含む塗
布液を塗布加工してキャリア輸送層73を積層して、2
鴨構成の感光層74(第6図、第8図)、もしくはこれ
とは逆層構成の感光層74′ (第7図、第9図)を形
成する。以下、二層構成の感光層を有する感光体を中心
として説明する。
However, a photoreceptor with high sensitivity and high durability is
From the above, it is preferable to use a functionally separated type photoreceptor having the layer structure shown in FIGS. 6 to 9. In this case, a female heavy liquid prepared by mixing and dispersing the pigment 8 in a solution in which a binder resin is dissolved is coated on the conductive support 71 having the intermediate layer 75 as necessary. After forming 72, a coating liquid containing a carrier transporting substance is applied onto the carrier generation layer 72 to form a carrier transporting layer 73.
A photosensitive layer 74 (FIGS. 6 and 8) having a duck structure or a photosensitive layer 74' (FIGS. 7 and 9) having a layer structure opposite thereto is formed. The following description will focus on a photoreceptor having a two-layered photosensitive layer.

二層構成の感光層を形成する場合におけるキャリア発生
層72及びキャリア輸送層73は、次のごとき方法によ
って設けることができる。
In the case of forming a two-layered photosensitive layer, the carrier generation layer 72 and the carrier transport layer 73 can be provided by the following method.

(イ)キャリア発生物質、キトリア輸送物質を適当な溶
剤に夫々溶解した溶液或いはこれにバインダを加えて混
合溶解した溶液を塗布する方法。
(a) A method of applying a solution in which a carrier generating substance and a chitria transporting substance are respectively dissolved in a suitable solvent, or a solution in which a binder is added and mixed and dissolved.

(ロ)キャリア発生物質、キャリア輸送物質をボールミ
ル、ホモミキサー、超音波等によって夫々分散媒中で微
細粒子とし、必要に応じてバインダを加えて混合分散し
て得られる分散液を塗布する方法。
(b) A method in which a carrier-generating substance and a carrier-transporting substance are made into fine particles in a dispersion medium using a ball mill, a homomixer, an ultrasonic wave, etc., and a binder is added as necessary to mix and disperse the obtained dispersion, and the resulting dispersion is applied.

キャリア発生層及びキャリア輸送層の形成に使用される
溶剤或は分散媒どしては、ブチルアミン、N、N−ジメ
チルホルムアミド、アセトン、ブチルエチルケトン、シ
クロヘキザノン、ベンゼン、トルエン、キシレン、クロ
ロホルム、1,2−ジクロルエタン、ジクロルメタン、
テトラヒドロフラン、ジオキサン、メタノール、エタノ
ール、イソプロパツール、酢酸エチル、酢酸ブチル、ジ
メデルスルホキシド等を挙げることができる。キャリア
発生層若しくはキャリア輸送層の形成にバインダを用い
る場合、このバインダとしては任意のものを用いること
ができるが、特に疎水性でかつ誘電率が高い電気絶縁性
のフィルム形成能を有する高分子重合体が好ましい。こ
うした重合体としては、例えば下記のものを挙げること
ができるが、勿論これらに限定されるものではない。
Examples of the solvent or dispersion medium used for forming the carrier generation layer and the carrier transport layer include butylamine, N,N-dimethylformamide, acetone, butyl ethyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, 1 , 2-dichloroethane, dichloromethane,
Tetrahydrofuran, dioxane, methanol, ethanol, isopropanol, ethyl acetate, butyl acetate, dimedelsulfoxide and the like can be mentioned. When a binder is used to form the carrier generation layer or the carrier transport layer, any binder can be used, but particularly polymeric polymers that are hydrophobic, have a high dielectric constant, and have the ability to form an electrically insulating film are used. Combination is preferred. Examples of such polymers include, but are not limited to, the following.

1)ポリカーボネート 2)ポリエステル 3)メタクリル樹脂 4)アクリル樹脂 5)ポリ塩化ビニル 6)ポリ塩化ごニリデン 7)ポリスチレン 8)ポリビニルアセテート 9)スチレン−ブタジェン共重合体 10)塩化ビニリデンーアクリロニ1〜リル共重合体1
1)塩化ビニル−酢酸ビニル共重合体12)塩化ビニル
−酢酸ビニル−無水マレイン酸共重合体 13)シリコーン樹脂 14)シリコーン−アルキッド樹脂 15)フェノール−ホルムアルデヒド樹脂16〉スチレ
ン−アクリル共重合樹脂 17)スチレン−アルキッド樹脂 18)ポリ−N−ビニルカルバゾール 19)ポリビニルブチラール 20)ポリカーボネートZa1脂 これらのバインダは、単独或いは2種以上の混合物とし
て用いることができる。
1) Polycarbonate 2) Polyester 3) Methacrylic resin 4) Acrylic resin 5) Polyvinyl chloride 6) Polynylidene chloride 7) Polystyrene 8) Polyvinyl acetate 9) Styrene-butadiene copolymer 10) Vinylidene chloride-acryloni 1-lyl Copolymer 1
1) Vinyl chloride-vinyl acetate copolymer 12) Vinyl chloride-vinyl acetate-maleic anhydride copolymer 13) Silicone resin 14) Silicone-alkyd resin 15) Phenol-formaldehyde resin 16> Styrene-acrylic copolymer resin 17) Styrene-alkyd resin 18) Poly-N-vinyl carbazole 19) Polyvinyl butyral 20) Polycarbonate Za1 resin These binders can be used alone or in a mixture of two or more.

またバインダー樹脂に対するキャリア発生物質の割合は
好ましくは10〜600重出%、更に好ましくは50〜
400重量%とされる。
The ratio of the carrier generating substance to the binder resin is preferably 10 to 600%, more preferably 50 to 600%.
It is assumed to be 400% by weight.

このようにして形成される4−ヤリア発生居72の厚さ
は0.01〜20μmであることが好ましいが、更に好
ましくは0.05〜5μmである。
It is preferable that the thickness of the 4-Yaria generation chamber 72 formed in this way is 0.01 to 20 μm, and more preferably 0.05 to 5 μm.

上記キャリア発生物質を分散せしめてキャリア発生層7
2を形成する場合においては、当該キャリア発生物質は
2μm以下、好ましくは1μm以下の平均粒径の粉粒体
とされるのが好ましい。即ち、粒径が余り大きいと、層
中への分散が悪くなるとともに、粒子が表面に一部突出
して表面の平滑性が悪くなり、場合によっては粒子の突
出部分で放電が生じたり、あるいはそこにトナー粒子が
付着してトナーフィルミング現象が生じ易い。
The carrier generating layer 7 is made by dispersing the carrier generating substance.
2, the carrier-generating substance is preferably in the form of powder having an average particle size of 2 μm or less, preferably 1 μm or less. In other words, if the particle size is too large, dispersion in the layer will be poor, and some of the particles will protrude from the surface, resulting in poor surface smoothness. Toner particles tend to adhere to the toner, causing a toner filming phenomenon.

前記キャリア輸送物質としては、種々のものが使用でき
るが、代表的なものとしては例えば、オキサゾール、オ
キサジアゾール、ヂタゾール、チアジアゾール、イ互ダ
ゾール等に代表される含窒素複素環核及びその縮合環核
を有する化合物、ボ、1アリールアルカン系の化合物、
ピラゾリン系化合物、ヒドラゾン系化合物、トリアリー
ルアミン系化合物、スチリル系化合物、スチリルトリフ
ェニルアミン系化合物、α−フェニルスチリル1〜リフ
エニルアミン系化合物、ブタジェン系化合物、ヘキサト
リエン系化合物、カルバゾール系化合物、縮合多環系化
合物等が挙げられる。
Various carrier transport substances can be used, but typical examples include nitrogen-containing heterocyclic nuclei and fused rings thereof, such as oxazole, oxadiazole, ditazole, thiadiazole, and isodazole. Compounds having a nucleus, (1), 1-aryl alkane compounds,
Pyrazoline compounds, hydrazone compounds, triarylamine compounds, styryl compounds, styryltriphenylamine compounds, α-phenylstyryl 1-rifenylamine compounds, butadiene compounds, hexatriene compounds, carbazole compounds, Examples include fused polycyclic compounds.

これらのキャリア輸送物質の具体例としては、例えば持
間昭61ー107356号に記載のキャリア発生物質を
挙げることができる。
Specific examples of these carrier-transporting substances include carrier-generating substances described in Mochima Sho 61-107356.

バインダー樹脂に対するキャリア輸送物質の割合は好ま
しくは10〜500重温%とされ、また、キャリア輸送
層の厚みは好ましくは1〜100μm、更に好ましくは
5〜30μmとされる。
The ratio of the carrier transport substance to the binder resin is preferably 10 to 500% by weight, and the thickness of the carrier transport layer is preferably 1 to 100 μm, more preferably 5 to 30 μm.

本発明における感光体の感光層には感度の向上や残留電
位の減少、或いは反復使用時の疲労の低減を目的として
、電子受容性物質を含有させることができる。このよう
な電子受容性物質としては例えば、無水コハク酸、無水
マレイン酸、ジブロム無水コハク酸、無水フタル酸、テ
トラクロル無水フタル酸、テトラブロム無水フタル酸、
3−二トロ無水フタル酸、4−二I〜ロ無水フタル酸、
無水ピロメリット酸、無水メリット酸、テトラシアノエ
チレン、テトラシアノキノジメタン、0−ジニトロベン
ゼン、m−ジニトロベンゼン、1,3。
The photosensitive layer of the photoreceptor in the present invention can contain an electron-accepting substance for the purpose of improving sensitivity, reducing residual potential, or reducing fatigue during repeated use. Examples of such electron-accepting substances include succinic anhydride, maleic anhydride, dibromo succinic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride,
3-ditro phthalic anhydride, 4-di phthalic anhydride,
Pyromellitic anhydride, mellitic anhydride, tetracyanoethylene, tetracyanoquinodimethane, 0-dinitrobenzene, m-dinitrobenzene, 1,3.

5−トリニトロベンゼン、p−ニトロベンゾニトリル、
ビクリルクOライド、キノンクロルイミド、クロラニル
、ブロマニル、ジクロルジシアノ−p−ベンゾキノン、
アントラキノン、ジニトロアントラキノン、9−フルオ
レニリデンマロノジニトノル、ポリニトロ−9−フルオ
レこりデンマロノジニトリル、ピクリン酸、0−ニトロ
安息香酸、p−ニトロ安息香酸、3,5−ジニトロ安息
香酸、ペンタフルオロ安息香酸、5−ニトロサリチル酸
、3.5−ジニトロサリチル酸、フタル酸、メリット醗
、その他の電子親和力の大きい化合物を挙げることがで
きる。電子受容性物質の添加伯はキャリア発生物質の1
00重ωに対して 0.01〜.200重煩が望ましく
、更には0.1〜100曵伍が好ましい。
5-trinitrobenzene, p-nitrobenzonitrile,
Vicrylchloride, quinone chlorimide, chloranil, bromanil, dichlordicyano-p-benzoquinone,
Anthraquinone, dinitroanthraquinone, 9-fluorenylidenemalonodinitonol, polynitro-9-fluorenylidenemalonodinitrile, picric acid, 0-nitrobenzoic acid, p-nitrobenzoic acid, 3,5-dinitrobenzoic acid, pentafluoro Examples include benzoic acid, 5-nitrosalicylic acid, 3.5-dinitrosalicylic acid, phthalic acid, Melitron, and other compounds with high electron affinity. The electron-accepting substance is added to the carrier-generating substance.
0.01~.00 weight ω. 200 min. is desirable, and 0.1 to 100 min. is more preferred.

また、上記感光層中には、保存性、耐久性を向上させる
目的で酸化訪止剤や光安定剤等の劣化防止剤を含有させ
ることができる。
Further, the photosensitive layer may contain deterioration inhibitors such as oxidation inhibitors and light stabilizers for the purpose of improving storage stability and durability.

なa5、第4図及び第5図に示した単層構成の感光体に
おいては、感光層74″に用いるキャリア発生物質は本
発明に係るフタロシアニン顔11等であり、キャリア輸
送物質は上述したものから選(Rすることができる。ま
た、感光FW 74 ″のバインダー樹脂、その他の添
加物質も上述したものと同様であってよい。
In the single-layer photoreceptor shown in FIGS. 4 and 5, the carrier-generating material used in the photosensitive layer 74'' is the phthalocyanine face 11 according to the present invention, and the carrier-transporting material is the one described above. The binder resin and other additives for the photosensitive FW 74'' may also be the same as those described above.

前記導電性支持体としては、金属板、金属ドラム等が用
いられる他、導電性ポリマーや酸化インジウム等の導電
性化合物、もしくはアルミニウム、パラジウム等の金属
の薄層を塗布、蒸着、ラミネート等の手段により紙やプ
ラスチックフィルムなどの上に設けてなるものが用いら
れる。
As the conductive support, a metal plate, a metal drum, etc. are used, and a thin layer of a conductive polymer, a conductive compound such as indium oxide, or a metal such as aluminum or palladium is coated, vapor-deposited, laminated, etc. Depending on the situation, a material provided on paper, plastic film, etc. is used.

また、接着層或いはバリヤ層等として機能する前記中間
層75としては、上記のバインダ樹脂として説明したよ
うな高分子重合体、ポリビニルアルコール、エチルセル
ロース、カルボキシメチルセルロース、ポリアミドなど
の有i高分子物質又は酸化アルミニウムなどより成るも
のが用いられる。
The intermediate layer 75, which functions as an adhesive layer or a barrier layer, may be made of a high molecular weight material such as a high molecular weight polymer, polyvinyl alcohol, ethyl cellulose, carboxymethyl cellulose, polyamide, etc., or an oxidized polymer as explained above as the binder resin. A material made of aluminum or the like is used.

本発明は、帯電及び像露光によって像担持体上に静電潜
像を形成し、このtf¥’電潜像を可視像化する画像形
成方法において、前記像担持体の感光層の光導電性物質
として、前記の如き特定のフタロシアニン顔料を用い、
かつ、前記g11電潜像の可視像化のための現像に際し
て、前記像担持体とこれに対する現像剤搬送担体とを非
接触状態に保持しながら現像領域に交番の振e電界を付
与することを特徴とする画像形成方法に係るものである
The present invention provides an image forming method in which an electrostatic latent image is formed on an image carrier by charging and image exposure, and this tf\' electrostatic latent image is visualized. Using a specific phthalocyanine pigment as described above as a sexual substance,
and applying an alternating oscillating electric field to the developing area while maintaining the image bearing member and the developer transporting carrier therewith in a non-contact state during development for visualizing the G11 latent image. The present invention relates to an image forming method characterized by:

本発明においては、この方法を効果的に実施するために
、帯電手段と、デジタル(ドツト)露光手段と、現像手
段とが配置され、この現像手段が、前記像担持体に対し
て非接触状態に保持される現像剤搬送担体と、現像領域
に交番の振動電界を付与する振flI電界供給部とを有
している画像形1512装胃を使用することができる。
In the present invention, in order to effectively implement this method, a charging means, a digital (dot) exposure means, and a developing means are arranged, and the developing means is in a non-contact state with respect to the image carrier. An image-forming 1512 pack can be used that has a developer transport carrier held in the developer area and an oscillating field supply that applies an alternating oscillating electric field to the development area.

本発明に使用可能な画像形成装置(例えばデジタルコピ
一方式の多色画像形成装置)の−例を第1図〜第3図に
ついて説明する。
An example of an image forming apparatus (for example, a digital copy type multicolor image forming apparatus) that can be used in the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明に使用可能な画像形成装置である複写量
の概略断面図である。第1図に示す装置によれば、画像
読取り部LEにおいて、原稿台19上に置かれた原稿1
8はX方向に移動する照明光源13からの光を受け、そ
の反射光2 Of、t fiミラー1、レンズ15及び
色分解フィルタ16を介して赤、緑、青用の各CCDI
像素子17R117G、17Bに結像される。これらの
CCD1fi像素子では、光情報を時系列の電気信号に
変えて画像データ処理部TR+  (第2図参照)へ送
り、ここで記録画像データが形成される。レーザー光学
系10ではビデオ信号処理部TR2からの記録画像デー
タに基づいて変調部MDで半導体レーザー21のレーザ
ー光が変調される(図中、22はポリゴンミラーである
)。一方、像担持体1はスコロトロン帯電極2により表
面が均一に帯電される。続いてレーザー光学系10から
の像露光りが像担持体(感光体ドラム〉1上に照射され
る。このようにして静電潜像が形成される。例えば色分
解フィルタ16として青フィルタが設定された場合には
、この酸N潜像はイエロートナーが収納されている現像
器31により反転現像される。トナー像を形成された像
担持体1は、再びスコロトロン帯電極2により均一に帯
電される。また、例えば色分解フィルタ16として緑フ
ィルタが設定されると、このフィルタを介して読取られ
た光情報に基づく像露光りを受ける。形成された静M潜
慟はマゼンタトナーが収納されている現像器32により
反転現像される。一方、記録紙Pは、給紙ローラー23
によってドラム状の転写ユニツ1−63に送り込まれ、
グリッパ−64によって先端を把持させて、転写ユニッ
ト63の矢印方向の回転と共に移動する。
FIG. 1 is a schematic cross-sectional view of a copy amount that is an image forming apparatus that can be used in the present invention. According to the apparatus shown in FIG. 1, the original 1 placed on the original table 19 in the image reading section LE.
8 receives light from an illumination light source 13 moving in the X direction, and the reflected light 2 passes through a tfi mirror 1, a lens 15, and a color separation filter 16 to each CCDI for red, green, and blue.
The image is formed on image elements 17R117G and 17B. These CCD1fi image elements convert the optical information into time-series electric signals and send them to the image data processing section TR+ (see FIG. 2), where recording image data is formed. In the laser optical system 10, the laser beam of the semiconductor laser 21 is modulated in the modulation section MD based on the recorded image data from the video signal processing section TR2 (in the figure, 22 is a polygon mirror). On the other hand, the surface of the image carrier 1 is uniformly charged by the scorotron charging electrode 2. Next, image exposure from the laser optical system 10 is applied onto the image carrier (photosensitive drum) 1. In this way, an electrostatic latent image is formed. For example, a blue filter is set as the color separation filter 16. In this case, this acid-N latent image is reversely developed by the developing device 31 containing yellow toner.The image carrier 1 on which the toner image has been formed is uniformly charged again by the scorotron charging electrode 2. For example, when a green filter is set as the color separation filter 16, image exposure is performed based on optical information read through this filter. On the other hand, the recording paper P is reversely developed by the developing device 32 located at the paper feed roller 23.
is fed into the drum-shaped transfer unit 1-63 by
The tip is gripped by the gripper 64 and moved as the transfer unit 63 rotates in the direction of the arrow.

上記の現像されたトナー像は、転写コニツ1−63内に
設けた転写器5によって記録紙Pに転写される。単色画
像複写の場合は、記録紙Pは直ちに分離爪66の作動に
よって転写ユニット63から分離され、加熱定着ローラ
9へ送られてトナ像を定着した後、装置外に排出される
。二色以上の多色画像複写の場合は、分離爪66は作動
せず、記録MPは転写ユニット63に保持されたまま回
転する。転写器5による転写前に、転写促進用の露光を
行ってもよい。
The developed toner image is transferred onto the recording paper P by a transfer device 5 provided in the transfer unit 1-63. In the case of monochrome image copying, the recording paper P is immediately separated from the transfer unit 63 by the operation of the separation claw 66, sent to the heat fixing roller 9, where the toner image is fixed, and then discharged from the apparatus. In the case of multicolor image copying of two or more colors, the separation claw 66 does not operate, and the recording MP rotates while being held in the transfer unit 63. Before the transfer by the transfer device 5, exposure for promoting transfer may be performed.

トナー像を転写した像担持体の表面は、残留トナーをク
リーニング装置8によって除去して(必要あればクリー
ニング前に除電して山い。)、次の像形成工程に備える
。そして、二色以上の多色画a+複写の場合は、1〜ナ
ー像を転写ユニット63に保持されている記録紙Pの先
のトナー&位躍に重ねて転写する。これによって、記録
紙P上に二色画像が形成されるようになり、二色画@複
写の場合は、この時点で分離爪66が作動して記録紙P
を転写ユニット63から分離し、あとは単色の場合と同
様にトナー像の定着を行って、排出する。
The surface of the image carrier onto which the toner image has been transferred is cleaned of residual toner by a cleaning device 8 (if necessary, the charges may be removed before cleaning), and the surface is prepared for the next image forming process. In the case of a multicolor image a+copying of two or more colors, the toner images 1 to 1 are transferred to overlap the toners and toner images at the front of the recording paper P held in the transfer unit 63. As a result, a two-color image is formed on the recording paper P, and in the case of a two-color image @copying, the separation claw 66 is activated at this point and the recording paper P is
The toner image is separated from the transfer unit 63, the toner image is fixed in the same manner as in the case of monochrome, and then the toner image is discharged.

三色画像複写の場合は、分離爪66はまだ作動せず、更
に、像担持体1に異なる色分解の静電潜像の形成と、別
の現■芸愉による現像とが前と同様に行われ、そのl・
ナー像が記録紙Pに前と同様に転写されるようになった
時点で初めて分離爪6Gが作動する。あとは、単色や二
色の場合と同様に、記録紙Pはトナー像を定着さけて排
出される。なお、現@器33.34は夫々シアン1−ナ
ー、黒l・ナーによる現像に用いられ、これらを用いる
と像担持体1上に4色トナー像が形成される。
In the case of three-color image copying, the separation claw 66 is not activated yet, and furthermore, the formation of electrostatic latent images of different color separations on the image carrier 1 and the development by another image processing are performed as before. It was done and that l.
The separation claw 6G is activated only when the toner image is transferred to the recording paper P in the same manner as before. After that, the recording paper P is discharged without fixing the toner image, as in the case of monochrome or two-color printing. The developing units 33 and 34 are used for development with cyan 1-toner and black 1-toner, respectively, and when these are used, a four-color toner image is formed on the image carrier 1.

第2図は第1図の複写機の複写動作のブロック図を示ず
が、これによれば、操作部OPにより制御部CTを作動
させ、この制御部で動作制御される@読取り部LEにお
いて、原稿18の光学情報を色別の時系列信号に変換し
、11られたデータを画像データ処理部TR+ で処理
し、更にビデオ信号処理部TR2で記録に適したデータ
に変換する。
Although FIG. 2 does not show a block diagram of the copying operation of the copying machine shown in FIG. 1, according to this, the control section CT is actuated by the operation section OP, and the @reading section LE whose operation is controlled by this control section , the optical information of the original 18 is converted into color-based time-series signals, the converted data is processed in an image data processing section TR+, and further converted into data suitable for recording in a video signal processing section TR2.

画像形成部REは制御信号に基づいて画像形成のための
上記したプロセスを実行し、複写紙上にトナー(象を転
写し、記録物を形成する。この画像形成部REは電子写
真方式を採用したものである。
The image forming section RE executes the above-described process for forming an image based on the control signal, and transfers the toner (image) onto copy paper to form a recorded matter.This image forming section RE employs an electrophotographic method. It is something.

上記のほか、予め設定された各種情報、特に既述した複
写倍率、色等の機能動作内容のデータをROM (Re
ad Qn!y MIJOry> 、70ツヒ−7’イ
スク、磁気テープ等の画像メモリMEに記憶させ、必要
に応じて画像メモリME内の情報を取り出して画像形成
部REへ出力されることができる。
In addition to the above, various preset information, especially data on functional operation contents such as the copy magnification and color described above, can be stored in the ROM (Re
ad Qn! y MIJOry>, 70 tshi-7'isk, magnetic tape, etc., and the information in the image memory ME can be taken out and output to the image forming section RE as necessary.

上記の装置において、現像器31〜34として第3図に
拡大図示したような塁本構成の現像器が用いられる。こ
れらの現像器はいずれも、現像剤搬送担体である非磁性
の現像スリーブ41が左回転し、内部磁石体42が右回
転して、現像剤溜まり43の現像剤50を現像スリーブ
41の表面に吸着して磁石体42の回転と逆方向に搬送
するものである。現像スリーブ41上を搬送される現像
剤は、途中において層厚規制ブレード44により厚さを
規制され、現像剤層を形成する。
In the above-mentioned apparatus, as the developing units 31 to 34, a base-structured developing unit as shown in an enlarged view in FIG. 3 is used. In each of these developing devices, a non-magnetic developing sleeve 41 serving as a developer transport carrier rotates counterclockwise, and an internal magnet body 42 rotates clockwise to transfer the developer 50 in the developer reservoir 43 onto the surface of the developing sleeve 41. It attracts and conveys it in the direction opposite to the rotation of the magnet body 42. The thickness of the developer conveyed on the developing sleeve 41 is regulated by a layer thickness regulating blade 44 on the way, thereby forming a developer layer.

現像を行うときは、バイアス電源52によって、直流バ
イアス電圧及び/又は交流電圧を現像スリブ41に印加
する。これによって現像域Eにおいて現像が行われ、現
像域Eを通過した現像剤層はクリーニングブレード45
によって現象スリーブ41から除かれ、現像剤溜まり4
3に還元される。現像剤溜まり43にはトナー補給ロー
うによってトナーホッパーくいずれも図示せず)からト
ナーが補給される。また、現像剤溜まり43の現像剤5
0は、撹拌又は搬送手段46.47.48によって均一
に撹拌されると共に、トナー粒子に十分な電荷が与えら
れる。
When performing development, a bias power supply 52 applies a DC bias voltage and/or an AC voltage to the development sleeve 41 . As a result, development is performed in the development area E, and the developer layer that has passed through the development area E is removed by the cleaning blade 45.
The developer is removed from the developing sleeve 41 by
It is reduced to 3. The developer reservoir 43 is supplied with toner from a toner hopper (not shown) by a toner supply row. In addition, the developer 5 in the developer reservoir 43
0 are uniformly agitated by the stirring or conveying means 46, 47, 48 and the toner particles are given sufficient charge.

上記において、現像剤層の搬送は、現像スリーブ41を
静止又は右回転させて行っても、或いは、磁石体42を
左回転又は静止させて行ってもよい。
In the above, the developer layer may be conveyed by rotating the developing sleeve 41 stationary or clockwise, or by rotating the magnet body 42 counterclockwise or stationary.

また、現像剤50には、磁性トナー粒子からなる一成分
現像剤も用い得るが、磁性キャリア粒子と非磁性トナー
粒子の混合した二成分現像剤が色の(Y磁性やj〜ルナ
−帯電1.11 m等の点から好ましく用いられる。
Although a one-component developer made of magnetic toner particles can be used as the developer 50, a two-component developer made of a mixture of magnetic carrier particles and non-magnetic toner particles has a color (Y magnetic, j~lunar charge 1). It is preferably used from the viewpoint of .11 m.

第3図の現像器による現像は、本発明に塁づいて非接触
現像r去で行われるが、その詳細な現像条件は特開昭5
7−147652号又は同59−181362号公報に
記載のもの(但し、いずれも二成分現像剤を使用)とI
i′il様であってよい。また、−成分現像剤を使用す
る場合は、特開昭55−18656号又は持分Il:4
44−9475q公報に記載のものと同様であってよい
The development using the developing device shown in Fig. 3 is carried out by non-contact development based on the present invention, but the detailed development conditions were described in Japanese Patent Laid-open No. 5
No. 7-147652 or No. 59-181362 (however, both use a two-component developer) and I
It may be like i'il. In addition, when using a -component developer, JP-A No. 55-18656 or equity Il: 4
It may be the same as that described in Publication No. 44-9475q.

現像器31〜34による現像に際しては、現像スリーブ
41にバイアス電圧を印加して1ヘナーの飛翔制御を2
1+果的に行うためには、像担持体1と現像スリーブ4
1との間に印加する交番電界を100口l〜5に日lど
し、直流バイアスは100V〜2KVとするのがよい。
During development by the developing units 31 to 34, a bias voltage is applied to the developing sleeve 41 to control the flight of one hener to two.
1+ For effective implementation, image bearing member 1 and developing sleeve 4 are required.
It is preferable that the alternating electric field applied between 1 and 1 is set to 100 V to 5 KV, and the DC bias is 100 V to 2 KV.

また、像担持体1と現像スリーブ41との間E’A 5
11.110〜2000L1mの範囲とし、従って層厚
規制ブレード44によって規制する現像剤層の層厚を上
記間隙より薄くするのが好ましい。
Further, there is a gap E'A 5 between the image carrier 1 and the developing sleeve 41.
11. It is preferable that the thickness of the developer layer is in the range of 110 to 2000 L1 m, and therefore the thickness of the developer layer regulated by the layer thickness regulating blade 44 is thinner than the above gap.

現像器31〜34に以上の好ましい条件を用いることに
よって、それぞれの現像器による色別の静電潜像の現像
をカブリなく鮮明に行うことができる。従って、記録紙
Pに鮮明な単色画像や多色カラー画像の記録が行われる
By using the above-mentioned preferable conditions for the developing units 31 to 34, it is possible to clearly develop electrostatic latent images for each color using each developing unit without fogging. Therefore, a clear monochrome image or a multicolor image is recorded on the recording paper P.

なお、現像剤50を二成分とする場合は、キャリアとト
ナーの粒径は、前者5〜100μm、後者を20μm以
下とするのがよい。キャリアは磁性キャリア、絶縁物質
をコーティングした絶縁性キャリアが使用可能である。
Note that when the developer 50 is made of two components, the particle diameters of the carrier and toner are preferably 5 to 100 μm for the former and 20 μm or less for the latter. As the carrier, a magnetic carrier or an insulating carrier coated with an insulating material can be used.

現像剤50を一成分とする場合は、公知の絶縁性トナー
が使用可能である。
When the developer 50 is made of one component, a known insulating toner can be used.

また、本発明は上述の装置に限らず、他のタイプの複写
機等にも勿論適用可能である。現像も反転現像に限らず
正規現像も可能である。
Furthermore, the present invention is of course applicable not only to the above-mentioned apparatus but also to other types of copying machines. Development is not limited to reversal development, but regular development is also possible.

[実施例1 以下、本発明を実施例によって更に詳細に説明する。[Example 1 Hereinafter, the present invention will be explained in more detail with reference to Examples.

まず、各種のフタロシアニン顔料の合成例を述べる。First, examples of synthesis of various phthalocyanine pigments will be described.

(合成例1) 1.3−ジイミノイソインドリン292gとスルホラン
200.、i2を湿合し、チタニウムテトライソプロポ
キシド170gを加え、窒素雰囲気下に 140℃で2
Il¥聞反応させた。放冷した後析出物を濾取し、クロ
ロホルムで洗浄の後、更に2%の塩酸水溶液で洗浄した
。次いで、水洗、メタノール洗浄を行なった後乾燥して
25.5g(88,5%)のチタニルフタロシアニンを
得た。生成物100gを2k(lの濃硫酸に溶解し、2
01の水にあけて析出させて濾取し、アモル)7ス状態
のウェットペーストを得た。
(Synthesis Example 1) 292 g of 1.3-diiminoisoindoline and 200 g of sulfolane. , i2 was wetted, 170 g of titanium tetraisopropoxide was added, and the mixture was heated at 140°C under a nitrogen atmosphere for 2 hours.
I got a reaction when I heard it. After cooling, the precipitate was collected by filtration, washed with chloroform, and further washed with a 2% aqueous hydrochloric acid solution. Next, the product was washed with water and methanol, and then dried to obtain 25.5 g (88.5%) of titanyl phthalocyanine. Dissolve 100 g of the product in 2 k (l) of concentrated sulfuric acid,
The mixture was poured into 0.01 water to precipitate and collected by filtration to obtain a wet paste in an amorphous state.

このウェットペースト2Qに、1.2−ジクロロエタン
20(hRとメタノール100nQの混合溶媒を加え、
i4下で3 rRIK 撹拌を行なった。メタツルで希
釈して濾過し、メタノール洗浄後、乾燥して、ブラッグ
角2θの9.5°± 0.2” 、 27.2’±02
°にピークを有するX線回折スペクトルをもつ結晶を得
た。なお、X線回折スペクトルはX線回折装fa J 
D X−8200(日本電子社製)を用い、次の条件で
測定したもの(以下同様)である。
To this wet paste 2Q, add a mixed solvent of 1,2-dichloroethane 20 (hR) and methanol 100 nQ,
3 rRIK stirring was performed under i4. Diluted with MetaTsuru, filtered, washed with methanol, and dried to a Bragg angle of 2θ of 9.5°±0.2”, 27.2′±02
A crystal with an X-ray diffraction spectrum having a peak at ° was obtained. Note that the X-ray diffraction spectrum was obtained using an X-ray diffraction instrument fa J
It was measured using DX-8200 (manufactured by JEOL Ltd.) under the following conditions (the same applies hereinafter).

X線管球    Cu (C1J −にα線)電圧  
    40.0  KV 雷電流       100.0   mAスタート角
度  6.00  deg ストップ角度  35.00  deg。
X-ray tube Cu (α rays to C1J-) voltage
40.0 KV Lightning current 100.0 mA Start angle 6.00 deg Stop angle 35.00 deg.

ステップ角度  0.02(l deg測定時間   
  0.50  deg。
Step angle 0.02 (l deg measurement time
0.50 deg.

また、この結晶の示差熱分析において第10図に示す示
差熱曲線が得られ、99.6℃に吸熱ピークが認められ
た。示差熱分析は前述の方法に従った(以下同様)。
Further, in differential thermal analysis of this crystal, a differential thermal curve shown in FIG. 10 was obtained, and an endothermic peak was observed at 99.6°C. Differential thermal analysis followed the method described above (the same applies below).

(合成例2) 1.3−ジイミノイソインドリン29.2gとスルホラ
ン200 dを混合し、チタニウムテトライソプロポキ
シド17.0(lを加え、窒素雰囲気下に140℃で2
時間反応させた。放冷した後析出物を濾取し、クロロホ
ルムで洗浄の後、更に2%の塩酸水溶液で洗浄した。次
いで水洗、メタノール洗浄を行なった後、乾燥して25
.5g  (88,5%)のチタニルフタロシアニンを
得た。
(Synthesis Example 2) 29.2 g of 1,3-diiminoisoindoline and 200 d of sulfolane were mixed, 17.0 (l) of titanium tetraisopropoxide was added, and the mixture was heated at 140°C under a nitrogen atmosphere for 2 hours.
Allowed time to react. After cooling, the precipitate was collected by filtration, washed with chloroform, and further washed with a 2% aqueous hydrochloric acid solution. Next, after washing with water and methanol, it was dried for 25 minutes.
.. 5 g (88.5%) of titanyl phthalocyanine were obtained.

生成物1oogを2kqの濃硫酸に溶解し、2Ofの水
にあけて析出させて濾取し、アモルファス状態のウェッ
トペーストを得た。
10g of the product was dissolved in 2kq of concentrated sulfuric acid, poured into 2Of of water, precipitated and collected by filtration to obtain an amorphous wet paste.

このウェットペースト2gに1,2−ジクロロエタン2
001/とアセトン1001Qの混合溶媒を加え、室温
下で3時間撹拌を行なった。メタノールで希釈して濾過
し、メタノール洗浄後乾燥して、ブラッグ角2θの9.
5゛± 0.2’ 、 27.2°±02°にピークを
有するX線回折スペクトルをもつ結晶を得た。また、こ
の結晶の示差熱分析において第11図に示す示差熱曲線
が19られた。
1,2-dichloroethane 2g to 2g of this wet paste
A mixed solvent of 001/ and acetone 1001Q was added and stirred at room temperature for 3 hours. Diluted with methanol, filtered, washed with methanol and dried to obtain a Bragg angle of 2θ of 9.
A crystal with an X-ray diffraction spectrum having peaks at 5°±0.2' and 27.2°±02° was obtained. Further, in the differential thermal analysis of this crystal, a differential thermal curve shown in FIG. 11 was obtained.

(合成例3) 1.3−ジイミノイソインドリン14.6Q  (Oi
モル)と酸化バナジウムアセデルアセトナ−1へ7.9
547(0,03モル)を1001Nのα−クロロナフ
タレン中で混合し、窒素気流下、190℃で2時間反応
させた。室温まで放冷した後、析出物を濾取し、α−ク
ロロナフタレンで洗浄した。次いでクロロホルムで洗浄
し、さらに2%塩酸水溶液で洗浄した後、水洗し、最後
にメタノールで洗浄した後、乾燥して、11.0gのバ
ナジルフタロシアニンを得た。次いで生成物を30(8
mの濃硫酸に溶解し、300倍通の水にあけて析出させ
て濾取し、アモルファス状態のウェットペーストを得た
(Synthesis Example 3) 1,3-diiminoisoindoline 14.6Q (Oi
mole) and vanadium oxide acedelacetonate-1 to 7.9
547 (0.03 mol) was mixed in 1001N α-chloronaphthalene and reacted at 190° C. for 2 hours under a nitrogen stream. After cooling to room temperature, the precipitate was collected by filtration and washed with α-chloronaphthalene. Next, it was washed with chloroform, further washed with a 2% aqueous hydrochloric acid solution, washed with water, finally washed with methanol, and then dried to obtain 11.0 g of vanadyl phthalocyanine. The product was then added to 30 (8
m of concentrated sulfuric acid, poured into 300 times the volume of water, precipitated and collected by filtration to obtain an amorphous wet paste.

このウェットペースト2gに1,2−ジクロロエタン2
00dとメタノール100iRの混合溶媒を加え、室温
下で3g間撹拌を行なった。メタノールで希釈して濾過
し、メタノール洗浄後乾燥して第12図に示す示差熱曲
線を示す結晶を得た。
1,2-dichloroethane 2g to 2g of this wet paste
A mixed solvent of 00d and methanol 100iR was added and stirred for 3 g at room temperature. The mixture was diluted with methanol, filtered, washed with methanol, and dried to obtain crystals exhibiting the differential thermal curve shown in FIG. 12.

〈比較合成例1) 合成例1におけるウェットペーストを乾燥後、α−クロ
ロナフタレンを用いて、加熱撹拌することによって、β
型のチタニルフタロシアニンを得た。X線回折スペクト
ルはブラッグ角2θの9.3°±0.2° 106′±
0.2° 13゜2″ ±0.2°、 is、i°± 
0.2°、157°±02゜16.1°± 02°、 
20.8°±0.2°、 23.3°±02′″、26
3°±0,2°、 27.1°±02″ にピークを右
していた。また示差熱曲線を第13図に示した。
<Comparative Synthesis Example 1> After drying the wet paste in Synthesis Example 1, β-chloronaphthalene was heated and stirred.
type titanyl phthalocyanine was obtained. The X-ray diffraction spectrum is 9.3°±0.2° 106′± of Bragg angle 2θ.
0.2° 13°2″ ±0.2°, is, i°±
0.2°, 157°±02°16.1°±02°,
20.8°±0.2°, 23.3°±02''', 26
The peaks were at 3°±0.2° and 27.1°±02″. The differential thermal curve is shown in FIG.

上記合成例1〜3及び比較合成例1で1qられた各々の
チタニルフタロシアニン及びバナジルフタロシアニンを
前述の方法に従って真空中での吸着ガスの成分分析を行
なったところ、以下の結果が得られた。
When each of the titanyl phthalocyanine and vanadyl phthalocyanine prepared in Synthesis Examples 1 to 3 and Comparative Synthesis Example 1 was subjected to component analysis of adsorbed gas in vacuum according to the method described above, the following results were obtained.

分子数% 口2  目20  Co   N2  02   CO
2合或合成   2.2  68.5 0.0  23
.3 4.2 1.8合成例2  2.0  59.3
 0.0  31.3 5.6 1.8合成例3  2
,0  50.8 0.0  38.5 7.0 1.
7比較合成例1  0.0  2.G、0.0  79
.5 13.9 4.0合成例1〜3において得られた
チタニルフタロシアニン及びバナジルフタロシアニンは
水分子が最も多く含まれていることがわかる。
Number of molecules % 2nd 20th Co N2 02 CO
2 go or synthesis 2.2 68.5 0.0 23
.. 3 4.2 1.8 Synthesis Example 2 2.0 59.3
0.0 31.3 5.6 1.8 Synthesis Example 3 2
,0 50.8 0.0 38.5 7.0 1.
7 Comparative Synthesis Example 1 0.0 2. G, 0.0 79
.. 5 13.9 4.0 It can be seen that titanyl phthalocyanine and vanadyl phthalocyanine obtained in Synthesis Examples 1 to 3 contain the largest amount of water molecules.

実施例1 合成例1において得られた、チタニルフタロシアニン3
部、バインダ樹脂としてのシリコーン樹脂(rKR−5
240の15%キシレン−ブタノール溶液」信越化学社
製)35部、分i2I!媒としてのメチルエチルケトン
 100部をサンドミルを用いて分散し、これを、アル
ミニウムドラムで且つ03μ厚のポリアミド樹脂層を塗
布したドラムに浸漬塗布により塗布し、膜厚0,2μm
のキャリア発生層を形成した。次いで、下記キャリア輸
送物質千−11部とポリカーボネート樹脂「ニーピロン
Z200J(三菱瓦斯化学社製〉1,3部及び徴出のシ
リコーンオイルrKF−54J  (信越化学社製)を
1.2−ジクロルエタン10部に溶解した液をブレード
塗布機を用いて塗布し、乾燥の後、膜厚20μmのキャ
リア輸送層を形成して感光体サンプルを得た。
Example 1 Titanyl phthalocyanine 3 obtained in Synthesis Example 1
Part, silicone resin as binder resin (rKR-5
240 15% xylene-butanol solution (manufactured by Shin-Etsu Chemical Co., Ltd.) 35 parts, min i2I! 100 parts of methyl ethyl ketone as a medium was dispersed using a sand mill, and this was applied by dip coating onto an aluminum drum coated with a 0.3 μm thick polyamide resin layer to give a film thickness of 0.2 μm.
A carrier generation layer was formed. Next, 1,000 to 11 parts of the following carrier transport substance, 1,3 parts of polycarbonate resin "Nipiron Z200J (manufactured by Mitsubishi Gas Chemical Co., Ltd.)" and 10 parts of 1,2-dichloroethane were added to the silicone oil rKF-54J (manufactured by Shin-Etsu Chemical Co., Ltd.). A solution dissolved in the above was applied using a blade coater, and after drying, a carrier transport layer having a thickness of 20 μm was formed to obtain a photoreceptor sample.

−1 以上のようにして得られたサンプルをカラーコピーD 
C−8010(コニカ社製:二成分現像剤を使用)に4
00dp iの光学系を搭載させた改造機に装着し、主
に複写画像について画質評価を行った。但し、現像方法
は反転現像方式による非接触ジャンピング現像によった
。現像条件は下記の通りであった。画質評価は解像力、
地力ブリの2点から33°C3相対況度80%の条件下
にあける初期及び5万プリン1〜後について行なった。
-1 Color copy D of the sample obtained as above
4 for C-8010 (manufactured by Konica: uses two-component developer)
It was installed in a modified machine equipped with a 00 dpi optical system, and the image quality was mainly evaluated for copied images. However, the development method was non-contact jumping development using a reversal development method. The development conditions were as follows. Image quality evaluation is based on resolution,
Testing was conducted from two points of ground yellowtail at 33°C and 80% relative conditions at the initial stage and after 1 to 50,000 pudding.

結果を表1に示す。評価の判断基準は下記の通り設定し
た。
The results are shown in Table 1. The evaluation criteria were set as follows.

現像条件 ・像形成体      150φドラム・線速度   
    70mm/ S・V++        −6
00V ・スリーブ線速度(φ20 25Orpm>260mm
/ 5ec 500μm 300μm 濃度  7玉は% 50v 1.2KVp−p  (3KHz ) ・現像ギャップ ・現ゆ剤層厚 ・現像剤]・す ・DCバイアス ・ACバイアス (計画方法) 解像力・・・1mm当たり等間隔の縦線を40本、50
本、 60本、 7.0本、 8.0本設け、縦線の判
別できるブレイドを解像度と して表示した。
Development conditions/image forming body 150φ drum/linear speed
70mm/S・V++ -6
00V ・Sleeve linear speed (φ20 25Orpm>260mm
/ 5ec 500μm 300μm Density 7 balls are % 50v 1.2KVp-p (3KHz) ・Development gap・Developer layer thickness・Developer]・DC bias・AC bias (planning method) Resolution...per 1 mm, etc. 40, 50 vertical lines at intervals
There were 60, 7.0, and 8.0 lines, and the blades with vertical lines that could be distinguished were displayed as the resolution.

地力ブリ・・・コニカ8010改造機において白紙を複
写して得られた画像サンプルを目視 評価にて判定した。
Land strength: Image samples obtained by copying blank paper using a modified Konica 8010 machine were visually evaluated.

○:地カブリ発生せず ×:地力ブリ発生 但し、上記したD C−8010を用いる時には複写画
像の評価は上記した10段階及び解像力のチャートを用
いて行った。
○: No background fog occurred. ×: Background fog occurred. However, when using the above-mentioned DC-8010, the evaluation of the copied image was performed using the above-mentioned 10-level and resolving power chart.

(比較例1) 実施例1において合成例1のチタニルフタロシアニンの
代わりに比較合成例1のチタニルフタロシアニンを用い
た以外は実施例1と同様にして比較の感光体サンプルを
作製した。
(Comparative Example 1) A comparative photoreceptor sample was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine of Comparative Synthesis Example 1 was used in place of the titanyl phthalocyanine of Synthesis Example 1.

更に実施例1と同様の方法で現像を行ない、解像力及び
地力ブリの評価を行なった。結果を表1にポす。
Further, development was performed in the same manner as in Example 1, and resolution and blurring were evaluated. The results are shown in Table 1.

(比較例2) 実施例1と同様にして得られた感光体サンプルを用い、
現像剤層と感光体を接触ざぜて行なう以外は実施例1と
同様に現像して、wf像力及び地力ブリを評価した。現
像条件は下記の通りであった。
(Comparative Example 2) Using a photoreceptor sample obtained in the same manner as in Example 1,
Development was carried out in the same manner as in Example 1, except that the developer layer and the photoconductor were brought into contact with each other, and wf image strength and ground force blur were evaluated. The developing conditions were as follows.

結果を表1に示す。The results are shown in Table 1.

現像器(′r ・像形成体 ・l!i!速度 ・表面電位 ・スリーブ線速度 ・現像ギャップ ・現像剤層厚 ・DCバイアス 00V 150φドラム 70mm/ s VH= 260mm/ 5 500μm 600μm 60V 表1 表1より本発明に係るフタロシアニン感光体を使用し、
非接触現像法にて現像を行なうことにより、33℃、8
0%R1口、という高温高湿条件下で5万プリントの繰
り返し使用後においても高い解像度が得られ、地力ブリ
の発生が改良されることがわかった。
Developing device ('r, image forming body, l!i! speed, surface potential, sleeve linear speed, development gap, developer layer thickness, DC bias 00V 150φ drum 70mm/s VH= 260mm/ 5 500μm 600μm 60V Table 1 Table Using the phthalocyanine photoreceptor according to the present invention from 1,
By performing development using a non-contact development method, 33℃, 8
It was found that even after repeated use of 50,000 prints under the high temperature and high humidity conditions of 0% R1 mouth, high resolution was obtained and the occurrence of soil blurring was improved.

[発明の効果] 以上詳細に述べたように、本発明の画像形成方法により
、接触現像方式においても外部環境の影響を受けにくく
、かつ高温高湿下における繰り返し使用による画質の低
下を改良することができる。
[Effects of the Invention] As described in detail above, the image forming method of the present invention is less susceptible to the influence of the external environment even in the contact development method, and improves image quality deterioration due to repeated use under high temperature and high humidity conditions. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する画像形成装置の1例である複
写機の概略断面図であり、第2図は第1図に示される複
写機の複写動作のブロック図を示し、第3図は第1図に
示される複写機の現像器の要部断面図である。 また、第4図〜第9図はそれぞれ本発明に係る感光体の
層構成を例示する断面図であり、第10図〜第12図は
それぞれ本発明に係るフタロシア二ン顔料の示差熱曲線
図、第13図はβ型チタニルフタロシアニン顔料の示差
熱曲線図である。 なお、図面に示す符号において、 1・・・感光体 2・・・俗電器 5・・・転写極 8・・・クリーニング装輛 9・・・定着ローラー 10・・・レーザー光学系 17R,17G、17B・・・CCD搬像素子18・・
・原稿 31.32,33.34・・・現像器 41・・・現像スリーブ 42・・・磁石体 43・・・現像剤溜まり 44・・・層厚規制ブレード 63・・・転写ユニット 71・・・導電性支持体 72・・・キャリア光生層 73・・・キャリア輸送層 74、 74’ 75・・・中間層 し・・・像露光 E・・・現像域 である。
FIG. 1 is a schematic sectional view of a copying machine which is an example of an image forming apparatus used in the present invention, FIG. 2 is a block diagram of the copying operation of the copying machine shown in FIG. 1, and FIG. 2 is a sectional view of a main part of the developing device of the copying machine shown in FIG. 1. FIG. Further, FIGS. 4 to 9 are cross-sectional views illustrating the layer structure of the photoreceptor according to the present invention, and FIGS. 10 to 12 are differential thermal curve diagrams of the phthalocyanine pigment according to the present invention, respectively. , FIG. 13 is a differential thermal curve diagram of a β-type titanyl phthalocyanine pigment. In addition, in the symbols shown in the drawings, 1... Photoreceptor 2... Electric appliance 5... Transfer pole 8... Cleaning device 9... Fixing roller 10... Laser optical system 17R, 17G, 17B...CCD image carrier element 18...
・Documents 31, 32, 33, 34...Developer 41...Developing sleeve 42...Magnet 43...Developer reservoir 44...Layer thickness regulating blade 63...Transfer unit 71... - Conductive support 72...Carrier photogenerating layer 73...Carrier transport layer 74, 74' 75...Intermediate layer...Image exposure E...Development area.

Claims (1)

【特許請求の範囲】[Claims] 帯電及び像露光によって像担持体上に静電潜像を形成し
、この静電潜像を可視像化する画像形成方法において、
前記像担持体の感光層の光導電性物質として、真空中で
の吸着ガス成分分析による吸着ガス成分中、分子数で水
分子を最も多く含むフタロシアニン顔料を用い、かつ、
前記静電潜像の可視像化のための現像に際して、前記像
担持体とこれに対する現像剤搬送担体とを非接触状態に
保持しながら現像領域に交番の振動電界を付与すること
を特徴とする画像形成方法。
In an image forming method in which an electrostatic latent image is formed on an image carrier by charging and image exposure, and this electrostatic latent image is made into a visible image,
As the photoconductive substance of the photosensitive layer of the image carrier, a phthalocyanine pigment containing the largest number of water molecules among the adsorbed gas components determined by an adsorbed gas component analysis in vacuum is used, and
During the development for visualizing the electrostatic latent image, an alternating oscillating electric field is applied to the development area while maintaining the image carrier and the developer transport carrier therewith in a non-contact state. image forming method.
JP2034359A 1989-11-28 1990-02-15 Image forming method Pending JPH03237465A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2034359A JPH03237465A (en) 1990-02-15 1990-02-15 Image forming method
EP19900312847 EP0430630A3 (en) 1989-11-28 1990-11-27 Electrophotographic photoreceptor and method of forming images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034359A JPH03237465A (en) 1990-02-15 1990-02-15 Image forming method

Publications (1)

Publication Number Publication Date
JPH03237465A true JPH03237465A (en) 1991-10-23

Family

ID=12411970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034359A Pending JPH03237465A (en) 1989-11-28 1990-02-15 Image forming method

Country Status (1)

Country Link
JP (1) JPH03237465A (en)

Similar Documents

Publication Publication Date Title
JP4384014B2 (en) Electrophotographic photosensitive member, and electrophotographic apparatus and process cartridge using the same
JP2001242656A (en) Electrophotographic photoreceptor
JP2696400B2 (en) Image forming method and apparatus
JP4497060B2 (en) Image forming method and image forming apparatus
JP3277285B2 (en) Image forming method
JP2007212886A (en) Electrostatic latent image bearing member, method for manufacturing same, image forming method and apparatus, and process cartridge
JPH03237465A (en) Image forming method
JP2759344B2 (en) Image forming method and apparatus
JP2838429B2 (en) Image forming method
JPH09127711A (en) Electrophotographic method and electrophotographic photoreceptor used therefor
JPH05100458A (en) Electrophotographic sensitive body
JPH08152721A (en) Electrophotographic photoreceptor and image forming method and device therefor
EP0430630A2 (en) Electrophotographic photoreceptor and method of forming images
JP2704658B2 (en) Image forming method
JPH1048866A (en) Electrophotographic photoreceptor and image forming device using the same
JP4873728B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus and process cartridge containing azo pigment
JP2696399B2 (en) Image forming method and apparatus
JP4728919B2 (en) Image forming method and image forming apparatus
JP2743286B2 (en) Image forming method and apparatus
JP2956476B2 (en) Electrostatic latent image holder, image forming method, and image forming apparatus
JP2000194150A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus both having this photoreceptor
JP2961574B2 (en) Image forming method and apparatus
JPH0337672A (en) Image forming method and device thereof
JP2976312B2 (en) Electrophotographic photoreceptor
JP5375304B2 (en) Image forming method and image forming apparatus