JPH0323725B2 - - Google Patents

Info

Publication number
JPH0323725B2
JPH0323725B2 JP57217304A JP21730482A JPH0323725B2 JP H0323725 B2 JPH0323725 B2 JP H0323725B2 JP 57217304 A JP57217304 A JP 57217304A JP 21730482 A JP21730482 A JP 21730482A JP H0323725 B2 JPH0323725 B2 JP H0323725B2
Authority
JP
Japan
Prior art keywords
swirl
intake
engine
exhaust gas
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57217304A
Other languages
Japanese (ja)
Other versions
JPS59105929A (en
Inventor
Masao Kishimoto
Mitsuo Hitomi
Tetsuo Kitamura
Haruhiko Taketomo
Takashige Tokushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57217304A priority Critical patent/JPS59105929A/en
Publication of JPS59105929A publication Critical patent/JPS59105929A/en
Publication of JPH0323725B2 publication Critical patent/JPH0323725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 この発明は排気ガス浄化装置の温度に対応して
吸気のスワールの強さを変えるエンジンの吸気装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake device that changes the strength of intake air swirl in accordance with the temperature of an exhaust gas purification device.

従来、エンジンの吸気装置として、エンジンの
運転状態検出手段と、これからの検出信号により
吸気のスワールの強さを制御するスワール制御手
段とを装備したものが知られている。たとえば、
特開昭54−74021号公報記載のものが挙げられる。
2. Description of the Related Art Conventionally, engine intake devices have been known that are equipped with engine operating state detection means and swirl control means for controlling the strength of intake air swirl based on detection signals from the engine. for example,
Examples include those described in JP-A-54-74021.

上記吸気装置は吸気量が少ない低負荷運転域に
おいて、吸気流速を早めることにより、燃焼室内
にスワールを形成し、混合気の燃焼速度を高めて
燃焼効率を向上させる効果を有する。しかし、低
負荷運転域では排気温度は低いので、上記公報記
載のように低負荷運転域において混合気の燃焼効
率を向上させると、排気ガス温度がさらに低下し
て、排気系に設けられた排気ガス浄化装置の触媒
が反応温度に到達せず、排気ガス浄化が行われな
くなる欠点がある。
The above-mentioned intake device has the effect of increasing the intake air flow velocity in a low-load operation range where the amount of intake air is small, thereby forming a swirl in the combustion chamber, increasing the combustion speed of the air-fuel mixture, and improving combustion efficiency. However, the exhaust gas temperature is low in the low-load operation range, so if the combustion efficiency of the mixture is improved in the low-load operation range as described in the above publication, the exhaust gas temperature will further decrease, and the exhaust gas temperature installed in the exhaust system will decrease. There is a drawback that the catalyst of the gas purification device does not reach the reaction temperature and exhaust gas purification is not performed.

この発明は上記欠点を解消するためになされた
もので、排気系に配設された排気ガス浄化装置の
温度を検出する温度センサと、該温度センサで検
出される排気ガス浄化装置の温度が所定値以下に
あるとき、スワール制御手段で制御されるスワー
ルを弱める方向に補正する補正手段とを設けるこ
とにより、低負荷運転域においても排気ガス浄化
装置の触媒を有効に反応させ得るエンジンの吸気
装置を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks, and includes a temperature sensor that detects the temperature of an exhaust gas purification device installed in an exhaust system, and a temperature of the exhaust gas purification device detected by the temperature sensor. An intake system for an engine capable of effectively causing a catalyst of an exhaust gas purification device to react even in a low load operating range by providing a correction means for correcting the swirl in a direction of weakening the swirl controlled by the swirl control means when the value is below the value. is intended to provide.

以下、この発明の実施例を図面にもとづいて説
明する。
Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例にかかるエンジン
の断面図である。この図において、1はピストン
12が嵌挿されたシリンダブロツク、3は下方に
燃焼室4が形成されたシリンダヘツド、5は燃焼
室4に連通開口した吸気通路であり、該吸気通路
5はベンチユリ部6、ノズル7、スロツトル弁8
などを備えた気化器9を有し、かつ吸気通路5の
燃焼室4の近傍部分は隔壁10によつて、通路面
積を比較的小さく設定した1次側吸気通路5a
と、通路面積を比較的大きく設定した2次側吸気
通路5bとに区画形成されている。
FIG. 1 is a sectional view of an engine according to an embodiment of the present invention. In this figure, 1 is a cylinder block into which a piston 12 is inserted, 3 is a cylinder head in which a combustion chamber 4 is formed below, and 5 is an intake passage that communicates with the combustion chamber 4. Part 6, nozzle 7, throttle valve 8
The primary side intake passage 5a has a carburetor 9 equipped with a carburetor 9, and has a relatively small passage area by a partition wall 10 in the vicinity of the combustion chamber 4 of the intake passage 5.
and a secondary intake passage 5b having a relatively large passage area.

11は吸気通路5の吸気ポート5cを開閉する
吸気弁、12は燃焼室4からの排気通路、13は
排気通路12の排気ポート12aを開閉する排気
弁、14は吸気弁11、排気弁13をエンジンの
回転に同期してそれぞれ所定のタイミングで開閉
させる動弁機構、15は排気通路12に設けられ
た排気ガス浄化装置、16は排気ガス浄化装置1
5の温度を検出する温度センサである。
11 is an intake valve that opens and closes the intake port 5c of the intake passage 5; 12 is an exhaust passage from the combustion chamber 4; 13 is an exhaust valve that opens and closes the exhaust port 12a of the exhaust passage 12; 14 is the intake valve 11 and the exhaust valve 13; A valve operating mechanism that opens and closes at predetermined timings in synchronization with the rotation of the engine, 15 an exhaust gas purification device provided in the exhaust passage 12, 16 an exhaust gas purification device 1
This is a temperature sensor that detects the temperature of No. 5.

17はエンジンの運転状態を検出する運転状態
検出手段であり、スロツトル弁8のすぐ下流の吸
気負圧を検出する負圧センサからなつている。1
8は運転状態検出手段17の信号にもとづいて、
燃焼室4内に形成されるスワール(第2図)Sの
強さを制御するスワール制御手段であり、コント
ロールユニツト19、サーボモータ20、上記2
次側吸気通路5bを開閉する副スロツトル弁21
からなり、副スロツトル弁21の回転軸21aに
は歯車機構22を介してサーボモータ20の回転
軸20aが回転連結されている。23は上記コン
トロールユニツト19の補正手段である。
Reference numeral 17 denotes an operating state detection means for detecting the operating state of the engine, and is composed of a negative pressure sensor for detecting the intake negative pressure immediately downstream of the throttle valve 8. 1
8 is based on the signal from the operating state detection means 17.
It is a swirl control means for controlling the strength of the swirl (Fig. 2) S formed in the combustion chamber 4, and is composed of a control unit 19, a servo motor 20, and the above-mentioned 2.
Sub-throttle valve 21 that opens and closes the next intake passage 5b
A rotating shaft 20a of a servo motor 20 is rotatably connected to a rotating shaft 21a of the sub-throttle valve 21 via a gear mechanism 22. 23 is a correction means of the control unit 19.

第2図は上記1次側および2次側吸気通路5
a,5bの平面説明図である。1次側吸気通路5
aは第1図のように通路断面を比較的偏平な形状
とした上で、さらに第2図のように、吸気ポート
5cに向かうにしたがつて通路幅が次第にせまく
なるように、かつ燃焼室4の周方向へ指向して、
強力なスワールSを形成するようになつている。
Figure 2 shows the above-mentioned primary side and secondary side intake passages 5.
FIG. 5 is an explanatory plan view of a and 5b. Primary side intake passage 5
a has a relatively flat passage cross section as shown in Fig. 1, and furthermore, as shown in Fig. 2, the passage width is gradually narrowed toward the intake port 5c, and the combustion chamber is Directed in the circumferential direction of 4,
It is starting to form a strong swirl S.

第3図は第1図に示されたコントロールユニツ
ト19とその補正手段23のブロツク図を示す。
この図において、コントロールユニツト19は運
転状態検出手段17の検出信号Pすなわち吸気負
圧にもとづいてサーボモータ20を制御するもの
で、主開度信号発生回路24、加算器25、およ
び変換器26からなつている。また補正手段23
は温度センサ16の出力信号にもとづいて作動す
るもので、比較路27および副開度信号発生回路
28からなつている。
FIG. 3 shows a block diagram of the control unit 19 and its correction means 23 shown in FIG.
In this figure, the control unit 19 controls the servo motor 20 based on the detection signal P of the operating state detection means 17, that is, the intake negative pressure, and is configured to control the servo motor 20 based on the detection signal P of the operating state detection means 17, that is, the intake negative pressure. It's summery. Also, the correction means 23
operates based on the output signal of the temperature sensor 16, and consists of a comparison path 27 and an auxiliary opening degree signal generation circuit 28.

第4図は第3図に示された主開度信号発生回路
24から出力される主開度信号Aによる制御特性
を示す。第4図において、横軸にはエンジンの負
荷に対応する吸気負圧が、縦軸には副スロツトル
弁開度がそれぞれ示されている。第4図に示され
た制御によれば、吸気負圧−520mmHg以上のアイ
ドリング運転を含むエンジンの極低負荷運転時に
は、第1図の副スロツトル弁21の全閉(0゜)に
維持することによつて吸気を1次側吸気通路5a
のみから供給させ、この運転域での燃焼効率を高
めて燃焼消費率を最小とし、一方、最も頻繁に使
用される吸気負圧−520〜150mmHgの範囲のエン
ジンの低中負荷運転時には、副スロツトル弁21
を20゜程度の比較的低い開度に一定に保持するこ
とにより、この運転域における燃料消費率を最小
にすることができる。
FIG. 4 shows control characteristics based on the main opening signal A output from the main opening signal generating circuit 24 shown in FIG. In FIG. 4, the horizontal axis shows the intake negative pressure corresponding to the engine load, and the vertical axis shows the sub-throttle valve opening. According to the control shown in FIG. 4, the sub-throttle valve 21 shown in FIG. 1 is maintained fully closed (0°) during extremely low load operation of the engine, including idling operation where the intake negative pressure is -520 mmHg or higher. The intake air is transferred to the primary side intake passage 5a.
In contrast, during low and medium load operation of the engine in the range of -520 to 150 mmHg, which is the most frequently used intake negative pressure range, the secondary throttle valve 21
By keeping the opening constant at a relatively low opening of about 20°, the fuel consumption rate in this operating range can be minimized.

第5図は第3図に示された副開度信号発生回路
28から出力される副開度信号Bによる制御特性
を示す。この図において、横軸には時間が、縦軸
には副スロツトル弁開度加算量がそれぞれ示さ
れ、第3図に示された比較器27からの出力信号
が副開度信号発生回路28に入力された時点か
ら、時間の経過に伴つて副スロツトル弁開度加算
量が段階的に増加するようになつている。
FIG. 5 shows control characteristics based on the sub-opening signal B output from the sub-opening signal generating circuit 28 shown in FIG. In this figure, the horizontal axis shows time, and the vertical axis shows the additional amount of the auxiliary throttle valve opening, and the output signal from the comparator 27 shown in FIG. From the time of input, the additional amount of auxiliary throttle valve opening increases in stages as time passes.

上記構成において、第3図に示されたコントロ
ールユニツト19の主開度信号発生回路24は、
エンジンの運転状態検出手段17の検出信号P、
つまり吸気負圧にもとづいて、そのときの吸気負
圧に対応した大きさの主開度信号Aを加算器25
を通して変換器26に出力する。そして、変換器
26は上記主開度信号Aを副スロツトル弁開度信
号としてサーボモータ20に与え、サーボモータ
20を所定の方向に所定角度回転駆動させる。こ
れにより第1図に示された歯車機構22を介して
副スロツトル弁21を所定角度に回転駆動し、1
次側と2次側吸気通路5a,5b間の流量比を変
えて、スワールS(第2図)の強さを適宜変化さ
せ、燃焼効率を向上させている。
In the above configuration, the main opening signal generation circuit 24 of the control unit 19 shown in FIG.
Detection signal P of engine operating state detection means 17,
In other words, based on the intake negative pressure, the adder 25 generates a main opening signal A having a magnitude corresponding to the intake negative pressure at that time.
It is output to the converter 26 through. Then, the converter 26 supplies the main opening signal A to the servo motor 20 as a sub-throttle valve opening signal, and drives the servo motor 20 to rotate in a predetermined direction at a predetermined angle. As a result, the sub-throttle valve 21 is rotated at a predetermined angle via the gear mechanism 22 shown in FIG.
By changing the flow rate ratio between the next side and the secondary side intake passages 5a, 5b, the strength of the swirl S (FIG. 2) is changed as appropriate to improve combustion efficiency.

こうして、エンジンの低負荷運転域では、第4
図で述べたように副スロツトル弁21が全閉また
は20゜程度の開度に保たれることにより、第2図
のように燃焼室4内に強いスワールSが形成され
る。このため、燃焼速度が向上して、排気温度が
所定値以下、すなわち第1図の排気ガス浄化装置
15の触媒反応温度以下に低下する。このとき、
第3図において、温度センサ16は上記触媒の温
度に相当する出力信号を比較器27に入力するの
で、その出力信号のレベルが上記触媒の反応温度
に相当する基準電圧値に達しないときは、副開度
信号発生回路28により段階的に増大する副開度
信号Bが発信される。この副開度信号Bは加算器
25に入力されて主開度信号Aに加算される。そ
の結果、上記副開度信号Bの増量分に応じてサー
ボモータ20が開弁方向に駆動して、スワール
(第2図)Sの強さが弱まる方向に補正され、混
合気の燃焼速度が抑制される。その結果、排気ガ
ス温度が第1図の排気ガス浄化装置15の触媒反
応温度以上に確保され、排気ガス浄化用触媒が有
効に反応する。
In this way, in the engine's low load operating range, the fourth
As described in the figure, by keeping the sub-throttle valve 21 fully closed or at an opening of about 20 degrees, a strong swirl S is formed in the combustion chamber 4 as shown in FIG. As a result, the combustion speed is increased and the exhaust gas temperature is lowered to a predetermined value or lower, that is, lower than the catalytic reaction temperature of the exhaust gas purification device 15 shown in FIG. 1. At this time,
In FIG. 3, the temperature sensor 16 inputs an output signal corresponding to the temperature of the catalyst to the comparator 27, so when the level of the output signal does not reach the reference voltage value corresponding to the reaction temperature of the catalyst, The sub-opening signal generation circuit 28 generates a sub-opening signal B that increases stepwise. This sub-opening signal B is input to an adder 25 and added to the main opening signal A. As a result, the servo motor 20 is driven in the valve opening direction in accordance with the increase in the sub-opening signal B, the strength of the swirl (Fig. 2) S is corrected in the direction of weakening, and the combustion speed of the air-fuel mixture is increased. suppressed. As a result, the exhaust gas temperature is ensured to be higher than the catalytic reaction temperature of the exhaust gas purifying device 15 shown in FIG. 1, and the exhaust gas purifying catalyst reacts effectively.

上記のように触媒の反応温度が確保されると、
第3図において、温度センサ16の出力信号のレ
ベルが上昇して比較器27の基準電圧値に達し、
副開度信号Bの発信が停止する。したがつて、そ
の後は上述の吸気負圧のみでスワールの強さが制
御される。
Once the reaction temperature of the catalyst is secured as above,
In FIG. 3, the level of the output signal of the temperature sensor 16 increases and reaches the reference voltage value of the comparator 27;
The transmission of the sub-opening signal B stops. Therefore, thereafter, the strength of the swirl is controlled only by the above-mentioned intake negative pressure.

なお、第5図のように副開度信号Bによる開度
加算量を段階的に増大させたのは、スワールの強
さの急激な変化を避けるためである。
The reason why the opening addition amount based on the sub-opening signal B is increased in stages as shown in FIG. 5 is to avoid sudden changes in the strength of the swirl.

また、上記実施例ではエンジンの運転状態検出
手段(第1図)17は吸気負圧のみを用いるもの
としたが、この吸気負圧に加えてエンジンの回転
数を検出して行うものでもよい。さらに、スワー
ル制御手段18についても種々のものが考えら
れ、たとえば、1次側吸気通路5aと2次側吸気
通路5bとを廃止し、つまり1本の通路に集合
し、その吸気通路内の燃焼室側端部近傍に偏向板
(図示せず)を設け、この偏向板の角度調整によ
りスワールの強さを変えるようなものとすること
もできる。
Further, in the above embodiment, the engine operating state detecting means (FIG. 1) 17 uses only the intake negative pressure, but it may detect the engine rotational speed in addition to the intake negative pressure. Furthermore, various types of swirl control means 18 can be considered. For example, the primary side intake passage 5a and the secondary side intake passage 5b are eliminated, that is, they are combined into one passage, and the combustion in the intake passage is It is also possible to provide a deflection plate (not shown) near the chamber side end and change the strength of the swirl by adjusting the angle of this deflection plate.

以上説明したように、この発明のエンジンの吸
気装置によれば、排気系に配設された排気ガス浄
化装置の温度を検出する温度センサと、該温度セ
ンサで検出される排気ガス浄化装置の温度が所定
値以下にあるとき、スワール制御手段で制御され
るスワールを弱める方向に補正する補正手段とを
設けることにより、燃焼効率を極力高めながら、
低負荷運転域においても排気ガス浄化装置の触媒
を有効に反応させることができる。
As explained above, the engine intake system of the present invention includes a temperature sensor that detects the temperature of the exhaust gas purification device disposed in the exhaust system, and a temperature of the exhaust gas purification device detected by the temperature sensor. is below a predetermined value, by providing a correction means that corrects the swirl in the direction of weakening the swirl controlled by the swirl control means, while increasing the combustion efficiency as much as possible.
Even in a low load operating range, the catalyst of the exhaust gas purification device can react effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にかかるエンジン
の断面図、第2図は吸気通路を示す平面断面図、
第3図はコントロールユニツトとその補正手段を
示す系統図、第4図は主開度信号による制御を示
す特性図、第5図は副開度信号による制御を示す
特性図である。 12……排気通路、15……排気ガス浄化装
置、16……温度センサ、17……運転状態検出
手段、18……スワール制御手段、A……主開度
信号、B……副開度信号、S……スワール。
FIG. 1 is a sectional view of an engine according to an embodiment of the present invention, FIG. 2 is a plan sectional view showing an intake passage,
FIG. 3 is a system diagram showing the control unit and its correction means, FIG. 4 is a characteristic diagram showing control using the main opening signal, and FIG. 5 is a characteristic diagram showing control using the sub-opening signal. 12... Exhaust passage, 15... Exhaust gas purification device, 16... Temperature sensor, 17... Operating state detection means, 18... Swirl control means, A... Main opening signal, B... Sub-opening signal , S...Swirl.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの運転状態を検出する運転状態検出
手段と、該運転状態検出手段の検出信号を受けて
運転状態に応じエンジンに供給される吸気のスワ
ールの強さを制御するスワール制御手段とを備え
たエンジンの吸気装置において、排気系に配設さ
れた排気ガス浄化装置の温度を検出する温度セン
サと、該温度センサで検出される排気ガス浄化装
置の温度が所定値以下にあるとき、上記スワール
制御手段で制御されるスワールを弱める方向に補
正する補正手段とを設けたことを特徴とするエン
ジンの吸気装置。
1 Equipped with an operating state detection means for detecting the operating state of the engine, and a swirl control means for receiving a detection signal from the operating state detection means and controlling the strength of the swirl of intake air supplied to the engine according to the operating state. In the intake system of the engine, there is a temperature sensor that detects the temperature of the exhaust gas purification device disposed in the exhaust system, and when the temperature of the exhaust gas purification device detected by the temperature sensor is below a predetermined value, the swirl control is performed. An intake system for an engine, comprising a correction means for correcting a swirl controlled by the means in a direction of weakening the swirl.
JP57217304A 1982-12-10 1982-12-10 Intake apparatus for engine Granted JPS59105929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217304A JPS59105929A (en) 1982-12-10 1982-12-10 Intake apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217304A JPS59105929A (en) 1982-12-10 1982-12-10 Intake apparatus for engine

Publications (2)

Publication Number Publication Date
JPS59105929A JPS59105929A (en) 1984-06-19
JPH0323725B2 true JPH0323725B2 (en) 1991-03-29

Family

ID=16702043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217304A Granted JPS59105929A (en) 1982-12-10 1982-12-10 Intake apparatus for engine

Country Status (1)

Country Link
JP (1) JPS59105929A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523514C2 (en) * 2001-11-30 2004-04-27 Scania Cv Ab Method and apparatus for a combustion engine with catalytic converter and diesel engine

Also Published As

Publication number Publication date
JPS59105929A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
JPS62159771A (en) Ignition timing control method for internal combustion engine
JPS5970853A (en) Controller for car engine
JPH0433381Y2 (en)
US4383408A (en) Exhaust gas purifying method of an internal combustion engine
JPH0323725B2 (en)
JPH0557411B2 (en)
JP2594943Y2 (en) Fuel control device for internal combustion engine
JPH02201061A (en) Engine output control method
JPH05222997A (en) Idle engine speed control device for engine
JP2002115594A (en) Intake air temperature compensation control apparatus for engine
JPS6341622A (en) Superchargning quantity controlling method for internal combustion engine
JPH0417793Y2 (en)
JPH03490B2 (en)
JPH0330601Y2 (en)
JPS6123628Y2 (en)
JPH01130032A (en) Fuel injection quantity controller for internal combustion engine
JPS6014915Y2 (en) Engine exhaust gas recirculation device
JP2816437B2 (en) Internal combustion engine fuel control device
JP2784014B2 (en) Engine air-fuel ratio control device
JPS6034753Y2 (en) Boost pressure control device for turbocharged engines
JPH0452861B2 (en)
JPH09217658A (en) Egr control device for internal combustion engine
JP2007062459A (en) Controller for vehicle
JPH086616B2 (en) Engine controller
JPH0777049A (en) Controller of diesel engine