JPH032370B2 - - Google Patents

Info

Publication number
JPH032370B2
JPH032370B2 JP15554384A JP15554384A JPH032370B2 JP H032370 B2 JPH032370 B2 JP H032370B2 JP 15554384 A JP15554384 A JP 15554384A JP 15554384 A JP15554384 A JP 15554384A JP H032370 B2 JPH032370 B2 JP H032370B2
Authority
JP
Japan
Prior art keywords
epoxy resin
aminobenzylamine
epoxy
acid
para
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15554384A
Other languages
Japanese (ja)
Other versions
JPS6134017A (en
Inventor
Hiroyuki Koike
Moriji Morita
Teruhiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15554384A priority Critical patent/JPS6134017A/en
Publication of JPS6134017A publication Critical patent/JPS6134017A/en
Publication of JPH032370B2 publication Critical patent/JPH032370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/62Macromolecular organic compounds or oligomers thereof obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は臭気が少なく、垞枩での硬化性に優
れ、か぀耐熱性にすぐれた硬化物を䞎える熱硬化
性組成物に関する。 埓来の技術 垞枩硬化型の゚ポキシ暹脂組成物は塗料甚、接
着剀甚、泚型甚等に広く甚いられおいる。しかし
埓来甚いられおいる垞枩硬化型の゚ポキシ暹脂組
成物は臭気が匷か぀たり、硬化䞭に空気䞭の炭酞
ガスを吞収しお硬化䞍良を起したり、たた埗られ
る硬化物の耐熱性が悪か぀たりするために甚途が
制限されおいた。 このような欠点を解決するために硬化剀の分子
量を倧きくしたり、あるいは硬化剀ずしお芳銙族
アミン化合物を甚いるなどが提案され、䞀郚実甚
化されおいる。しかし、それらを甚いるず暹脂組
成物の粘床が高くなり、䜜業性の点で新たな問題
が生じたり、硬化物の耐熱性が䜎䞋したり、たた
硬化速床が小になるなどの欠点も生じおいる。 䟋えば、メタアミノベンゞルアミンず、ビスフ
゚ノヌルゞグリシゞル゚ヌテルからなる組成物
が提案されおいる米囜特蚱3317468号が、こ
の皮の組成物は垞枩における硬化速床が小さく、
か぀埗られる硬化物の耐熱性が劣るずいう欠点が
ある。 発明が解決しようずする問題点 そこで、本発明者は鋭意怜蚎の結果、ビスプ
ノヌルゞグリシゞル゚ヌテルに倉え、分子䞭
に個以䞊の゚ポキシ基を有する゚ポキシ暹脂
100〜30重量ず、分子䞭に個以䞋の゚ポキ
シ基を有する゚ポキシ暹脂〜70重量からなる
゚ポキシ暹脂を䜿甚するこずにより、䞊蚘欠点が
改良され、垞枩硬化速床が速く、耐熱性も著しく
向䞊した熱硬化性組成物の埗られるこずを芋出し
た。 しかしながら、䞀方の硬化剀ずしお甚いられる
メタアミノベンゞルアミンは、融点が玄40℃で、
垞枩で固䜓状で組成物䞭ぞの均䞀混合性が悪く、
混合が䞍充分である堎合には、゚ポキシ暹脂ずの
反応が均䞀に速やかに進行せず、接着性、塗料密
着性、成圢物匷床が充分発揮されない欠点があ぀
た。そこで、適圓な有機溶剀を䜿甚するこずも詊
みられたが、硬化時有機溶剀を揮散させる際、安
党䞊、公害䞊の問題がある他、暹脂郚分に気泡を
生じ、接着性、塗料密着性、成圢物匷床を劣化さ
せる。 又、メタアミノベンゞルアミンを倉性しお液状
アダクトずしお甚いるこずも詊みられたが、埓来
の䟋では接着性が䜎䞋するなど、充分なものは埗
られおいない。 本発明者はパラアミノベンゞルアミンが垞枩で
液状であるこずに着目し、接着性、塗料、泚型品
等に䜿甚を詊みたずころ、゚ポキシ暹脂ずの反応
が均䞀に速やかに進行するず共に、メタアミノベ
ンゞルアミンず同等以䞊の垞枩硬化性、及び耐熱
性を発揮しうるこずを芋出した。さらに、メタア
ミノベンゞルアミンず混合しお甚いた堎合、融点
降䞋によりパラアミノベンゞルアミンより曎に融
点が䞋がり、埓来のメタアミノベンゞルアミン単
独の堎合よりかるかに反応性がよく、したが぀お
硬化時間は短瞮され、耐熱性も向䞊するこずを芋
出した。 本発明はかかる知芋にもずづき完成したもので
ある。 問題点を解決するための手段・䜜甚 本発明は、 (1)(a) 分子䞭に個以䞊の゚ポキシ基を有する
゚ポキシ暹脂100〜30重量、分子䞭に
個以䞋の゚ポキシ基を有する゚ポキシ暹脂
〜70重量からなる゚ポキシ暹脂、および (b) パラアミノベンゞルアミン類を含有しおな
るこずを特城ずする熱硬化性組成物、ならび
に (2)(a) 分子䞭に個以䞊の゚ポキシ基を有する
゚ポキシ暹脂100〜30重量、分子䞭に
個以䞋の゚ポキシ基を有する゚ポキシ暹脂
〜70重量からなる゚ポキシ暹脂、および (b) パラアミノベンゞルアミン類ず、メタアミ
ノベンゞルアミン類ずを含有しおなるこずを
特城ずする熱硬化性組成物である。 以䞋、発明の構成を䜜甚ず共に詳説する。 本発明の゚ポキシ暹脂ずしおは、たずえば次の
ようなものが挙げられる。 (i) アミン系゚ポキシ暹脂
INDUSTRIAL APPLICATION FIELD The present invention relates to a thermosetting composition that gives a cured product with little odor, excellent curability at room temperature, and excellent heat resistance. BACKGROUND OF THE INVENTION Room temperature curable epoxy resin compositions are widely used for paints, adhesives, casting, etc. However, conventionally used room-temperature curing epoxy resin compositions have a strong odor, absorb carbon dioxide gas in the air during curing, resulting in curing failure, and the resulting cured product has poor heat resistance. Its use was limited due to the lack of use. In order to solve these drawbacks, it has been proposed to increase the molecular weight of the curing agent or to use an aromatic amine compound as the curing agent, and some of these have been put into practical use. However, their use increases the viscosity of the resin composition, causing new problems in terms of workability, reducing the heat resistance of the cured product, and slowing down the curing speed. There is. For example, a composition consisting of meta-aminobenzylamine and bisphenol A diglycidyl ether has been proposed (US Pat. No. 3,317,468), but this type of composition has a slow curing rate at room temperature;
Another disadvantage is that the resulting cured product has poor heat resistance. Problems to be Solved by the Invention Therefore, as a result of intensive study, the present inventors changed to bisphenol A diglycidyl ether, an epoxy resin having three or more epoxy groups in one molecule.
By using an epoxy resin consisting of 100 to 30% by weight and 0 to 70% by weight of an epoxy resin having two or less epoxy groups in one molecule, the above drawbacks are improved, the room temperature curing speed is fast, and the heat resistance is high. It has also been found that thermosetting compositions with significantly improved properties can be obtained. However, meta-aminobenzylamine, which is used as one of the curing agents, has a melting point of about 40°C;
It is solid at room temperature and has poor uniformity in mixing into compositions.
When mixing is insufficient, the reaction with the epoxy resin does not proceed uniformly and quickly, resulting in insufficient adhesion, paint adhesion, and molded product strength. Therefore, attempts have been made to use an appropriate organic solvent, but this poses safety and pollution problems when volatilizing the organic solvent during curing, and also causes air bubbles to form in the resin part, resulting in poor adhesion and paint adhesion. Deteriorates the strength of the molded product. Also, attempts have been made to modify meta-aminobenzylamine and use it as a liquid adduct, but conventional examples have resulted in poor adhesion and have not been satisfactory. The present inventor focused on the fact that para-aminobenzylamine is liquid at room temperature, and tried using it for adhesives, paints, cast products, etc., and found that the reaction with epoxy resin proceeded uniformly and quickly, and meta-aminobenzylamine It has been found that it can exhibit room temperature curability and heat resistance equivalent to or higher than that of benzylamine. Furthermore, when mixed with meta-aminobenzylamine, the melting point is lower than that of para-aminobenzylamine due to melting point depression, and the reactivity is much better than that of conventional meta-aminobenzylamine alone, so the curing time is reduced. It has been found that the heat resistance is improved. The present invention was completed based on this knowledge. Means/Action for Solving the Problems The present invention provides: (1)(a) 100 to 30% by weight of an epoxy resin having 3 or more epoxy groups in one molecule;
Epoxy resin with 0 or less epoxy groups
A thermosetting composition characterized by containing an epoxy resin comprising ~70% by weight, and (b) para-aminobenzylamine, and (2) (a) three or more epoxy groups in one molecule. 100-30% by weight of epoxy resin with
Epoxy resin with 0 or less epoxy groups
This is a thermosetting composition characterized by containing an epoxy resin of ~70% by weight, and (b) para-aminobenzylamines and meta-aminobenzylamines. Hereinafter, the structure of the invention will be explained in detail together with its operation. Examples of the epoxy resin of the present invention include the following. (i) Amine-based epoxy resin

【匏】基を有する゚ポキシ 暹脂で、䟋えば、、N′、N′−テトラグリ
シゞルゞアミノゞプニルメタン、メタ−、
−ゞグリシゞルゞアミノゞプニルグリシゞ
ル゚ヌテル、、、N′、N′−テトラグリシ
ゞルテレフタルアミドなどの劂きシミノ基やア
ミド基を有する化合物ず、゚ピクロルヒドリ
ン、メチル゚ピクロルヒドリン、゚ピブロムヒ
ドリンなどの゚ピハロヒドリンずから合成され
る。 アミノ基を有する化合物の具䜓䟋ずしおは、
ゞアミノゞプニルメタン、メタキシリレンゞ
アミン、パラキシリレンゞアミン、メタアミノ
ベンゞルアミン、パラアミノベンゞルアミン、
、−ビスアミノメチルシクロヘキサン、
、−ビスアミノメチルシクロヘキサン、
、−ゞアミノシクロヘキサン、、−ゞ
アミノシクロヘキサン、メタプニレンゞアミ
ン、パラプニレンゞアミン、ベンゞルアミ
ン、ゞアミノゞプニルスルホン、ゞアミノゞ
プニル゚ヌテル、ゞアミノゞプニルサルフ
アむド、ゞアミノゞプニルケトン、ナフタリ
ンゞアミン、アニリン、トルむゞン、メタアミ
ノプノヌル、パラアミノプノヌル、アミノ
ナフトヌルなどが挙げられる。 たたアミド基を有する化合物の具䜓䟋ずしお
は、フタルアミド、む゜フタルアミド、テレフ
タルアミド、ベンズアミド、トルアミド、パラ
ヒドロキシベンズアミド、メタヌヒドロキシベ
ンズアミドなどが挙げられる。 これらのアミノ基たたはアミド基を有する化
合物においお、アミノ基又はアミド基以倖のヒ
ドロキシル基、カルボキシル基、メルカプト基
などの゚ピハロヒドリンず反応する基を有する
堎合、これらの゚ピハロヒドリンず反応する基
の䞀郚たたは党郚が゚ピハロヒドリンず反応
し、゚ポキシ基で眮換されおいおもよい。 (ii) プノヌル系゚ポキシ暹脂 ビスプノヌルゞグリシゞル゚ヌテル、゚
ポトヌトYDCN−220東郜化成株匏䌚瀟の商
品などのようにプノヌル系化合物ず゚ピハ
ロヒドリンから合成するこずができる。 プノヌル系化合物の具䜓䟋ずしおは、プ
ノヌル、クレゟヌル、ブチルプノヌル、オク
チルプノヌル、ベンゞルプノヌル、クミル
プノヌル、ナフトヌル、ハむドロキノン、カ
テコヌル、レゟルシン、ビスプノヌル、ビ
スプノヌル、ビスプノヌルスルホン、臭
玠化ビスプノヌル、ノボラツク暹脂、クレ
ゟヌルノボラツク暹脂、テトラプニル゚タ
ン、トリプニル゚タンなどが挙げられる。 (iii) アルコヌル系゚ポキシ暹脂 トリメチロヌルプロパントリグリシゞル゚ヌ
テル、ネオペンチルグリコヌルグリシゞル゚ヌ
テルなどのように、アルコヌル系化合物ず゚ピ
ハロヒドリンから合成するこずができる。 アルコヌル系化合物の具䜓䟋ずしおは、ブチ
ルアルコヌル、−゚チルヘキシルアルコヌル
などの䟡アルコヌル、゚チレングリコヌル、
ゞ゚チレングリコヌル、トリ゚チレングリコヌ
ル、ポリ゚チレングリコヌル、プロピレングリ
コヌル、ゞプロピレングリコヌル、ポリプロピ
レングリコヌル、、−ブタンゞオヌル、
、−ヘキサンゞオヌル、ネオペンチルグリ
コヌル、トリメチロヌルプロパン、グリセリ
ン、ペンタ゚リスリトヌル、ポリカプロラクト
ン、ポリテトラメチレン゚ヌテルグリコヌル、
ポリブタゞ゚ングリコヌル、氎添ビスプノヌ
ル、シクロヘキサンゞメタノヌル、ビスプ
ノヌル・゚チレンオキシド付加物、ビスプ
ノヌル・プロピレンオキシド付加物などの倚
䟡アルコヌル、及びこれら倚䟡アルコヌルず倚
䟡カルボン酞から䜜られるポリ゚ステルポリオ
ヌルなどが挙げられる。 (iv) 䞍飜和化合物の゚ポキシ化物 シクロペンタゞ゚ン゚ポキシド、゚ポキシ化
倧豆油、゚ポキシ化ポリブタゞ゚ン、ビニルシ
クロヘキセンゞ゚ポキシド、スチレンオキシ
ド、ナニオンカヌバむド瀟の商品名ERL−
4221、ERL−4234、ERL−4299などで知られ
る䞍飜和化合物の゚ポキシ化物などが挙げられ
る。 (v) グリシゞル゚ステル系゚ポキシ暹脂 安息銙酞グリシゞル゚ステル、テトラヒドロ
フタル酞ゞグリシゞル゚ステルなどのように、
カルボン酞ず゚ピハロヒドリンから合成するこ
ずができる。 カルボン酞の具䜓䟋ずしおは、安息銙酞、パ
ラオキシ安息銙酞、ブチル安息銙酞、などのモ
ノカルボン酞、アゞピン酞、セバチン酞、ドデ
カンゞカルボン酞、ダむマヌ酞、フタル酞、む
゜フタル酞、テレフタル酞、テトラヒドロフタ
ル酞、メチルテトラヒドロフタル酞、ヘキサヒ
ドロフタル酞、ヘツト酞、ナゞツク酞、マレむ
ン酞、フマヌル酞、トリメリツト酞、ベンれン
テトラカルボン酞、ブタンテトラカルボン酞、
ベンゟプノンテトラカルボン酞、−、
−ゞオキ゜テトラヒドロフリル−−メチ
ル−シクロヘキセン−、−ゞカルボン酞な
どの倚䟡カルボン酞が挙げられる。 (vi) りレタン系゚ポキシ暹脂 前蚘した倚䟡アルコヌルずゞむ゜シアナヌ
ト、およびグリシドヌルずから合成するこずが
できる。 ゞむ゜シアナヌトの具䜓䟋ずしおはトリレン
ゞむ゜シアナヌト、ゞプニルメタン−、
4′−ゞむ゜シアナヌト、ヘキサメチレンゞむ゜
シアナヌト、む゜ホロンゞむ゜シアナヌト、キ
シレンゞむ゜シアナヌト、ナフタリンゞむ゜シ
アナヌトなどが挙げられる。 (vii) その他の゚ポキシ暹脂 トリス゚ポキプロピルむ゜シアヌレヌト、グ
リシゞルメタアクリレヌト共重合䜓、さら
に前蚘した゚ポキシ暹脂のゞむ゜シアナヌト、
ゞカルボン酞、倚䟡プノヌルなどによる倉性
暹脂などが挙げられる。 なお、硬化速床ず耐熱性の点からは、個以
䞊の゚ポキシ基を有する゚ポキシ暹脂が特に奜
たしく、゚ポキシ暹脂の皮別ずしおは、アミン
系゚ポキシ暹脂及び、プノヌル系゚ポキシ暹
脂が特に奜たしい。 本発明においおは、゚ポキシ暹脂は単独で、
又は皮以䞊混合しお甚いるこずができる。 以䞊、本発明に甚いられる゚ポキシ暹脂の具䜓
䟋を列挙したが、本発明の組成物においおは、党
゚ポキシ暹脂䞭の100〜30重量が、分子䞭に
個以䞊の゚ポキシ基を有する゚ポキシ暹脂にな
るようにしなければならない。もし個以䞊の゚
ポキシ基を有する゚ポキシ暹脂量が30重量未満
であれば、本発明の組成物の硬化速床が遅くなる
だけでなく、硬化物の耐熱性が䜎䞋する。 本発明の組成物においおは、゚ポキシ暹脂の硬
化剀ずしお、パラアミノベンゞルアミン類、又は
これずメタアミノベンゞルアミン類ずが甚いられ
るが、この䞭にはメタアミノベンゞルアミンやパ
ラアミノベンゞルアミンず、前蚘したような゚ポ
キシ暹脂ずを゚ポキシ基に察し、アミノ基䞭の掻
性氎玠が過剰ずなるような条件で反応しお埗られ
る生成物であるこれらのアダクトが含たれる。た
たこのアダクトは、分離アダクトであ぀おも内圚
アダクトであ぀おも、䞡者の混合したものであ぀
おもよい。これらのベンゞルアミンに通垞、パラ
䜓やメタ䜓補造時に副生しおくるオルト䜓が含た
れおいおも、本発明の効果を損わない限りにおい
お少量であれば粟補せず、そのたた䜿甚しお差支
えない。 本発明の組成物においお各成分の䜿甚割合は、
゚ポキシ暹脂䞭の゚ポキシ基個に察し、パラア
ミノベンゞルアミン類、又はパラアミノベンゞル
アミン類ずメタアミノベンゞルアミン類䞭のアミ
ノ基の氎玠が、通垞0.5〜1.5、奜たしくは0.8〜
1.2個ずなるような割合で甚いられる。 又、パラアミノベンゞルアミン類ずメタアミノ
ベンゞルアミン類ずの䜵甚比率は、前者の倚い
皋、䞡者の混合物の融点を䞋げるこずができる。
たずえば、埌者単独の融点はほが40℃であるが、
䞡者を半量ず぀甚いた堎合の融点は玄15℃に䜎䞋
する。 本発明の組成物には、硬化剀および硬化促進剀
ずしおキシリレンゞアミン、む゜ホロンゞアミ
ン、、−ビスアミノメチルシクロヘキサン、
ゞアミノゞプニルメタン、ポリアミド暹脂、ト
リ゚チルアミン、ゞメチルベンゞルアミン、むミ
ダゟヌル類、トリスゞメチルアミノメチルプノ
ヌルなどのアミノ類や、プノヌル、クレゟヌ
ル、䞉フツ化ホり玠アミン塩などを、本発明の効
果を損わない限りにおいお䞀郚䜵甚するこずがで
きる。 たた溶媒、シラン系およびチタン系カツプリン
グ剀、顔料、有機および無機フむラヌ、可塑剀、
液状ゎム、揺倉性付䞎剀、レベリング剀、消泡
剀、タヌル、非反応性皀釈剀、䜎分子量ポリマ
ヌ、ガラス繊維、カヌボン繊維、金属繊維、セラ
ミツク繊維などを添加しお甚いるこずもできる。 本発明の組成物は塗料、接着剀、泚型、封止
剀、成圢材、繊維・玙などの加工剀などに甚いる
こずができる。たた本発明の組成物は通垞〜
200℃の条件で硬化させるこずができる。 以䞋に本発明を実斜䟋によ぀おさらに詳现に説
明する。なお以䞋の各䟋における郚、たたはの
衚瀺は特に断わらないかぎり重量基準で瀺す。 実斜䟋  メタアミノプノヌルず゚ピクロルヒドリンず
から䜜られたアミン系゚ポキシ暹脂商品名゚ポ
トヌトYDM−120、東郜化成(æ ª)、䞻成分の分
子䞭の゚ポキシ基は個92郚ず、パラアミノベ
ンゞルアミン23郚ずをよく混合しお宀枩で攟眮し
たずころ、180分埌にはほが粘着性がなくなり硬
化した。この硬化物を宀枩で䞀週間攟眮した埌、
レオバむブロン詊隓機により硬化物の動的粘匟性
テストを行぀た。硬化物の耐熱性の目安ずしおガ
ラス転移枩床を求めたずころ、162℃であ぀た。
䜆し、ガラス転移枩床はE″損倱匟性率がピヌ
クずなる枩床ずした。以䞋、ガラス転移枩床はこ
の意味で甚いるものずする。 実斜䟋  ゞアミノゞプニルメタンず゚ピクロルヒドリ
ンずから䜜られたアミン系゚ポキシ暹脂商品
名、゚ポトヌトYH−434、東郜化成(æ ª)、䞻成分
の分子䞭の゚ポキシ基は個ず、ビスプノ
ヌルず゚ピクロルヒドリンから䜜られたプノ
ヌル系゚ポキシ暹脂商品名、゚ピコヌト828、
油化シ゚ル゚ポキシ(æ ª)、䞻成分の分子䞭の゚ポ
キシ基は個およびメタアミノベンゞルアミン
を衚に瀺した重混合しお粘着性がなくなるたで
の時間を求め硬化時間ずした。たた硬化埌、実斜
䟋ず同じように宀枩で週間攟眮したのち、動
的粘匟性テストによりガラス転移枩床を求めた。
結果は衚にたずめた。 なお、パラアミノベンゞルアミンに代え、メタ
アミノベンゞルアミンを䜿甚した結果を比范䟋ず
しお、実隓番号〜に瀺したはメタアミノ
ベンゞルアミン䜿甚。
[Formula] An epoxy resin having a group, such as N, N, N', N'-tetraglycidyldiaminodiphenylmethane, meta-N,
Compounds having a simino group or amide group such as N-diglycidyl diaminodiphenyl glycidyl ether, N, N, N', N'-tetraglycidyl terephthalamide, etc., and epihalohydrins such as epichlorohydrin, methylepichlorohydrin, epibromhydrin, etc. synthesized from Specific examples of compounds having an amino group include:
Diaminodiphenylmethane, meta-xylylene diamine, para-xylylene diamine, meta-aminobenzylamine, para-aminobenzylamine,
1,3-bisaminomethylcyclohexane,
1,4-bisaminomethylcyclohexane,
1,3-diaminocyclohexane, 1,4-diaminocyclohexane, metaphenylenediamine, paraphenylenediamine, benzylamine, diaminodiphenyl sulfone, diaminodiphenyl ether, diaminodiphenyl sulfide, diaminodiphenyl ketone, naphthalene diamine , aniline, toluidine, meta-aminophenol, para-aminophenol, aminonaphthol and the like. Further, specific examples of compounds having an amide group include phthalamide, isophthalamide, terephthalamide, benzamide, toluamide, parahydroxybenzamide, metahydroxybenzamide, and the like. When a compound having an amino group or an amide group has a group that reacts with epihalohydrin, such as a hydroxyl group, a carboxyl group, or a mercapto group other than the amino group or amide group, part or all of the group that reacts with epihalohydrin reacts with epihalohydrin and may be substituted with an epoxy group. (ii) Phenol-based epoxy resin It can be synthesized from a phenol-based compound and epihalohydrin, such as bisphenol A diglycidyl ether and Epotote YDCN-220 (product of Toto Kasei Co., Ltd.). Specific examples of phenolic compounds include phenol, cresol, butylphenol, octylphenol, benzylphenol, cumylphenol, naphthol, hydroquinone, catechol, resorcinol, bisphenol A, bisphenol F, bisphenol sulfone, and brominated bisphenol. A, novolac resin, cresol novolac resin, tetraphenylethane, triphenylethane and the like. (iii) Alcohol-based epoxy resin Can be synthesized from alcohol-based compounds and epihalohydrin, such as trimethylolpropane triglycidyl ether and neopentyl glycol glycidyl ether. Specific examples of alcohol compounds include monohydric alcohols such as butyl alcohol and 2-ethylhexyl alcohol, ethylene glycol,
Diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol,
1,6-hexanediol, neopentyl glycol, trimethylolpropane, glycerin, pentaerythritol, polycaprolactone, polytetramethylene ether glycol,
Polyhydric alcohols such as polybutadiene glycol, hydrogenated bisphenol A, cyclohexanedimethanol, bisphenol A/ethylene oxide adduct, bisphenol A/propylene oxide adduct, and polyester polyols made from these polyhydric alcohols and polycarboxylic acids. Examples include. (iv) Epoxidized unsaturated compounds cyclopentadiene epoxide, epoxidized soybean oil, epoxidized polybutadiene, vinylcyclohexene diepoxide, styrene oxide, Union Carbide trade name ERL-
Examples include epoxidized products of unsaturated compounds known as 4221, ERL-4234, and ERL-4299. (v) Glycidyl ester-based epoxy resins such as benzoic acid glycidyl ester, tetrahydrophthalic acid diglycidyl ester, etc.
It can be synthesized from carboxylic acid and epihalohydrin. Specific examples of carboxylic acids include monocarboxylic acids such as benzoic acid, paraoxybenzoic acid, butylbenzoic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, dimer acid, phthalic acid, isophthalic acid, terephthalic acid, and tetrahydrophthalic acid. , methyltetrahydrophthalic acid, hexahydrophthalic acid, Hett's acid, nadic acid, maleic acid, fumaric acid, trimellitic acid, benzenetetracarboxylic acid, butanetetracarboxylic acid,
Benzophenonetetracarboxylic acid, 5-(2,
Examples include polycarboxylic acids such as 5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic acid. (vi) Urethane-based epoxy resin It can be synthesized from the above-mentioned polyhydric alcohol, diisocyanate, and glycidol. Specific examples of diisocyanates include tolylene diisocyanate, diphenylmethane-4,
Examples include 4'-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, and naphthalene diisocyanate. (vii) Other epoxy resins Trisepoxypropyl isocyanurate, glycidyl (meth)acrylate copolymers, and diisocyanates of the above-mentioned epoxy resins,
Examples include resins modified with dicarboxylic acids and polyhydric phenols. From the viewpoint of curing speed and heat resistance, epoxy resins having three or more epoxy groups are particularly preferred, and as types of epoxy resins, amine-based epoxy resins and phenol-based epoxy resins are particularly preferred. In the present invention, the epoxy resin alone is
Alternatively, two or more kinds can be used in combination. Specific examples of the epoxy resin used in the present invention have been listed above, but in the composition of the present invention, 100 to 30% by weight of the total epoxy resin is an epoxy resin having three or more epoxy groups in one molecule. It must be made into resin. If the amount of epoxy resin having three or more epoxy groups is less than 30% by weight, not only the curing speed of the composition of the present invention becomes slow, but also the heat resistance of the cured product decreases. In the composition of the present invention, as a curing agent for the epoxy resin, para-aminobenzylamine or para-aminobenzylamine and meta-aminobenzylamine are used, and among these, meta-aminobenzylamine, para-aminobenzylamine, and the above-mentioned These adducts, which are products obtained by reacting such epoxy resins under conditions such that the active hydrogen in the amino group is in excess with respect to the epoxy group, are included. Further, this adduct may be a separate adduct, an internal adduct, or a mixture of both. Even if these benzylamines contain the ortho form, which is usually a by-product during the production of the para or meta form, as long as it does not impair the effects of the present invention, it can be used as is without purification if it is in a small amount. No problem. The proportion of each component used in the composition of the present invention is as follows:
The hydrogen content of the amino group in para-aminobenzylamines or para-aminobenzylamines and meta-aminobenzylamines is usually 0.5 to 1.5, preferably 0.8 to 1, per epoxy group in the epoxy resin.
It is used in a ratio of 1.2 pieces. Further, as for the ratio of the combination of para-aminobenzylamines and meta-aminobenzylamines, the more the former is used, the lower the melting point of the mixture of both can be.
For example, the melting point of the latter alone is approximately 40°C;
When half of both are used, the melting point drops to about 15°C. The composition of the present invention includes xylylene diamine, isophorone diamine, 1,3-bisaminomethylcyclohexane, as a curing agent and curing accelerator,
Aminos such as diaminodiphenylmethane, polyamide resin, triethylamine, dimethylbenzylamine, imidazoles, trisdimethylaminomethylphenol, phenol, cresol, boron trifluoride amine salt, etc. may be used as long as they do not impair the effects of the present invention. Can be used in combination in some cases. Also solvents, silane and titanium coupling agents, pigments, organic and inorganic fillers, plasticizers,
Liquid rubber, thixotropic agents, leveling agents, antifoaming agents, tar, non-reactive diluents, low molecular weight polymers, glass fibers, carbon fibers, metal fibers, ceramic fibers, etc. may also be added. The composition of the present invention can be used in paints, adhesives, casting agents, sealants, molding materials, processing agents for fibers, paper, and the like. Furthermore, the composition of the present invention usually has a
Can be cured at 200℃. The present invention will be explained in more detail below using examples. In each of the following examples, parts or percentages are expressed on a weight basis unless otherwise specified. Example 1 92 parts of an amine-based epoxy resin made from meta-aminophenol and epichlorohydrin (trade name Epotote YDM-120, Toto Kasei Co., Ltd., main component has 3 epoxy groups in one molecule) and para-aminobenzyl. When the mixture was thoroughly mixed with 23 parts of amine and left at room temperature, the adhesiveness almost disappeared and the mixture was cured after 180 minutes. After leaving this cured product at room temperature for a week,
A dynamic viscoelasticity test of the cured product was conducted using a Rheovibrone tester. The glass transition temperature was determined to be 162°C as a measure of the heat resistance of the cured product.
However, the glass transition temperature was the temperature at which E'' (loss modulus of elasticity) peaked.Hereinafter, the glass transition temperature will be used in this sense.Example 2 Amine made from diaminodiphenylmethane and epichlorohydrin A phenolic epoxy resin (trade name, Epotote YH-434, Toto Kasei Co., Ltd., the main component has 4 epoxy groups in one molecule) and a phenolic epoxy resin made from bisphenol A and epichlorohydrin. Epicote 828,
Yuka Ciel Epoxy Co., Ltd., the main component (2 epoxy groups in one molecule) and meta-aminobenzylamine were mixed together as shown in Table 1, and the time until the tackiness disappeared was determined as the curing time. After curing, the sample was allowed to stand at room temperature for one week in the same manner as in Example 1, and then the glass transition temperature was determined by a dynamic viscoelasticity test.
The results are summarized in Table 1. The results of using meta-aminobenzylamine instead of para-aminobenzylamine are shown in Experiment Nos. 7 and 8 as comparative examples (* indicates meta-aminobenzylamine was used).

【衚】 実斜䟋  プノヌルノボラツク暹脂ず゚ピクロルヒドリ
ンずから䜜られるプノヌル系゚ポキシ暹脂商
品名 ゚ピコヌト154、油化シ゚ル゚ポキシ(æ ª)、
䞻成分の分子䞭の゚ポキシ基は個80郚、ビ
スプノヌルゞグリシゞル゚ヌテル䞻成分の
分子䞭の゚ポキシ基は個20郚、およびパラ
アミノベンゞルアミン2.5モルず゚チレングリコ
ヌルグリシゞル゚ヌテルモルを80℃で時間反
応させお埗られたアダクト䜓31郚を実斜䟋ず同
様にしお硬化時間、ガラス転移枩床を求めた。硬
化時間は255分、ガラス転移枩床は169℃であ぀
た。 実斜䟋  テトラプニル゚タンず゚ピクロルヒドリンず
から䜜られたプノヌル系゚ポキシ暹脂商品
名、゚ピコヌト1031、油化シ゚ル゚ポキシ(æ ª)、䞻
成分の分子䞭の゚ポキシ基は個85郚、ビニ
ルシクロヘキセンゞ゚ポキシド分子䞭の゚ポ
キシ基は個15郚、およびパラアミノベンゞル
アミン19郚を実斜䟋ず同様にしお硬化時間、ガ
ラス転移枩床を求めた。硬化時間は180分、ガラ
ス転移枩床は187℃であ぀た。 実斜䟋  ゚ピコヌト1031を40郚、ビニルシクロヘキセン
ゞ゚ポキシド郚、゚ポトヌトYH−434を53郚、
およびパラアミノベンゞルアミン22郚を実斜䟋
ず同様にしお硬化時間、ガラス転移枩床を求め
た。硬化時間は140分、ガラス転移枩床は193℃で
あ぀た。 実斜䟋  次の組成で実斜䟋ず同様の実隓を行぀た。 ゚ポトヌトYH−434 43郚 ビニルシクロヘキセンゞ゚ポキシド 郚 アミノベンゞルアミン 13郚 −ABA 2.8 −ABA 48.3 −ABA 48.5 硬化速床は120分、ガラス転移枩床は192℃であ
぀た。 発明の効果 以䞊詳述したように、本発明の熱硬化性組成物
は、硬化速床が倧でか぀耐熱性にすぐれ、たた硬
化剀ずしお䜿甚するアミノベンゞルアミンは
−、−、混合物のたた利甚できるこずから、経
枈的効果もきわめお倧きい。
[Table] Example 3 Phenol-based epoxy resin made from phenol novolac resin and epichlorohydrin (trade name Epicote 154, Yuka Ciel Epoxy Co., Ltd.)
80 parts of bisphenol F diglycidyl ether (the number of epoxy groups in one molecule of the main component is 3), 20 parts of bisphenol F diglycidyl ether (the number of epoxy groups in 1 molecule of the main component is 2), and 2.5 moles of para-aminobenzylamine and ethylene glycol glycidyl ether The curing time and glass transition temperature of 31 parts of the adduct obtained by reacting 1 mole at 80° C. for 2 hours were determined in the same manner as in Example 1. The curing time was 255 minutes, and the glass transition temperature was 169°C. Example 4 Phenol-based epoxy resin made from tetraphenylethane and epichlorohydrin (trade name: Epicote 1031, Yuka Ciel Epoxy Co., Ltd., main component has 4 epoxy groups in one molecule) 85 parts, vinyl The curing time and glass transition temperature were determined in the same manner as in Example 1 using 15 parts of cyclohexene diepoxide (2 epoxy groups in one molecule) and 19 parts of para-aminobenzylamine. The curing time was 180 minutes, and the glass transition temperature was 187°C. Example 5 40 parts of Epicote 1031, 7 parts of vinylcyclohexene diepoxide, 53 parts of Epotote YH-434,
and 22 parts of para-aminobenzylamine in Example 1.
The curing time and glass transition temperature were determined in the same manner as above. The curing time was 140 minutes, and the glass transition temperature was 193°C. Example 6 An experiment similar to Example 1 was conducted using the following composition. Epotote YH-434 43 parts Vinylcyclohexene diepoxide 5 parts Aminobenzylamine 13 parts o-ABA 2.8% m-ABA 48.3% p-ABA 48.5% The curing speed was 120 minutes, and the glass transition temperature was 192°C. Effects of the Invention As detailed above, the thermosetting composition of the present invention has a high curing speed and excellent heat resistance, and the aminobenzylamine used as a curing agent is m
Since it can be used as a mixture of -, p-, and p-, the economic effect is also extremely large.

Claims (1)

【特蚱請求の範囲】  (a) 分子䞭に個以䞊の゚ポキシ基を有す
る゚ポキシ暹脂100〜30重量、分子䞭に
個以䞋の゚ポキシ基を有する゚ポキシ暹脂〜
70重量からなる゚ポキシ暹脂、および (b) パラアミノベンゞルアミン類を含有しおなる
こずを特城ずする熱硬化性組成物。  (a) 分子䞭に個以䞊の゚ポキシ基を有す
る゚ポキシ暹脂100〜30重量、分子䞭に
個以䞋の゚ポキシ基を有する゚ポキシ暹脂〜
70重量からなる゚ポキシ暹脂、および (b) パラアミノベンゞルアミン類ず、メタアミノ
ベンゞルアミン類ずを含有しおなるこずを特城
ずする熱硬化性組成物。
[Scope of Claims] 1 (a) 100 to 30% by weight of an epoxy resin having 3 or more epoxy groups in one molecule, 2 to 30% by weight in one molecule;
Epoxy resin with 0 to 3 epoxy groups
1. A thermosetting composition comprising: an epoxy resin containing 70% by weight; and (b) para-aminobenzylamine. 2 (a) 100 to 30% by weight of epoxy resin having three or more epoxy groups in one molecule, two or more in one molecule.
Epoxy resin with 0 to 3 epoxy groups
1. A thermosetting composition comprising: an epoxy resin containing 70% by weight; and (b) para-aminobenzylamines and meta-aminobenzylamines.
JP15554384A 1984-07-27 1984-07-27 Thermosetting composition Granted JPS6134017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15554384A JPS6134017A (en) 1984-07-27 1984-07-27 Thermosetting composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15554384A JPS6134017A (en) 1984-07-27 1984-07-27 Thermosetting composition

Publications (2)

Publication Number Publication Date
JPS6134017A JPS6134017A (en) 1986-02-18
JPH032370B2 true JPH032370B2 (en) 1991-01-14

Family

ID=15608352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15554384A Granted JPS6134017A (en) 1984-07-27 1984-07-27 Thermosetting composition

Country Status (1)

Country Link
JP (1) JPS6134017A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546230A1 (en) * 2011-07-15 2013-01-16 Sika Technology AG Low-emission curing agent for epoxy resins
JP2023177577A (en) * 2022-06-02 2023-12-14 䜏友化孊株匏䌚瀟 Agent containing asymmetric diamine, resin and use of the same

Also Published As

Publication number Publication date
JPS6134017A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
KR101120797B1 (en) Epoxy resins comprising a cycloaliphatic diamine curing agent
KR101994355B1 (en) Structural epoxy adhesives composition
JPS6332108B2 (en)
WO2013081895A2 (en) Liquid accelerator composition for hardeners
CA2223917A1 (en) Amine curable epoxy coating compositions having an improved adhesion to substrates
EP0932648B1 (en) Epoxy curing agent
CN102666649A (en) Epoxy resin compositions
JP4204814B2 (en) Thermosetting liquid resin composition
JPH032371B2 (en)
JP2007224285A (en) Epoxy resin-curing agent and epoxy resin composition
JPH032370B2 (en)
JPH055853B2 (en)
JPS608314A (en) Advanced epoxy adduct as enhancement refomer for epoxy coating and adhesive
JP3481304B2 (en) Heat-resistant epoxy resin composition with excellent stability at room temperature and curing agent for epoxy resin
JP3335371B2 (en) Epoxy resin composition
JPH0336047B2 (en)
JPH06128360A (en) Liquid epoxy resin composition
CN111234464B (en) Vacuum epoxy resin infusion system and preparation method and application thereof
JPH0725982A (en) Epoxy resin composition
KR20010086184A (en) Epoxy resin hardering composition improving weather resistance and working
JPH0583565B2 (en)
CN114854089A (en) Application of aryl alcohol amine as epoxy resin diluent and epoxy resin composition
JPH1060095A (en) Hardener composition for epoxy resin
JPH04311716A (en) Epoxy resin-modified product and epoxy resin composition
JPS6040168A (en) Coating resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term