JPH03236602A - Circularly polarized wave/linearly polarized wave converter - Google Patents

Circularly polarized wave/linearly polarized wave converter

Info

Publication number
JPH03236602A
JPH03236602A JP3347690A JP3347690A JPH03236602A JP H03236602 A JPH03236602 A JP H03236602A JP 3347690 A JP3347690 A JP 3347690A JP 3347690 A JP3347690 A JP 3347690A JP H03236602 A JPH03236602 A JP H03236602A
Authority
JP
Japan
Prior art keywords
waveguide
polarized wave
linearly polarized
electric field
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347690A
Other languages
Japanese (ja)
Inventor
Shoichi Furukawa
昌一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3347690A priority Critical patent/JPH03236602A/en
Publication of JPH03236602A publication Critical patent/JPH03236602A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a step difference at an end face of a phase circuit so as to reduce the production of a harmonic mode wave, to eliminate a structure for the phase circuit provided in the inside of a waveguide and to reduce the working man- hour by employing ellipse structure for the phase circuit of the waveguide and changing the shape of the structure gradually from the elliptic shape into the circular shape. CONSTITUTION:A waveguide 14 forming one end as an ellipse 9 and the other end as a circle 10 is employed, and when an electromagnetic wave is made incident a or face of the ellipse 9, since the width in the Y axis direction is made narrow, it is possible to decrease a guide wavelength of the electric field component Y more than the guide wavelength of the electric field component X. Since the frequency is unchanged, the action of causing a delay in the phase speed of the electric field component Y is gradually decreased by selecting the lengthwise side of the waveguide 14 so that the phase speed in the waveguide of the electric field component Y is retarded by 90 deg. from that of the electric field component X. Thus, a circularly polarized wave is converted into a linearly polarized wave at a position where the wave passes through the elliptic waveguide 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、円偏波/直線偏波変換器に関し、特に2つの
衛星放送システム間の干渉を軽減するために用いられて
いる電磁波の円偏波に対して受信側及び送信側で使用さ
れる円偏波/直線偏波変換器に関する。ここで、円偏波
/直線偏波変換器とは、直線偏波から円偏波への変換器
及び円偏波がら直線偏波への変換器を含むものとする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a circular polarization/linear polarization converter, and in particular to a circular polarization converter for electromagnetic waves used to reduce interference between two satellite broadcasting systems. This invention relates to a circular polarization/linear polarization converter used on the reception side and the transmission side for polarization. Here, the circularly polarized wave/linearly polarized wave converter includes a linearly polarized wave to circularly polarized wave converter and a circularly polarized wave to linearly polarized wave converter.

わが国の放送衛星は放送信号として右旋円偏波の電磁波
を放射しており、この右旋円偏波をつくるため衛星搭載
機器のアンテナの給電部に直線偏波から円偏波に変換す
る円偏波発生器が使用さ札また、放送衛星からの右旋円
偏波の電磁波を第4図に示すような地上の受信用BSア
ンテナの反射鏡で受け、反射鏡で反射した電磁波を反射
鏡の焦点に設置されている1次放射器の開口面に入射し
、さらに、1次放射器から円偏波を直線偏波に変換する
構造部分に1M波が入射されるようにして円偏波を直線
偏波に変換してBSコンバータに人力し、BSコンバー
タで電気信号に変換されて信号処理が行われている。
Broadcasting satellites in Japan emit right-handed circularly polarized electromagnetic waves as broadcast signals, and in order to create right-handed circularly polarized waves, a circular polarization converter is used to convert the linearly polarized waves into circularly polarized waves at the power feeding section of the antenna of the equipment onboard the satellite. A polarization generator is used.In addition, right-handed circularly polarized electromagnetic waves from a broadcasting satellite are received by a reflector of a ground-based receiving BS antenna, as shown in Figure 4, and the electromagnetic waves reflected by the reflector are transferred to a reflector. The 1M wave is incident on the aperture of the primary radiator installed at the focal point of the primary radiator, and is further incident on the structural part that converts the circularly polarized wave into linearly polarized wave. The signal is converted into a linearly polarized wave and sent to the BS converter, where it is converted into an electrical signal and signal processing is performed.

原理的には衛星搭載機器に用いられている直線偏波/円
偏波変換器と、地上の受信設備として用いられている円
偏波/直線偏波変換器は同様な原理に基づくものが使用
できる。
In principle, the linear polarization/circular polarization converter used in satellite equipment and the circular polarization/linear polarization converter used in ground receiving equipment are based on the same principle. can.

〔従来の技術〕[Conventional technology]

従来の地上の受信用設備で使用されていた円偏波/直線
偏波変換器の側面から観た概念図を第5図に示す。1次
放射器はBSアンテナの反射鏡で反射した電磁波を効率
よく集めて導波管部に導くためホーン型の形状としてあ
り、導波管部のA部分は、B部で生じる放送波の受信に
必要な電磁波の基本モード以外の高次モードが1次放射
器の放射特性を乱さないように減衰させるために設けら
れた円形導波管部分であり、B部は円偏波/直線偏波の
変換を行う位相回路構造の部分であり、入力された円偏
波の電磁波は円偏波/直線偏波の変換を行う位相回路構
造の部分で直線偏波に変換され、導波管のC部分に導か
れる。C部分は円形導波管部分であり、位相回路構造の
部分と円形導波管部分の接合部で発生する高次モードを
減衰させるために設けられた部分である。D部分は直線
偏波となった電磁波を金属性のポールからなる励振プロ
ーブを利用した結合手段で効率良く導波管の外部に信号
を取り出すために設けられた導波管と励振プローブとの
インピーダンス整合をとる部分であり、励振プローブで
取り出された信号はBSコンバータの低雑音増幅器に入
力され信号処理が行われていた。結合手段としては、前
記励振プローブによる他、方形導波管を使用した方法も
用いられている。
FIG. 5 shows a conceptual diagram of a circularly polarized wave/linear polarized wave converter used in conventional terrestrial receiving equipment, viewed from the side. The primary radiator has a horn-shaped shape to efficiently collect the electromagnetic waves reflected by the reflector of the BS antenna and guide them to the waveguide. Part A of the waveguide receives the broadcast waves generated in part B. It is a circular waveguide section provided to attenuate higher-order modes other than the fundamental mode of electromagnetic waves necessary for The input circularly polarized electromagnetic wave is converted into a linearly polarized wave in the phase circuit structure that converts the circularly polarized wave/linearly polarized wave. guided by the parts. Section C is a circular waveguide section, which is provided to attenuate higher-order modes generated at the junction between the phase circuit structure section and the circular waveguide section. Part D shows the impedance between the waveguide and the excitation probe, which is used to efficiently extract signals to the outside of the waveguide by coupling the linearly polarized electromagnetic waves using an excitation probe made of metal poles. This is the part that performs matching, and the signal extracted by the excitation probe is input to the low-noise amplifier of the BS converter for signal processing. As a coupling means, in addition to the above-mentioned excitation probe, a method using a rectangular waveguide is also used.

円偏波は、2つの直交する直線偏波の振幅及び周波数が
等しく位相が90度ずれた状態であり、位相回路を設け
前記両直線偏波の位相を同相にすれば直線偏波信号とな
るが、従来使用されていた円偏波/直線偏波の変換を行
う位相回路構造例を第6図(a)、(b)〜第9図(a
)、(b)ニ示す。(a)図は導波管の開口部から見た
正面図であり、い)図は導波管の位相回路部の個面図を
示す。
Circularly polarized waves are two orthogonal linearly polarized waves whose amplitudes and frequencies are equal and whose phases are shifted by 90 degrees, and if a phase circuit is installed to make the phases of both linearly polarized waves the same, a linearly polarized signal is obtained. However, examples of the phase circuit structure used conventionally for converting circularly polarized waves/linearly polarized waves are shown in FIGS. 6(a), (b) to 9(a).
), (b) are shown. Figure (a) is a front view seen from the opening of the waveguide, and figure (b) shows an individual view of the phase circuit portion of the waveguide.

第6図は、結合手段で信号として取り出す直線偏波の方
向に対して45度傾けて直交する2つの直線偏波の一方
の垂直方向の電界成分Yに平行になるようにして誘電体
板2を導波管lの内部に取り付けたものである。このよ
うに誘電体板2を導波管1の内部に取り付けることによ
り、誘電体板2に平行な電界成分の直線偏波の位相を遅
らせることができ、従って直線偏波の他方の水平方向の
電界成分Xより成分Yが90度遅れるような長さに誘電
体板2の長平方向の寸法を選べば、誘電体板2を通り抜
けた位置では円偏波が直線偏波に変換された状態となる
。この他にもこのような作用による位相回路構造例とし
ては以下のものが使用されている。第7図(a)及び(
ロ)は位相回路構造として2枚の金属板4を導波管1の
内部表面の向かいあった円弧の中心に取り付は各々の金
属板4の短辺方向が導波管1の中心に向かうようにし、
さらに導波管1の長手方向に延長して金属板4を取り付
けたものである。
FIG. 6 shows a dielectric plate 2 that is tilted at 45 degrees to the direction of the linearly polarized wave extracted as a signal by the coupling means and parallel to the vertical electric field component Y of one of the two linearly polarized waves orthogonal to each other. is attached inside the waveguide l. By attaching the dielectric plate 2 inside the waveguide 1 in this way, the phase of the linearly polarized wave of the electric field component parallel to the dielectric plate 2 can be delayed, and therefore the phase of the linearly polarized wave of the other horizontal direction of the linearly polarized wave can be delayed. If the dimensions of the dielectric plate 2 in the longitudinal direction are selected to such a length that the component Y lags the electric field component Become. In addition to this, the following are used as examples of phase circuit structures with such an effect. Figure 7(a) and (
(b) As a phase circuit structure, two metal plates 4 are attached to the centers of opposing circular arcs on the inner surface of the waveguide 1, with the short sides of each metal plate 4 facing toward the center of the waveguide 1. So,
Furthermore, a metal plate 4 is attached to extend in the longitudinal direction of the waveguide 1.

また、第8図は導波管の内部表面の対向する二つの円弧
が平面になるようにして導波管の長手方向に延長して二
つの金属塊5を導波管1の内部表面に取り付けたもので
、2つの直交する直線偏波の垂直方向の電界成分をYと
し、水平方向の電界成分をXとすると、導波管の内部表
面の一方の円弧が平面になるようにして金属塊5を付け
ることにより、構造的に電界成分Yの管内波長を電界成
分Xの管内波長より短くすることができ、周波数は変化
しないため管内の位相速度は電界成分Yの方が遅れ、電
界成分Xより成分Yが90度位相が遅れるような長さに
金属塊5の長平方向の寸法を選べば、金属塊5を通り抜
けた位置では円偏波が直線偏波に変換された状態となる
。この他にもこのような作用による位相回路構造例とし
ては以下のものが使用されている。第9図(a)及び(
ロ)は導波管7の開口部から見た断面が楕円状になるよ
うに導波管を変形させたものである。
In addition, FIG. 8 shows that two metal lumps 5 are attached to the inner surface of the waveguide 1 by extending them in the longitudinal direction of the waveguide so that the two opposing circular arcs on the inner surface of the waveguide become flat. If the vertical electric field component of two orthogonal linearly polarized waves is Y, and the horizontal electric field component is X, then the metal block is By adding 5, the tube wavelength of electric field component Y can be structurally made shorter than the tube wavelength of electric field component If the dimensions of the metal block 5 in the longitudinal direction are selected to such a length that the phase of the component Y is delayed by 90 degrees, the circularly polarized wave will be converted into a linearly polarized wave at the position where it passes through the metal block 5. In addition to this, the following are used as examples of phase circuit structures with such an effect. Figures 9(a) and (
In b), the waveguide is deformed so that the cross section seen from the opening of the waveguide 7 is elliptical.

第5図のような導波管の内部のB部分に第6は第7図あ
るいは第8図のような位相回路を設けた場合、あるいは
第9図のように位相回路として楕円形導波管を使用して
円形導波管との接続部に段差を設けて接続した場合、円
形導波管A及びCと位相回路との境界面で導波管の内部
の構造変化により電磁波の電界分布も変化して境界面で
放送波の受信に必要な電磁波の基本モード以外の高次モ
ードが発生して1次放射器の放射特性を乱したり、直線
偏波信号と励振プローブとの結合度を低下させたりする
Sixth, when a phase circuit as shown in Fig. 7 or Fig. 8 is provided in the B section inside the waveguide as shown in Fig. 5, or an elliptical waveguide is installed as a phase circuit as shown in Fig. 9. When connecting with a circular waveguide with a step, the electric field distribution of electromagnetic waves will change due to structural changes inside the waveguide at the interface between circular waveguides A and C and the phase circuit. As a result, higher-order modes other than the fundamental mode of electromagnetic waves necessary for receiving broadcast waves are generated at the boundary surface, which may disturb the radiation characteristics of the primary radiator or reduce the degree of coupling between the linearly polarized signal and the excitation probe. or lower it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、第6図、第7図あるいは第8図のような位相回
路を設けた場合、位相回路の両端の円形導波管との接続
部の形状を第6図の例では誘電体板の中央部分を窪ませ
た形状とし、第7図及び第8図の例では階段状に段差を
設けた形状として、各々高次モードの発生を減衰させる
ようにしているが、本発明では位相回路の端面での段差
を無くして高次モードの発生をさらに少なくし、また、
従来例では導波管内部に位相回路を設けていたため構造
が複雑となり加工工数が多くかがるといった問題点があ
った。
Therefore, when a phase circuit as shown in FIG. 6, FIG. 7, or FIG. In the examples shown in FIGS. 7 and 8, the portions are recessed, and in the examples shown in FIGS. 7 and 8, steps are provided to attenuate the generation of higher-order modes. By eliminating the step in the
In the conventional example, a phase circuit was provided inside the waveguide, which resulted in a complicated structure and required a large number of processing steps.

本発明は、高次モードの発生をさらに少なくして、加工
工数を削減することを目的とする。
The present invention aims to further reduce the occurrence of higher-order modes and reduce the number of processing steps.

〔課題を解決するための手段〕[Means to solve the problem]

第1図(a)、(b)及び第2図(a)、(ハ)に示す
ようにホーン型の形状にした1次放射器8と、同1次放
射器8の開口の小さい面に接合した一端の開口面を略楕
円形9とし他端の開口面を円形10として楕円形9から
徐々に円形10に変形させた導波管14と、同導波管1
4の円形10とした開口面に開口面同士を接合した中間
に直線偏波信号と結合させる励振プローブ13による結
合手段を設け末端が終端12された円形導波管15から
なり、前記導波管14の長手方向の長さで円偏波と直線
偏波間の変換を行い、励振プローブ13で管内の電磁波
と導波管の外部回路間の信号の伝送を行うようにしたも
のである。
As shown in Fig. 1(a), (b) and Fig. 2(a), (c), the primary radiator 8 has a horn-shaped shape, and the surface of the primary radiator 8 with a small opening A waveguide 14 which is gradually deformed from an elliptical shape 9 to a circular shape 10, with an aperture surface of one joined end having a substantially elliptical shape 9 and an aperture surface of the other end a circular shape 10;
A circular waveguide 15 is provided with a coupling means using an excitation probe 13 for coupling a linearly polarized wave signal in the middle between the circular apertures 10 of 4 and the apertures are joined to each other. The longitudinal length of the waveguide 14 converts between circularly polarized waves and linearly polarized waves, and the excitation probe 13 transmits signals between the electromagnetic waves inside the tube and the external circuit of the waveguide.

〔作用〕[Effect]

本発明では、第1図(a)、(b)及び第2図(a)、
(b)の如く一端を楕円形9とし他端を円形10とした
導波管14を使用しており、楕円形9とした面に電磁波
が入射された場合、第1図(a)で垂直方向をY軸とし
水平方向をX軸とすると導波管内部を楕円形にしている
ため、Y軸方向の幅が狭まっており構造的に電界成分Y
の管内波長を電界成分Xの管内波長より短くすることが
でき、周波数は変化しないため管内の位相速度は電界成
分Yの方が遅れ電界成分Xより成分Yが90度位相が遅
れるような長さに楕円形導波管14の長手方向の寸法を
選べば、位相回路の構造が第3図に断面を示すように楕
円形から徐々に円形にしであるため電界成分Yの位相速
度の遅れを発生させる作用は徐々に少なくなるが、楕円
形導波管14を電磁波が通り抜けた位置では円偏波が直
線偏波に変換された状態となる。
In the present invention, FIGS. 1(a), (b) and 2(a),
As shown in FIG. 1(b), a waveguide 14 with an elliptical shape 9 at one end and a circular shape 10 at the other end is used, and when an electromagnetic wave is incident on the elliptical surface 9, it is vertical in FIG. 1(a). If the direction is the Y-axis and the horizontal direction is the
The wavelength within the tube can be made shorter than the wavelength within the tube of electric field component If the longitudinal dimension of the elliptical waveguide 14 is selected, the structure of the phase circuit gradually changes from an ellipse to a circle as shown in the cross section in Fig. 3, which causes a delay in the phase velocity of the electric field component Y. Although the effect gradually decreases, at the position where the electromagnetic wave passes through the elliptical waveguide 14, the circularly polarized wave is converted into a linearly polarized wave.

〔実施例〕〔Example〕

第1図(a)、伽)〜第2図(a)、(b)は本発明の
一実施例を示す円偏波/直線偏波変換器を示しており、
(a)図は一次放射器の開口面から見た円偏波/直線偏
波変換器の正面図、(ロ)図は前記(a)図をl−lの
線で切断した円偏波/直線偏波変換器の側面の断面図、
第2図(a)、(ロ)は第1図(a)、(b)の位置よ
り円偏波/直線偏波変換器を反時計方向に90度回転さ
せた図を示している。
Figures 1(a) and 2(a) to 2(b) show a circularly polarized wave/linearly polarized wave converter showing an embodiment of the present invention,
(a) is a front view of the circularly polarized wave/linearly polarized wave converter seen from the aperture of the primary radiator, (b) is a circularly polarized/linearly polarized wave obtained by cutting the above figure (a) along the line l-l. A cross-sectional view of the side of a linear polarization converter,
FIGS. 2(a) and 2(b) show the circularly polarized wave/linearly polarized wave converter rotated 90 degrees counterclockwise from the positions shown in FIGS. 1(a) and (b).

ホーン型の形状にした1次放射器8の開口のより小さい
面と、一端の開口面が楕円形9とし他端の開口面が円形
10として楕円形9から徐々に円形10に変形させた楕
円形導波管14の楕円形9とした開口面とを接合し、同
導波管14の円形lOとした開口面と、中間に直線偏波
信号と結合させる励振プローブ13による結合手段を設
け末端が終端12された円形導波管15の開口面同士を
接合しており、前記導波管14の長手方向の長さで円偏
波と直線偏波間の変換を行い、励振プローブ13で管内
の直線偏波信号と導波管の外部回路間の信号の伝送を行
うようにしている。
The smaller surface of the aperture of the primary radiator 8 which is shaped like a horn, and the ellipse that gradually transforms from the ellipse 9 to a circle 10, with the aperture surface at one end being an ellipse 9 and the aperture surface at the other end being a circle 10. The elliptical aperture surface of the waveguide 14 is joined to the circular aperture surface of the waveguide 14, and coupling means using an excitation probe 13 for coupling the linearly polarized signal is provided in the middle. The opening surfaces of circular waveguides 15 with terminals 12 are joined to each other, and the longitudinal length of the waveguide 14 converts between circularly polarized waves and linearly polarized waves, and the excitation probe 13 converts the inside of the tube. The linearly polarized signal is transmitted between the waveguide and the external circuit.

第1図(a)において、垂直方向をY軸とし水平方向を
X軸とすると、X軸上に楕円形導波管の楕円9の長径が
位置するようにしてあり、励振プローブ13は励振プロ
ーブ13の中心の延長線とX軸とが45度の角度をなす
ようにして円形導波管15の壁面に取り付けられている
In FIG. 1(a), if the vertical direction is the Y axis and the horizontal direction is the X axis, the long axis of the ellipse 9 of the elliptical waveguide is located on the X axis, and the excitation probe 13 is the excitation probe The waveguide 15 is attached to the wall surface of the circular waveguide 15 such that the extension line of the center of the waveguide 13 and the X axis form an angle of 45 degrees.

第1図Φ)において、円形導波管15の励振プローブ1
3の取付位置は、励振プローブ13に最大の励振信号が
得られるように円形導波管15の開口部と励振プローブ
13間の取付路gICを調整することにより位相回路構
造部分と円形導波管15部分とでインピーダンス整合を
とるようにし、また距HDを調整することにより終端面
で反射させた直線偏波信号に対して励振プローブ13の
取付部のインピーダンスを整合させるようにしている。
In Fig. 1 Φ), the excitation probe 1 of the circular waveguide 15
3, the mounting position between the phase circuit structure part and the circular waveguide is adjusted by adjusting the mounting path gIC between the opening of the circular waveguide 15 and the excitation probe 13 so that the maximum excitation signal is obtained at the excitation probe 13. 15, and by adjusting the distance HD, the impedance of the mounting portion of the excitation probe 13 is matched to the linearly polarized signal reflected at the termination surface.

1次放射器8と楕円導波管14との接合部は、接合する
楕円形導波管14の楕円の長径を直径とした円と合致し
た部分で、ホーン型の形状の1次放射器8と楕円形導波
管14を接合してあり、楕円形の長径部分はそのままホ
ーン型形状の傾斜面と接するようにしてあり、楕円形の
短径部分は前記楕円の長径を直径とした円と楕円の外周
部分迄に垂直面11を設けてホーン形状の傾斜面と楕円
形の短径部分を接合している。
The joining part between the primary radiator 8 and the elliptical waveguide 14 is a part that matches a circle whose diameter is the long axis of the ellipse of the elliptical waveguide 14 to be joined, and the primary radiator 8 has a horn shape. and an elliptical waveguide 14, the major axis of the ellipse is in direct contact with the horn-shaped slope, and the minor axis of the ellipse is a circle whose diameter is the major axis of the ellipse. A vertical surface 11 is provided up to the outer circumferential portion of the ellipse to join the horn-shaped inclined surface and the shorter diameter portion of the ellipse.

あるいは前記垂直面11に傾斜を設けてホーン形状の傾
斜面と楕円形の短径部分を緩やかな傾斜面で接合するよ
うにしても良い。
Alternatively, the vertical surface 11 may be sloped so that the horn-shaped slope and the short diameter portion of the ellipse are joined by a gentle slope.

第3図は楕円形導波管の断面図であり、第2図(b)に
示すように楕円形導波管をf 、i 、の線で切断した
断面、2.−2.の線で切断した断面、131、の線で
切断した断面を順に各々第3図(a)、(b)。
FIG. 3 is a cross-sectional view of the elliptical waveguide, and as shown in FIG. -2. 3(a) and 3(b) show a cross section cut along line 131 and a cross section cut along line 131, respectively.

(C)に示す。図中、16は楕円形導波管の側壁の切断
面で、楕円形導波管は開口面を楕円形から徐々に円形に
してあり、楕円形9の長径は(a)図から(ロ)図に行
くに従って短くなっており、(C)図では切断面は円形
10となっている。
Shown in (C). In the figure, 16 is the cut surface of the side wall of the elliptical waveguide, and the opening surface of the elliptical waveguide gradually changes from an ellipse to a circle, and the major axis of the ellipse 9 is from (a) to (b). The length becomes shorter as the figure goes, and the cut plane is circular 10 in figure (C).

以上は円偏波/直線偏波変換器を受信側に使用した場合
の実施例であるが、本発明による構造を利用して円偏波
発生器として使用し、例えば第1図0))において、励
振プローブ13により外部回路からの信号を伝送して導
波管内部で電磁波を励振することにより励振プローブ1
3の位置で直線偏波を発生させ、位相回路構造としたB
部分の長さで直線偏波を円偏波に変換することができ、
−次放射器8より円偏波として放射することもできる。
The above is an example in which a circularly polarized wave/linearly polarized wave converter is used on the receiving side, but the structure according to the present invention may be used as a circularly polarized wave generator, for example, in Fig. 1 0)). , the excitation probe 1 transmits a signal from an external circuit using the excitation probe 13 to excite electromagnetic waves inside the waveguide.
B generates linearly polarized waves at position 3 and has a phase circuit structure.
Linearly polarized waves can be converted to circularly polarized waves depending on the length of the section,
It is also possible to radiate circularly polarized waves from the -order radiator 8.

また、例えば第1図(a)において励振プローブ13の
取付位置を時計方向に移動させて、移動させる前の励振
プローブ13の取付位置と導波管の中心点と移動後の励
振プローブ13の取付位置の威す移動角度が90度にな
るようにすれば、逆旋の円偏波/直線偏波変換器として
使用することもできる。
For example, in FIG. 1(a), the mounting position of the excitation probe 13 is moved clockwise, and the mounting position of the excitation probe 13 before movement, the center point of the waveguide, and the mounting position of the excitation probe 13 after movement are compared. If the moving angle of the position is set to 90 degrees, it can also be used as a counter-rotating circularly polarized wave/linear polarized wave converter.

上記実施例では結合手段として励振プローブ13を使用
しているが、方形導波管を使用して管内の直線偏波信号
と導波管の外部回路間の信号の伝送を行うようにしても
良い。
In the above embodiment, the excitation probe 13 is used as the coupling means, but a rectangular waveguide may be used to transmit the linearly polarized wave signal inside the tube and the signal between the external circuit of the waveguide. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば導波管の位相回路
として楕円構造を使用して徐々に楕円形よ°り円形に変
化さすことにより、位相回路の端面での段差を無くして
高次モードの発生を従来例のものより少なくし、また、
導波管内部に設ける位相回路の構造物を削除することに
より加工工数を削減して製造コストの安い円偏波/直線
偏波変換器を提供することができる。
As explained above, according to the present invention, an elliptical structure is used as a phase circuit of a waveguide, and by gradually changing from an ellipse to a circular shape, the step at the end face of the phase circuit is eliminated and high-order The generation of modes is reduced compared to the conventional example, and
By eliminating the phase circuit structure provided inside the waveguide, it is possible to reduce the number of processing steps and provide a circularly polarized wave/linearly polarized wave converter with low manufacturing cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)〜第2図(a)、(b)は本発明
の一実施例を示す円偏波/直線偏波変換器を示しており
、図中(a)は−次放射器の開口面から見た円偏波/直
線偏波変換器の正面図、(ロ)は円偏波/直線偏波変換
器の側面の断面図、第2図(a)、(b)は第1図(a
)。 (ロ)の位置より円偏波/直線偏波変換器を反時計方向
に90度回転させた図、第3図は楕円形導波管の断面図
、第4図は受信用BSアンテナの概略側面図、第5図は
従来例を示す円偏波/直線偏波変換器の概念図、第6図
(a)、(ロ)〜第9図(a)、(b)は従来例を示す
位相回路構造図である。 1 、 15−−−−−一円形導波管、2− 誘電体板
、4・−・・・金属板、5− 金属塊、7. 14− 
 楕円形導波管、8・・−1次放射器、9 ・−・・楕
円形、10−・−・−円形、11−−一一一垂直面、1
2・・−・・終端面、13−・−励振プローブ、16・
−・−・・側壁の切断面。
1(a), (b) to FIG. 2(a), (b) show a circularly polarized wave/linearly polarized wave converter showing one embodiment of the present invention, in which (a) is - A front view of the circularly polarized wave/linearly polarized wave converter seen from the aperture surface of the radiator, (b) is a sectional view of the side surface of the circularly polarized wave/linearly polarized wave converter, Figures 2(a), ( b) is shown in Figure 1 (a)
). Figure 3 is a cross-sectional view of the elliptical waveguide, and Figure 4 is a schematic diagram of the receiving BS antenna. A side view, Fig. 5 is a conceptual diagram of a circularly polarized wave/linear polarized wave converter showing a conventional example, and Figs. 6 (a), (b) to 9 (a), (b) show conventional examples. It is a phase circuit structure diagram. 1, 15---One circular waveguide, 2- Dielectric plate, 4---Metal plate, 5- Metal lump, 7. 14-
Elliptical waveguide, 8...-primary radiator, 9... ellipse, 10--circular, 11--111 vertical plane, 1
2...Terminal surface, 13--Excitation probe, 16-
−・−・Cut surface of side wall.

Claims (1)

【特許請求の範囲】[Claims] ホーン型の1次放射器と、同1次放射器のより小さい開
口面に接合した一端の開口面を楕円形とし他端の開口面
を円形にして、楕円形から徐々に円形に変形させた第1
導波管と、同第1導波管の円形とした開口面に開口面同
士を接合した中間に直線偏波信号と結合させる結合手段
を設け末端が終端された円形第2導波管からなり、前記
第1導波管の長手方向の長さで円偏波と直線偏波間の変
換を行うことを特徴とする円偏波/直線偏波変換器。
A horn-shaped primary radiator is connected to a smaller aperture of the same primary radiator, with the aperture at one end shaped like an ellipse and the aperture at the other end circular, gradually transforming the oval into a circle. 1st
It consists of a waveguide and a circular second waveguide having a circular opening surface of the first waveguide and a coupling means for coupling the linearly polarized signal in the middle where the opening surfaces are joined and the end thereof is terminated. , a circularly polarized wave/linearly polarized wave converter, characterized in that conversion between circularly polarized wave and linearly polarized wave is performed by the length of the first waveguide in the longitudinal direction.
JP3347690A 1990-02-14 1990-02-14 Circularly polarized wave/linearly polarized wave converter Pending JPH03236602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347690A JPH03236602A (en) 1990-02-14 1990-02-14 Circularly polarized wave/linearly polarized wave converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347690A JPH03236602A (en) 1990-02-14 1990-02-14 Circularly polarized wave/linearly polarized wave converter

Publications (1)

Publication Number Publication Date
JPH03236602A true JPH03236602A (en) 1991-10-22

Family

ID=12387600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347690A Pending JPH03236602A (en) 1990-02-14 1990-02-14 Circularly polarized wave/linearly polarized wave converter

Country Status (1)

Country Link
JP (1) JPH03236602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906810A (en) * 2004-05-18 2007-01-31 斯科特·J·库克 Circular polarity elliptical horn antenna
CN106653523A (en) * 2016-12-16 2017-05-10 电子科技大学 Output device of TE1,1 mode gyro traveling wave tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211302A (en) * 1983-05-16 1984-11-30 Nec Corp Circularly polarized horn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211302A (en) * 1983-05-16 1984-11-30 Nec Corp Circularly polarized horn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906810A (en) * 2004-05-18 2007-01-31 斯科特·J·库克 Circular polarity elliptical horn antenna
CN1906810B (en) * 2004-05-18 2015-11-25 斯科特·J·库克 circular polarity elliptical horn antenna
CN106653523A (en) * 2016-12-16 2017-05-10 电子科技大学 Output device of TE1,1 mode gyro traveling wave tube

Similar Documents

Publication Publication Date Title
US10468773B2 (en) Integrated single-piece antenna feed and components
US3482251A (en) Transceive and tracking antenna horn array
JP5745080B2 (en) Antenna system
US3662393A (en) Multimode horn antenna
US7002528B2 (en) Circularly polarized receive/transmit elliptic feed horn assembly for satellite communications
CA2011475C (en) Low cross-polarization radiator of circularly polarized radiation
JPH0444441B2 (en)
EP1612888B1 (en) Antenna device
US5995057A (en) Dual mode horn reflector antenna
US6570542B2 (en) Integrated dual-directional feed horn
JPH03236602A (en) Circularly polarized wave/linearly polarized wave converter
JP2508330B2 (en) Circular polarization / linear polarization converter
US3646589A (en) Multimode tracking system utilizing a circular waveguide having slots angularly oriented with respect to the waveguide axis
KR102112202B1 (en) Polarization conversion integrated horn antenna and manufacturing method the same
KR101557781B1 (en) Feed horn assembly of parabolic antenna for multimode monopulse
US20020190911A1 (en) Multimode horn antenna
JPH03220901A (en) Circularly polarized wave/linearly polarized wave converter
JPH03190401A (en) Circularly polarized wave/linearly polarized wave converter
JPH05235603A (en) Horizontally and vertically polarized wave changeover feed horn
KR101967302B1 (en) Waveguide for horizontal or vertical polarization change of electron wave
JPH04267601A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JP4800986B2 (en) Primary radiator for 2 satellite reception
JPS6017243B2 (en) Primary radiator
CN117525911A (en) Manufacturing method of multichannel feed source and single-pulse Cassegrain antenna integrated with feed source
JPH04267603A (en) Circularly polarized wave/linearly polarized wave converter